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Abstract
Introduction: Current methods to detect hypoglycemia in type 1 diabetes (T1D) require invasive sensors (ie, continuous 
glucose monitors, CGMs) that generally have low accuracy in the hypoglycemic range. A forward-looking alternative is to 
monitor physiological changes induced by hypoglycemia that can be measured non-invasively using, eg, electrocardiography 
(ECG). However, current methods require extraction of fiduciary points in the ECG signal (eg, to estimate QT interval), 
which is challenging in ambulatory settings.

Methods: To address this issue, we present a machine-learning model that uses (1) convolutional neural networks (CNNs) 
to extract morphological information from raw ECG signals without the need to identify fiduciary points and (2) ensemble 
learning to aggregate predictions from multiple ECG beats. We evaluate the model on an experimental data set that contains 
ECG and CGM recordings over a period of 14 days from ten participants with T1D. We consider two testing scenarios, 
one that divides ECG data according to CGM readings (CGM-split) and another that divides ECG data on a day-to-day basis 
(day-split)

Results: We find that models trained using CGM-splits tend to produce overly optimistic estimates of hypoglycemia 
prediction, whereas day-splits provide more realistic estimates, which are consistent with the intrinsic accuracy of CGM 
devices. More importantly, we find that aggregating predictions from multiple ECG beats using ensemble learning significantly 
improves predictions at the beat level, though these improvements have large inter-individual differences.

Conclusion: Deep learning models and ensemble learning can extract and aggregate morphological information in ECG 
signals that is predictive of hypoglycemia. Using two validation procedures, we estimate an upper bound on the accuracy of 
ECG hypoglycemia prediction of 81% equal error rate and a lower bound of 60%. Further improvements may be achieved 
using big-data approaches that require longitudinal data from a large cohort of participants.
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Introduction

A critical aspect in managing type 1 diabetes (T1D) is pre-
venting hypoglycemic events. While minimally invasive 
devices, such as continuous glucose monitors (CGMs) exist, 
they generally have lower accuracy in the hypoglycemic 
range (4 mmol/L; 72.07 mg/dL). Continuous glucose moni-
tor use for insulin dosing decisions is generally considered to 
be feasible for mean absolute relative differences (MARDs) 
less than 10%.1 However, Food and Drug Administration 
(FDA) approval letters for the four leading selling CGMs in 
the United States show MARD in the hypoglycemic range 
(interstitial fluid glucose concentration below 54 mg/dL) for 
adults are 10% to 16% for the Abbott Freestyle Libre3,2 1% 
to 14% for the Dexcom G7,3 13% to 23% for the Medtronic 
Simplera System,4 and 13% to 20% for the Senseonics 
Eversense E3.5

Several physiological variables have been investigated 
as potential indirect indicators of hypoglycemia.6 Early 
work shows that skin temperature and skin conductivity 
decrease at the onset of hypoglycemia.7 Several commer-
cial instruments were developed in the 1980s,8,9 but they 
suffered from several issues, such as false alarms due to 
perspiration that was unrelated to hypoglycemia—a 
reported 3:1 ratio of false alarms to true alarms,10 so that, 
they never received FDA approval. Most of the work on 
hypoglycemia detection using noninvasive physiological 
sensors has focused on electrocardiography (ECG). Several 
changes in cardiac signals have been robustly associated 
with hypoglycemia, most notably a lengthened QT inter-
val.11 However, this requires extracting fiduciary points 
from ECG recordings (eg, T wave), which lacks robustness 
due to motion artifacts. To avoid these issues, Porumb 
et al12 have shown that convolutional neural networks 
(CNNs) can be used to extract beat-level morphological 
changes in raw ECG signals that are associated with hypo-
glycemia, thus avoiding the error-prone problem of identi-
fying fiduciary points.

