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ABSTRACT

Speaker anonymization aims to conceal cues to speaker iden-
tity while preserving linguistic content. Current machine
learning based approaches require substantial computational
resources, hindering real-time streaming applications. To
address these concerns, we propose a streaming model that
achieves speaker anonymization with low latency. The sys-
tem is trained in an end-to-end autoencoder fashion using a
lightweight content encoder that extracts HuBERT-like in-
formation, a pretrained speaker encoder that extract speaker
identity, and a variance encoder that injects pitch and en-
ergy information. These three disentangled representations
are fed to a decoder that re-synthesizes the speech signal.
We present evaluation results from two implementations of
our system, a full model that achieves a latency of 230ms,
and a lite version (0.1x in size) that further reduces latency
to 66ms while maintaining state-of-the-art performance in
naturalness, intelligibility, and privacy preservation.

Index Terms— speaker anonymization, voice conver-
sion, voice privacy, speech synthesis

1. INTRODUCTION

The task of speaker anonymization is to transform utter-
ances to hide the identity of the speaker (while preserving
their linguistic content). Speaker anonymization provides
privacy protection and confidentiality in a range of applica-
tions, including customer service interactions, voice-operated
virtual assistants, legal proceedings, and medical consulta-
tions. Moreover, speaker anonymization addresses ethical
and responsible use of speech data, aligning with privacy
regulations and safeguarding individuals’ rights.

Existing machine learning (ML) based approaches to
speaker anonymization follow a cascaded automatic speech
recognition (ASR) – text-to-speech (TTS) architecture [1, 2].
An ASR module produces a text transcription that is speaker
independent but eliminates emotional cues that may oth-
erwise be of use for downstream applications. Moreover,
existing systems for speaker anonymization are computation-
ally heavy, operate in a non-streaming fashion, and/or have
high latency on CPU devices as opposed to GPUs. For speech
anonymization to be used in the field, it must operate at real

time (or faster), exhibit low latency, require minimal future
context and be compatible with low-resource devices (e.g.,
smartphones).

To address these needs, we propose an end-to-end stream-
ing model suitable for low-latency speaker anonymization.
Our model draws inspiration from neural audio codecs [3, 4]
for audio compression in low-resource streaming settings.
Our key strategy that enables streaming is to replace tradi-
tional non-causal computationally intensive networks (e.g.,
ASR or self-supervised learning based models) for encoding
linguistic content with a lightweight convolutional neural net-
work (CNN) based architecture. Our proposed architecture
consists of: (a) a streaming waveform encoder that gener-
ates a speaker-independent content representation from raw
waveforms, (b) a pseudo-speaker generator that produces
an anonymized speaker representation (i.e., an embedding)
from the input speech, (c) a speaker/variance adapter that
adds speaker, pitch and energy information to the content
representation, and (d) a streaming decoder that consumes
the speaker/variance adapted linguistic representation and
the corresponding speaker embedding to generate the fi-
nal anonymized audio waveform. Our system is trained in
an auto-encoder fashion, which reconstructs the input condi-
tioned on the speaker embeddings generated using pre-trained
speaker encoders [5, 6]. During inference, a pseudo-speaker
generator produces a target speaker embedding with cosine
distance greater than 0.3 from the source embedding, ensur-
ing that the re-synthesized utterance sounds as if a different
(i.e., anonymized) speaker had produced it. Additionally, the
speaker/variance adapter is used to modulate pitch and energy
values to further enhance privacy and control the similarity of
the synthesized speech with the source audio. We show that
our lightweight convolutional neural network (CNN) based
architecture achieves similar performance as traditional con-
tent encoders.

We perform experiments on two versions of our model, a
Base version that can perform real-time streaming synthesis
with a latency of 230ms and a Lite version (having 0.1x the
number of parameters) that further reduces latency to 66ms
while maintaining state-of-the-art performance on natural-
ness, intelligibility, privacy and speaker identity transfer1.

1https://warisqr007.github.io/demos/stream-anonymization/



2. RELATED WORK

2.1. Voice conversion

Speaker anonymization is closely related to voice conversion
(VC). However, whereas VC seeks to transform utterances
from a source speaker to match the identity of a (known)
target speaker, speaker anonymization only requires that the
transformed speech be sufficiently different from the source
speaker to conceal their identity.

The first step in conventional VC architectures is to dis-
entangle the linguistic content of an utterance from speaker-
specific attributes. As an example, cascaded ASR-TTS archi-
tectures [7] use an ASR model to transcribe the input utter-
ance into text, followed by a TTS model that converts the text
back into speech –conditioned on a speaker embedding. Vari-
ants of this approach replace the ASR module with acous-
tic models that generate a more fine-grained representation
than text, such as phonetic posteriorgrams (PPGs) [8]. Recent
approaches have also used information bottlenecks to disen-
tangle linguistic content form speaker identity [9]. A major
drawbacks of the latter approach is that information bottle-
necks must be carefully designed and are sensitive to the di-
mension of latent space. Other techniques include instance
normalization [10], use of mutual information loss [11], vec-
tor quantization [11, 12], and adversarial training [13]. To
enable streaming, recent VC methods use a streaming ASR
to extract PPGs [14] or streaming ASR sub-encoders [15, 16]
to generate linguistic content, and then perform VC through
causal architectures that require limited future contexts.

2.2. Speaker anonymization

Speaker anonymization approaches can be broadly divided
into two categories: digital signal processing (DSP) and ma-
chine learning (ML) based. DSP methods include formant-
shifting using McAdams coefficients [17], frequency warping
[18], or a series of steps consisting of vocal tract length nor-
malization, McAdams transformation and modulation spec-
trum smoothing [19]. Additionally, modifications to pitch
[20] and speaking rate [21] are used. DSP models are sig-
nificantly smaller (i.e., fewer parameters) than ML models,
which results in efficient and speedy execution. However, the
types of global transforms used in DSP methods cannot fully
remove speaker-dependent cues, making them vulnerable to
ML-based speaker verification systems [1].

ML methods for speaker anonymization follow the con-
ventional VC framework of disentangling linguistic con-
tent from speaker identity, but then replace the latter with a
speaker embedding that is different (anonymized) from the
source. Various methods have been proposed to select this
anonymized speaker embedding. For example, Srivastava
et al. [22] generate anonymized embeddings by randomly
selecting N speaker vectors from a pool of speakers farthest
from the source, using e.g., cosine distance, whereas Perero-

Codosero et al. [23] use an autoencoder architecture with an
adversarial training module that removes speaker, gender, and
accent information. Other approaches use look-up tables [24]
or generative adversarial networks [1] to generate pseudo-
speakers. Our approach follows the latter: we combines
a GAN-based pseudo-speaker generator with a streaming
model to enable real-time speaker anonymization with low
latency.

3. METHOD

The proposed system is illustrated in Figure 1. Anonymiza-
tion takes place in two steps, (1) generating a fixed (i.e.,
off-line) anonymized speaker embedding personalized to the
source speaker and, (2) using this fixed anonymized speaker
embedding and the streaming speech synthesizer to synthe-
size anonymized speech that only preserves the linguistic
content of the source speech. To generate the anonymized
embedding, a reference waveform from the source speaker
is passed to the pre-trained speaker encoder, which then pro-
duces the source speaker embedding. The pseudo speaker
generator receives this source speaker embedding and gen-
erates the anonymized version (see Figure 1b). To synthe-
sise speech signals, the content encoder receives streaming
chunks of raw waveform and converts it into a hidden repre-
sentation z that contains the linguistic content disentangled
from the speaker representation. The content information
z and the anonymized speaker embedding (generated in the
previous step) is passed to the speaker/variance adapter. The
speaker/variance adapter, first, conditions the anonymized
speaker embedding on the content representation z and then
adds pitch and energy values. The decoder receives the output
of the speaker/variance adapter and the anonymized speaker
embedding to generate the final anonymized waveform.