Borrowing from Porumb et al,12 this study examines 
whether aggregating beat-level predictions at the timescale 
of CGM reading (ie, 5 minutes, or about 300-600 heart beats, 
depending on the heart rate) can improve the accuracy of 
hypoglycemia prediction. For this purpose, we propose a 
CNN model that predicts the probability of hypoglycemia 
for each ECG heartbeat and combines them into a single pre-
diction at 5-minute intervals. Our approach is based on 
ensemble learning,13 a machine-learning approach that com-
bines multiple models to improve prediction performance. 
Our model computes a percentile plot of the beat-level prob-
abilities associated with each CGM reading, and uses them 
to train a second, smaller neural network. We also propose a 
strategy to estimate the upper and lower bounds of accuracy 
that may be expected when predicting hypoglycemia from 
ECG.

Methods

Physiological Recordings

Data for this article were collected at Baylor College of 
Medicine under institutional review board (IRB) protocol 
H-49867. Participants were eligible to participate in the 
study if they had a clinical diagnosis of T1D with a duration 
greater than 1 year and were 13 years or older. In an effort to 
obtain sufficient CGM recordings to train the prediction 
models, all participants were verified to have at least 80% 
CGM use with a history of glycemic excursions (<70 and 
>180 mg/dL) in the month before enrollment. Ten subjects 
were enrolled between the ages of 29 and 41 years old and 
their body mass index (BMI) was in the range of 21.8 and 
34.1 kg/m2. Participant demographics are included in Table 
1. All participants provided written consent prior to initiating 
the study.

As part of their regular medical treatment, all subjects 
were using a hybrid closed-loop insulin pump with a Dexcom 
G6 CGM. In addition, participants wore three commercial 
wearable devices: (1) an Empatica E4 wristwatch that mea-
sures photoplethysmography (PPG) and electrodermal activ-
ity (EDA),14 (2) an Oura Ring that measures heart rate via 
PPG,15 and (3) a Zephyr Bioharness that measures ECG and 
respiration.16 Upon enrollment, subjects had at least 14 days 
of data collection on all devices. Figure 1 shows CGM 
recordings for the ten subjects over the study period. Two 
subjects (c1s02 and c1s04) experienced few hypoglycemic 
events during the 14 days (see Table 1), so that, they were not 
included in the analysis given the lack of sufficient hypogly-
cemic recordings to train the prediction models.

Furthermore, we only considered data from the Zephyr 
Bioharness, which records ECG at 250 Hz, and from the 
Dexcom G6 CGM, which reports interstitial glucose every 5 
minutes. Following our prior work,17 we used metadata from 
the Bioharness to identify “good quality” ECG segments, 
defined as having heart-rate confidence (HRC) greater than 
199 and ECG sensor noise (ECG-N) less than 0.001. Then, 
we used Neurokit218 to detect R peaks and extracted a  
variable-length window as a percentage of the RR interval 
(33% back, 66% forward). Using a variable window allows 
us to account for changes in beat morphology due to heart 
rate (eg, QT interval prolongation with increased RR inter-
val). Finally, we zero-padded ECG beats into a fixed length 
for the CNN models. We labeled each ECG beat according to 
the next (closest) CGM reading.

Soft Labeling

Given that the Dexcom G6 has an MARD of 12% to 14% in 
the hypoglycemic range,19 we do not use 70 mg/dL as a hard 
threshold for hypoglycemia, as this would make it difficult 
for the CNN model to learn. Instead, we convert CGM 
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Table 1.  Overview of the Data Set Used for This Study: NCGM  is the Number of CGM Readings (5-Minute Windows) Within the 
Target (Hypoglycemic/Euglycemic) Range. NECG Indicates the Number of Clean ECG Beats Within Each Target Range.