We train two versions of our proposed system, a base and
a lite version. Below, we describe each component of our
system and the training procedure in detail.

3.1. Content encoder

The content encoder consumes the wav signal to predict
discrete speech units produced by discretizing the output
speech representation from a pretrained HuBERT model
[25] into one of N codewords or pseudo-labels [26]. Our
content encoder architecture follows that of HiFiGAN [27],
except all transposed convolutions in HiFiGAN are replaced
with strided causal convolutions to downsample the input
waveform. Additionally, to support streaming applications,
we replace all vanilla CNN layers in HiFiGAN with causal
CNNs so that the prediction only considers the past context
and does not rely on future audio frames. For both versions
of our model (base and lite), we use downsampling rates
of [2, 2, 4, 4, 5]. The residual blocks have kernel sizes as
[3, 7, 11] with dilation rates as [[[1, 1], [3, 1], [5, 1]]∗3] (please
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Fig. 1. Block diagram of the proposed anonymization
system. (a) training workflow (b) inference workflow (c)
speaker/variance adapter.

refer [27] for details). The difference between base and the
lite version is the dimension of the hidden representation z
(the output of the encoder): 512 dimensions for the base
version and 128 dimensions for the lite version.

3.2. Speaker encoder and pseudo-speaker generator

Speaker verification or classification systems generally use
speaker embeddings to represent the characteristics or timbre
of a speaker’s voice. Widely used speaker encoders include
the GE2E model [28], X-vectors [6] and ECAPA-TDNN
[5]. Our system concatenates embeddings generated from X-
vectors and ECAPA-TDNN models, since these two models
have been shown to complement each other [1].

To perform speaker anonymization, we use a pseudo-
speaker generator that takes the original speaker embedding
as input and outputs an artificially generated speaker embed-
ding such that the generated anonymized speaker embedding
has a cosine distance greater than 0.3 as compared with the
original speaker embedding. Our pseudo-speaker generator
follows a GAN-based architecture [1] and is trained sepa-
rately. The generator is trained to receive a random vector
sampled from a standard normal distribution N(0, 1) as input
and output a vector of the same shape as the original speaker
embedding. The discriminator is trained to discriminate w.r.t
the quadratic Wasserstein distance and transport cost [29]
between the artificial and the original speaker embeddings.

3.3. Speaker/Variance adapter

The speaker/variance adapter aims to add speaker, pitch, and
energy (i.e., variance) information to the speaker-independent
content representation and provides a way to control them
[30]. The speaker/variance adapter consists of three modules:
(a) speaker adapter, (b) pitch predictor, and (c) energy predic-
tor (see Figure 1c).

The speaker adapter conditions the speaker embedding on
the content representation z, and passes it to the pitch and
energy predictors. The speaker adapter is based on adaptive
instance normalization (adaIN) [31] and feature-wise linear
modulation (FiLM) [32]. The conditioning goes as follows.
First, we apply instance normalization to the input feature rep-
resentation, and then transform it with scale and bias param-
eters learned through two 1D CNNs that take speaker embed-
dings as input. The use of instance normalization was moti-
vated by a prior work [10] that showed instance normalization
being helpful in removing residual speaker information.

Pitch and energy predictor estimate pitch and energy val-
ues based on speaker adapted content representation z. Dur-
ing training, we use the ground-truth pitch and energy values
to train the pitch and energy predictors. At inference, the out-
put of the pitch and energy predictor are added to the speaker
adapted z. The pitch and energy predictors have similar archi-
tecture consisting of a 2-layered 1D causal CNNs (kernal size
3) with ReLU activation, followed by layer normalization and
dropout layer and an additional 1D CNN (with kernel size 1)
to project pitch and energy values on the latent representation.