ID Age Gender BMI A1c

Hypoglycemia (gluc. <70 mg/dL) Euglycemia (70 ″  gluc. <180 mg/dL)

Avg. glucose NCGM NECG Avg. glucose NCGM NECG

c1s01 41 M 21.8 5.5 58.9 ±  7.8 162 46 731 112.7 ±  25.2 2356 646 403
c1s02 24 M 24.4 6.9 65.4 ±  3.1 8 3130 134.7 ±  25.6 2390 729 516
c1s03 34 M 34.1 6.9 60.6 ±  7.2 105 26 870 123.5 ±  29.4 2514 647 025
c1s04 34 F 26.9 6.4 63.8 ±  2.7 6 990 132.3 ± 27.7 2199 476 217
c2s05 35 F 23.7 5.4 62.8 ±  5.2 144 31 012 110.1 ±  24.5 3594 885 659
c2s01 30 M 24.3 5.9 55.7 ±  10.2 139 41 847 115.4 ±  24.9 2916 872 140
c2s02 31 F 24.1 5.8 56.2 ±  9.7 202 43 723 110.1 ± 24.6 2684 489 601
c2s03 30 M 23.0 6.5 57.6 ±  9.9 61 14 349 127.5 ± 26.5 2889 688 457
c2s04 30 F 29.4 5.8 55.3 ±  9.6 131 51 829 123.0 ± 26.1 3164 1 192 482
c2s05 29 M 23.5 6.0 62.5 ±  6.4 256 66 100 108.3 ±  25.4 3304 816 360

Abbreviations: BMI = body mass index; CGM = continuous glucose monitor.

Figure 1.  CGM recordings for the ten participants in the study.
Glucose readings below 76 mg/dL are shown in red; glucose readings between 77 and 180 mg/dL are shown in blue. Shaded areas represent the night 
period (10 pm-7 am).
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readings into an estimated probability of hypoglycemia that 
accounts for the intrinsic error of the device. In this fashion, 
we convert the problem of hypoglycemia prediction (ie, 
binary classification) into one of predicting a continuous 
variable (ie, regression). Similar techniques have been used 
in the machine-learning literature to avoid overfitting and are 
known as label smoothing.20 Illustrated in Figure 2a, label 
smoothing maps CGM readings into an estimated probability 
of hypoglycemia using a piece-wise linear function, with a 
probability of 1.0 at 40 mg/dL, 0.9 at 63 mg/dL, 0.5 at 70 mg/
dL, 0.1 at 76 mg/dL, and 0.0 at 100 mg/dL. We remove CGM 
readings above 180 mg/dL from the training set, since hyper-
glycemia does not pose an immediate threat to the patient. In 
doing so, we reduce class imbalance and allow the model to 
better detect hypoglycemia, the more significant clinical 
problem in the short term.

Beat-Level Prediction of Hypoglycemia

Our beat-level prediction model is a CNN that consumes 
fixed-length zero-padded ECG waveforms and produces a 
glucose estimate in the form of a soft label, as described 
above. The CNN consists of 15 convolutional layers, each 
with a kernel size of 3, a stride of 1, and 50 filters (see Figure 
2b). We apply an ReLU (rectified linear unit) activation 
function and one-dimensional batch normalization within 
each convolution layer. The CNN layers are followed by two 
fully connected (FC) layers with 250 and 30 neurons, respec-
tively, which predict the probability of hypoglycemia from 
the embeddings of the CNN. We apply a dropout layer with 
a dropout rate of 20%, along with an ReLU activation func-
tion between the two layers. We train the model for ten 
epochs using the ADAM optimizer with a learning rate of 
0.00005. We implement early stopping with a patience of 7 

to prevent overfitting. Given the large class imbalance (hypo-
glycemic readings represent 1%-5% of all CGM readings), 
we use weighted cross-entropy as the loss function:
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where p is the ground-truth soft label (ie, probability of 
hypoglycemia as shown in Figure 2a), p�  is the predicted 
probability, h is the ratio of euglycemic CGM readings (70-
180 mg/dL) to hypoglycemic CGM readings (40-70 mg/dL), 
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and N  is the number of examples (ie, ECG beats) in the data 
set. Given the large individual differences in ECG beat 
morphology, we train a separate CNN model for each 
subject.