3.4. Decoder

The decoder follows the same design and training procedure
as HiFiGAN [27] and can be seen as a mirror-image of the
content encoder. Similar to the content encoder, all vanilla
CNNs are replaced with causal CNNs. The decoder receives
speaker/variance adapted latent representation along with
speaker embedding and directly generates waveform signal
without any intermediate mel-spectrogram generation. We
additionally adapt the output of each residual block of the
decoder to the speaker embedding. In our experiments, we
observed that doing so gave better speaker transfer perfor-
mance. For both versions of base and lite version of our
model, we use upsampling rates of [5, 4, 4, 2, 2]. The residual
blocks have kernel sizes as [3, 7, 11] with dilation rates as
[[[1, 1], [3, 1], [5, 1]] ∗ 3].

3.5. Training

The training workflow is described in Figure 1a. The pro-
posed system is trained end-to-end similar to an autoencoder,
reconstucting the same waveform at output that fed as input.
The content encoder is trained to predict the pseudo-labels
generated through a HuBERT/Kmean module using cross-
entropy loss. The pitch and energy predictor in the variance



adapter apply mean-squared error loss for pitch and energy
prediction. At the output of the decoder, Following the HiFi-
GAN architecture [27], we apply a combination of adversar-
ial losses at the output of the decoder, including feature loss,
multi-period discriminator loss, multi-scale discriminator
loss, multi-resolution STFT loss [33] and Mel-spectrogram
reconstruction loss. These discriminators have similar archi-
tecture as those in HiFiGAN, including weighting schemes
to compute the total decoder loss. The final training loss is
the summation of content loss, pitch/energy error loss and
decoder losses. We apply a stop-gradient operation to prevent
gradient flow (i.e., back-propagation) from the decoder to the
encoder, to ensure that the speaker information is not leaked
via the content representation. This operation effectively de-
couples it from the rest of the system; in other words, the
encoder and the rest of the system can potentially be trained
sequentially as two independent modules.

4. EXPERIMENTAL SETUP

We trained our system on the LibriTTS corpus [34] follow-
ing guidelines for the Voice Privacy Challenge 2022 (VPC22)
[35]. All our experimental results are presented on the Lib-
riTTS dev and test set, which were not part of the training.
We use a pretrained HuBERT-base2 and extract the the out-
put from its 9th layer. We set the number of cluster cen-
troids to 200. For all our experiments, we use a sampling
rate of 16 kHz and batch size of 16 with the AdamW opti-
mizer with a learning rate of 2 ∗ 10−4 annealed down to 10−5

by exponential scheduling. The encoder is first pretrained
for 300k steps (for training stability), and then trained to-
gether with the decoder for an additional 800k steps. The pre-
trained speaker encoders were taken from speechbrain [36].
The pseudo speaker embedding generator follows the train-
ing procedure described in [1] and trained on VoxCeleb 1 and
2 [37, 38]. All our models are trained using two NVIDIA
Tesla V100 GPUs for approximately two weeks.

5. RESULTS

We evaluated our system on a series of subjective and ob-
jective measures of synthesis latency, synthesis quality, pri-
vacy as well as speaker transfer ability. We compare our re-
sults against five baselines: three state-of-the-art VC mod-
els (VQMIVC3 [11], QuickVC4 [39], and DiffVC5 [40]) and
two speaker anonymization models6, a DSP-based model [17]
(baseline B2 from VPC22) and a ML-based model (to which
we refer as B3) that uses a transformer-based ASR and a

2https://github.com/facebookresearch/fairseq
3https://github.com/Wendison/VQMIVC
4https://github.com/quickvc/QuickVC-VoiceConversion
5https://github.com/huawei-noah/Speech-Backbones/tree/main/DiffVC
6https://github.com/Voice-Privacy-Challenge/Voice-Privacy-Challenge-

2024

Fastspeech2-based TTS with a WGAN-based anonymizer [1].
The five baseline models are trained on the same dataset as
our proposed system, and we use their pretrained checkpoints
obtained from their corresponding github repositories. We
could not find any open-source streaming speech synthesis
model and hence were unable to include them as baselines.
We evaluate our model using the same Libri-TTS evaluation
split as VPC22. For the VC baselines we randomly select
a speaker from the CMU Arctic corpus [41] as the target
speaker.

5.1. Synthesis Latency

Our pretrained HuBERT model produces speech frames at
50Hz, so the smallest chunk size that our model can process
is 20 ms. In this section, we present the synthesis latency and
the real-time factors (RTF) for the base and lite versions for
our model, for various chunk sizes between 20ms and 140ms
on both CPU and GPU devices. Latency is defined as the
sum of the chunk size and the average time the model takes
to synthesize that chunk. RTF is the ratio of the system’s av-
erage processing time to the chunk size. For a system to be
real-time, the latency should be less than twice the chunk size,
meaning RTF should be less than 1. Results are summarized
in Table 1. On GPU, our base version can operate in real-time
for the chunk size of 40ms with a latency of 64ms, while on
CPU the base model can be real-time for chunk size of 120ms
with a latency of 230ms. In case of the lite version, the model
is real-time for chunk size of 20ms with a latency of 38ms on
GPU and can operate in real-time for 40ms with latency of
66ms on the CPU. For our test set of experiments we set the
chunk size of 120ms and 40ms for the base and lite versions
respectively.

5.2. Synthesis Quality

We use DNSMOS [42] as an objective measure of natu-
ralness for our experiments. DNSMOS provides three rat-
ings for quality of speech (SIG), noise (BAK), and overall
(OVRL). Additionally, we assess the intelligibility of synthe-
sized speech through Word Error Rate (WER). We calculated
WER using an ASR consisting of a CRDNN based acoustic
model and a transformer-based language model that uses CTC
and attention decoders. Table 2, summarizes results for the
five baselines and the proposed systems. In terms of DNS-
MOS, our models achieve comparable ratings as Diff-VC,
QuickVC, and B3 across the three measures, and comparable
or better than the source speech. In terms of intelligibility, our
systems achieve comparable WER to that of B3, and superior
to the rest, even though our models operate in a causal fashion
with far more limited context.

We verified the synthesis quality of our two models
through listening tests on Amazon Mechanical Turk (AMT).
Namely, participants (N=20) were asked to rate the acoustic
quality of utterances using a standard 5-point scale mean



Table 1. Synthesis latency and real-time factors (RTF) on CPU and GPU devices.

Chunk Size CPU (ms) GPU (ms)

(ms) base lite base lite
latency RTF latency RTF latency RTF latency RTF

20 83.82 3.19 43.01 1.15 44.61 1.23 38.36 0.92
40 115.23 1.88 66.27 0.66 64.38 0.61 58.70 0.47
60 170.93 1.85 88.03 0.47 84.03 0.40 79.55 0.33

100 230.23 1.30 136.60 0.37 124.19 0.24 118.92 0.19
120 229.75 0.91 159.22 0.33 144.16 0.20 139.41 0.16
140 249.38 0.78 173.49 0.24 163.90 0.17 158.90 0.14

Table 2. DNS MOS, Word Error Rates (WER) and speaker
similarity scores (SSS) for baselines and the proposed model.

SIG BAK OVRL WER SSS

VQMIVC 3.35 3.78 2.98 26.88 0.72
Quick-VC 3.55 4.06 3.28 6.30 0.68
Diff-VC 3.62 4.17 3.40 7.64 0.82
VPC22 B2 2.85 3.44 2.50 12.02 -
B3 3.57 4.03 3.28 4.65 -

base 3.53 3.99 3.31 5.12 0.85
lite 3.48 3.93 3.22 6.47 0.81

Source 3.58 3.99 3.26 2.98 0.89

Table 3. Subjective MOS for naturalness.

Source base lite

MOS 3.54 ± 0.56 3.57 ± 0.59 3.47 ± 0.62

opinion score (MOS) [rating, speech quality, level of distor-
tion]: [5, excellent, imperceptible] — [4, good, just percep-
tible but not annoying] — [3, fair, perceptible but slightly
annoying] — [2, poor, annoying but not objectionable ] — [1,
bad, very annoying and objectionable]. Each listener rated ut-
terances synthesized using the base and lite models, as well as
original utterances (20 for each). Results are shown in Table
3. Both systems (base and lite) obtained comparable ratings
of MOS as the original utterances. We see a difference of
0.1 between the MOS score of base and lite versions, but we
didn’t find them to be significant. It is noteworthy that while
the lite version has 0.1x number of parameters, it achieves
nearly the same synthesis quality as the base version.