Ensemble Prediction of Hypoglycemia

Given that glucose dynamics are significantly slower that 
cardiac dynamics, we use an ensemble learning technique to 
aggregate beat-level predictions from all ECG beats associ-
ated with a CGM reading (ie, a 5-minute window, or about 
300-600 heart beats, depending on the heart rate) into a sin-
gle prediction. Under the assumption that prediction errors at 
the ECG beat level are independent identically distributed 
(i.i.d.), ensemble learning has been shown to improve the 

Figure 2.  (a) Generating soft labels from CGM readings. (b) Basic architecture of the Convolutional Neural Network. (c) Ensemble 
predictions from the percentiles of CNN output probabilities.
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performance of a “lazy learner” algorithm (a learner that per-
forms just above the chance level).21

Our ensemble method is based on stacked generalization, 
a machine-learning approach that trains a second-level model 
to combine predictions from two or more first-level mod-
els.22 In our case, the first-level models are the CNNs that 
predict hypoglycemia at the beat level. Given the CNN out-
put probabilities pi

�  for all the ECG beats associated with a 
CGM reading, we generate a percentile plot that captures the 
distribution of pi

� . Then, we train an FC network that predicts 
the soft label associated with the CGM reading from the per-
centile plot of pi

�  (see Figure 2c).

Validation Approaches

We evaluate two approaches to split the data into training, 
validation, and test sets. The first approach (CGM-splits) 
randomly splits a participant’s CGM recordings (and the 
prior 5 minutes of ECG recordings) into a training set (70%) 
and a test set (30%) in a stratified fashion to ensure that both 
sets have the same proportion of hypoglycemic beats. The 
training set is then further divided into a training subset 
(70%) to train the CNN models, and a validation subset 
(30%). For the CNN beat-level prediction model, we use the 
validation set to find the optimum threshold for the posterior 
probability at the output of the CNN that minimizes the equal 
error rate (EER), defined as the point where the true-positive 
rate (correct hypoglycemia alarms) equals the false negative 
rate (false hypoglycemia alarms). For the stacked-generaliza-
tion model, we combine the validation and training subsets to 
train the FC network that consumes the percentile curve (see 
Figure 2c), using weighted cross-entropy loss to balance the 
proportion of training and validation data. Given the potential 
confounding effect of time (ie, ECG beats from the same 
period can have similar beat morphology), CGM-splits can 

lead to overly optimistic results. Thus, we use these results as 
an optimistic estimate of the EER.

The second approach (day-splits) partitions each partici-
pant’s data set into training, validation and test sets on a day-
by-day basis, rather than by CGM recordings. Namely, given 
D days of data collection for each participant, we use data 
from an entire day for the test set, data from a different day 
for the validation set, and data from the remaining D − 2 days 
for the training set, ensuring that the test and validation days 
contain hypoglycemic readings (otherwise, we cannot esti-
mate EERs). We consider results from day-splits as a conser-
vative estimate of the EER.

Statistical Analysis

We compare CGM-splits vs day-splits using a two-sample t 
test on EERs, with EER for CGM-splits based on the average 
across five separate runs (each run with a random 70/30 
split), and EER for day-splits based on the average of D 
leave-one-day-out runs on days for which there was at least 
one hypoglycemic event. As a result, the number of days D 
is different for each participant.

We compare beat-level vs ensemble-level predictions 
using a two-sample t test on day-wise splits. To examine 
individual differences across subjects, we then conducted 
two-way analysis of variance (ANOVA) without replication 
using subject and model type (beat vs ensemble level) as 
independent factors.

Results

Predictions From CGM-Splits vs Day-Splits

In a first step, we evaluate the performance of the CNN 
models when partitioning according to CGM readings vs 
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Figure 3.  Accuracy at EER for the beat-level CNN model, with data partitioned based on CGM readings (blue) and days of collection 
(red). Error bars represent the standard error.
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Figure 4.  Accuracy at EER for the beat-level CNN (blue) and stacked generalization (red). Error bars represent standard error.