5.3. Speaker Anonymization

To assess speaker-anonymization performance, we report
Equal Error Rate (EER) on the speaker verification model
(ASV) in the VoicePrivacy 2024 Challenge github (see sec-
tion 4). ASV tests are conducted for the following two

Table 4. Equal Error Rate (EER) as a privacy metric. The
higher the better.

VPC22 B2 B3 base lite

O-A M 25.10 44.24 43.83 42.57
F 37.42 47.78 46.87 45.31

A-A M 11.03 42.63 41.43 39.20
F 15.03 43.23 42.03 41.16

scenarios, (a) ignorant, where we only anonymize the trial
data (O-A), or (b) lazy-informed, where we anonymize both
enrollment and trial data but use different target speakers
(A-A). Results are shown in Table 4. For both the ignorant
and lazy-informed scenario, our models achieves similar per-
formance as B3 and outperforms VPC22 B2. Although our
base model performs slightly worse than B3, the differences
are not significantly different between them (p = 0.13).

To corroborate these results, we conducted an AB listen-
ing test on AMT. Participants were presented with two audio
samples, one from a speaker in the enrollment set, and the
second sample from one of three options: (a) a different utter-
ance from the same speaker from the trial set, (b) an utterance
from a different speaker from the trial set, or (c) another ut-
terance of the same speaker from the trial set but anonymized
through our lite version of the system. Then, participants had
to decide if both samples were from the same speaker, and
rate the confidence in their decision using a 7-point scale (7:
extremely confident; 5: quite a bit confident; 3: somewhat
confident; 1: not confident at all). Each listener rated 20 AB
pairs per scenario. Results are summarized in Table 5. In
settings (a) and (b), listeners could easily identify whether
the recording were from the same or different speakers (81
% ) with high confidence (5.71). In setting (c), however, the
anonymized trial data obtained obtained similar rating as in
(b), indicating that proposed system was able to anonymize
the trial recordings.



Table 5. Subjective speaker verifiability scores for the pro-
posed model.

speaker anon Verifiability Confidence Rating

same no 81.5% 5.71
different no 17.75% 2.50
same yes 14.5% 2.37

5.4. Speaker Identity transfer

In a final step, we evaluated our models’ ability to capture the
voice of a target speaker. For this purpose, we used an objec-
tive score of speaker similarity based on the cosine similar-
ity between speaker embeddings of the target and the synthe-
sized utterances obtained from a ASV system7. We compare
our model against the three VC baselines (VQMIVC [11],
QuickVC [39], DiffVC [40]) using the same settings as those
in section 5.2) to generate VC samples. Results are summa-
rized in the rightmost column of Table 2 (SSS). As a guide-
line, pairing two utterances from the same speaker yields an
average cosine similarity of 0.89. As shown, our base model
outperforms the three baselines, achieving cosine similarity
that it close to the average within-speaker similarity of 0.89.

6. DISCUSSION

Most existing speaker anonymization methods do not op-
erate in low-latency streaming mode, preventing their use
in field operations. In this paper, we present an end-to-end
streaming model that operates with low latency and achieves
anonymization by mapping speaker embedding into an artifi-
cially generated pseudo speaker in a causal fashion (i.e., no
future context). The pseudo-speaker generator can produce
speaker embeddings that are very close to a real person in the
corpus. Although we train the pseudo-speaker generator on
a different corpus than the speech anonymization system to
guard against this possibility, we could also test if a pseudo-
speaker is too close to one on the corpus or outside the space
of speakers in the training corpus, and generate new ones
until a valid one is generated. While there exists a quality-
latency tradeoff, our system can achieve latency low as 66ms
while maintaining state-of-the-art naturalness, intelligibility
and privacy preservation. Our lite version is roughly 10MB
and can potentially be deployed on mobile devices to support
real-time field applications. Accent can carry speaker related
cues [43] and in future work, we aim to add accent conversion
to this pipeline. Other research direction is to add the control
of emotion while synthesizing speech signals.
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“A comparison of discrete and soft speech units for im-
proved voice conversion,” in Proc. ICASSP, 2022, pp.
6562–6566.