Figure 5.  Percentile plot for hypoglycemic and euglycemic beats for subject c2s04.
Shaded regions represent standard deviations.

experimental days. As noted earlier, we only consider beat-
level predictions for this comparison, since the relative per-
formance of both splitting approaches is likely to generalize 
to the ensemble model.

Results across participants are illustrated in Figure 3. As 
expected, predictive accuracy at EER is higher with CGM-
splits (81%) than with day-splits (60%), a difference that is 
statistically significant (P < .01). Considering that the sensi-
tivity of CGM devices for hypoglycemia detection is around 
85%,23 it is highly likely the estimated accuracy of 81% 
when using CGM-splits is, in part, due to the confounding 
effect of time. For example, when a hypoglycemic event is 
longer than 5 minutes (which is generally the case), splitting 
the data at the CGM level leads to that hypoglycemic event 
to be used both for training and testing, which results in unre-
alistically high predictive accuracy. For this reason, we 

consider the estimated 81% EER from CGM-splits and the 
estimated 60% EER from day-splits as the upper and lower 
bounds, respectively, of hypoglycemia prediction from ECG 
beat morphology.

Beat-Level vs Ensemble Prediction

Given that CGM-split predictions lead to overly optimistic 
results, for the second experiment, we compared the beat-
level and ensemble-level predictions using only day-splits. 
Results across subjects are summarized in Figure 4. The 
stacked-generalization ensemble achieves higher accuracy at 
EER (65%) than the vote-level model (60%), though in this 
case differences are only statistically significant at the P = 
.07 level. To examine individual differences across subjects, 
we then conducted two-way ANOVA without replication 
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using subject and model type (beat vs ensemble level) as 
independent factors. We find a main effect for subject (P = 
.021) and for model type (P = .026), indicating that, when 
considering individual differences, the ensemble method 
provides significantly higher predictive accuracy than the 
beat-level model.

To illustrate the information consumed by the ensemble 
model, Figure 5a shows the percentile plots of CNN proba-
bility estimates (over 5-minute windows) for hypoglycemic 
and euglycemic CGM readings on one of the test days for 
subject c2s04, whereas Figure 5b shows the average percen-
tile plot over all test days. As shown, for percentiles above 
60%, probabilities are significantly higher for hypoglycemic 
readings and have significantly lower variability than those 
for euglycemic readings. The larger variability to the latter 
may be due to the large class imbalance.

Discussion

Depending on the subject, the ensemble methods improve 
the predictive accuracy from 3% to 10%, when compared 
with beat-level predictions, though these improvements are 
only statistically significant for three of the eight subjects. A 
potential explanation for the relatively low accuracy of the 
models is the presence of pressure artifacts in CGM read-
ings,24 particularly during the night. As patients inadvertently 
roll over the CGM, interstitial fluid is pushed away from the 
CGM electrode, resulting in false hypoglycemic readings 
when the actual ECG beat morphology is that of euglycemic 
glucose levels. To address this issue, data-driven techniques24 
may be used to detect such pressure artifacts, and remove 
those measurements form the training set.

Predictive accuracy may also be increased by replacing 
the CNN with a model better suited to analyze time series, 
such as the InceptionTime architecture,25 which incorporates 
residual blocks as well as convolutional layers with varying 
kernel sizes, allowing the model to capture morphological 
features at different scale factors. Additional gains in perfor-
mance may also be obtained by combining beat morphology 
with additional information in the ECG signal, such as mea-
sures of heart rate variability and timing information in the 
beat-to-beat time series, as well as other contextual informa-
tion, such as time of day, physical activity and posture, all of 
which can be easily obtained from commercial wearable sen-
sor devices. Our prior work17 has shown that a combination 
of these various sources of information achieves higher accu-
racy that predictions from each of them in isolation.

Simpler models (in terms of number of parameters) may 
also be used. While conducting this study, we also evaluated 
boosted regression trees. However, this type of model is very 
sensitive to the alignment of the ECG R peak. In contrast, the 
proposed CNN is shift invariant. With poor R-peak align-
ment, our CNN generally outperforms boosted regression 
trees. Thus, while the CNN has a higher risk of overfitting, in 
our experience, this has not been the case.

We focused on a 5-minute ECG window to match the 
sampling period of the Dexcom G6, but our study can be 
easily extended to longer windows, simply by associating 
each CGM reading with the prior 10 or 15 minutes of ECG 
recordings. Our expectation is that a longer analysis win-
dow will improve model accuracy, up to the point where the 
ECG window is longer than the time constant of glucose 
dynamics. We are currently developing a model that exam-
ines a multi-beat window (3c-30 seconds) to capture not 
only beat morphology but also beat-to-beat information, 
such as heart rate variability. Our preliminary results indi-
cate that this multi-beat window size does improve 
accuracy.

Our proposed can be used for real-time detection as is, 
since it predicts hypoglycemia at the same rate as the fastest 
CGM devices on the market. This would require carefully 
optimizing the model (ie, by reducing the number of model 
parameters) to reduce the lag of the predictions. We believe 
this would not be an issue since our CNN model is relatively 
smaller than those use in speech research. Another possibil-
ity we have not yet examined is whether our model can be 
used to forecast future glucose readings, eg, predicting glu-
cose levels 5 to 30 minutes into the future. Our expectation is 
that accuracy would decrease as the forecasting horizon is 
increased.

Limitations of the Study

One limitation of this study is the relatively small number of 
patients in the study (10 patients). To our knowledge, how-
ever, the only publicly available data set containing both 
ECG and CGM recordings is the D1NAMO data set, and 
only contains 4 days of recordings from nine patients with 
T1D (36 days). In comparison, our data set contains 10 to 15 
days of recording from ten participants (roughly three times 
as large). Furthermore, while our current number of partici-
pants is objectively small and needs to be validated on data 
from a larger set of participants, this limitation does not 
affect the results of our study since our models are partici-
pant dependent. As we extend our data set with data from 
new participants being recruited at the time of this writing, it 
then becomes possible to train and evaluate subject-indepen-
dent models in a leave-one-subject-out cross-validation pro-
cedure. Our experience with other diabetes-related data sets 
we have collected in the past26 is that subject-independent 
models only improve the performance of subject-dependent 
models when the number of participants is larger than 50. 
This is largely due to the large individual differences in phys-
iology and glucose regulation.

A second limitation of this study is that hypoglycemic 
readings were not validated with capillary or venous blood 
samples, since this was not specified in the protocol. At the 
time of this writing, we are developing a new protocol that 
will include verification of CGM hypoglycemic readings 
with capillary blood samples, as well as validated 
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self-report measures of hypoglycemia, such as the Edinburgh 
Hypoglycemia Scale27 and Clarke and Gold scores.28

Finally, our hypoglycemia prediction models were trained 
using participant data from up to 14 days, so that, we are 
unable to examine the long-term stability of the models. 
Given that participants were required to wear two additional 
devices (which included charging them every night and 
uploading their data to the cloud for the research team), 
increasing the study period beyond 2 weeks would have put 
significant burden on participants and likely reduced adher-
ence to the protocol. As part of the grant that funded the 
study, we have developed a compact sensing device (to be 
worn in the upper arm) that measures ECG, PPG, EDA, tem-
perature, and acceleration simultaneously. Once this device 
is thoroughly validated against the commercial devices used 
in the current study, conducting longitudinal studies becomes 
feasible. Longitudinal data will allow us to examine the sta-
bility of our models and potentially improve model accuracy 
with the additional training data that become available.

Conclusions

Convolutional neural networks can be used to extract morpho-
logical information from ECG recordings that is predictive of 
glucose readings in the hypoglycemic range without the need 
to detect fiduciary points in ECG recordings, which is chal-
lenging in ambulatory settings due to motion artifacts. 
Aggregating hypoglycemia predictions for individual beats 
within a CGM recording improves predictive accuracy at EER 
over beat-level predictions, though there are large inter- 
individual differences in the magnitude of these improvements.
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