[27] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae, “Hifi-
gan: Generative adversarial networks for efficient and
high fidelity speech synthesis,” Proc NeurIPS, vol. 33,
pp. 17022–17033, 2020.

[28] Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez
Moreno, “Generalized end-to-end loss for speaker veri-
fication,” in Proc. ICASSP, 2018, pp. 4879–4883.

[29] Huidong Liu, Xianfeng Gu, and Dimitris Samaras,
“Wasserstein gan with quadratic transport cost,” in Proc.
CVF, 2019, pp. 4832–4841.

[30] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu, “Fastspeech 2: Fast and
high-quality end-to-end text to speech,” arXiv preprint
arXiv:2006.04558, 2020.

[31] Xun Huang and Serge Belongie, “Arbitrary style trans-
fer in real-time with adaptive instance normalization,”
in Proc. ICCV, 2017, pp. 1501–1510.



[32] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville, “Film: Visual reasoning
with a general conditioning layer,” in Proc. AAAI, 2018,
vol. 32.

[33] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim,
“Parallel wavegan: A fast waveform generation model
based on generative adversarial networks with multi-
resolution spectrogram,” in Proc. ICASSP, 2020, pp.
6199–6203.

[34] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J
Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu, “Lib-
ritts: A corpus derived from librispeech for text-to-
speech,” arXiv preprint arXiv:1904.02882, 2019.

[35] Natalia Tomashenko, Xin Wang, Xiaoxiao Miao, Hu-
bert Nourtel, Pierre Champion, Massimiliano Todisco,
Emmanuel Vincent, Nicholas Evans, Junichi Yamag-
ishi, and Jean-François Bonastre, “The voicepri-
vacy 2022 challenge evaluation plan,” arXiv preprint
arXiv:2203.12468, 2022.

[36] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga,
Aku Rouhe, Samuele Cornell, Loren Lugosch,
Cem Subakan, Nauman Dawalatabad, Abdelwa-
hab Heba, Jianyuan Zhong, et al., “Speechbrain:
A general-purpose speech toolkit,” arXiv preprint
arXiv:2106.04624, 2021.

[37] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb:
a large-scale speaker identification dataset,” in Proc. IN-
TERSPEECH, 2017.

[38] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2:
Deep speaker recognition,” in Proc. INTERSPEECH,
2018.

[39] Houjian Guo, Chaoran Liu, Carlos Toshinori Ishi, and
Hiroshi Ishiguro, “Quickvc: A lightweight vits-based
any-to-many voice conversion model using istft for
faster conversion,” in Proc. ASRU, 2023, pp. 1–7.

[40] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tas-
nima Sadekova, Mikhail Kudinov, and Jiansheng Wei,
“Diffusion-based voice conversion with fast maximum
likelihood sampling scheme,” in Proc. ICLR, 2022.

[41] John Kominek and Alan W Black, “The cmu arctic
speech databases,” in Fifth ISCA workshop on speech
synthesis, 2004.

[42] Chandan KA Reddy, Vishak Gopal, and Ross Cutler,
“Dnsmos: A non-intrusive perceptual objective speech
quality metric to evaluate noise suppressors,” in Proc.
ICASSP, 2021, pp. 6493–6497.

[43] Anurag Das, Guanlong Zhao, John Levis, Evgeny
Chukharev-Hudilainen, and Ricardo Gutierrez-Osuna,
“Understanding the effect of voice quality and accent
on talker similarity.,” in Proc. INTERSPEECH, 2020,
pp. 1763–1767.


