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ABSTRACT 

This entry reviews advances in speech-to-text (i.e., speech recognition) and text-to-speech (i.e., synthesis) 
technologies and how these advances may be used to develop two distinct approaches for pronunciation 
feedback: explicit feedback that uses speech recognition techniques to help L2 learners detect, identify and 
correct pronunciation errors in their speech, and implicit feedback that uses speech synthesis techniques to 
generate synthetic voices that L2 learners can use as personalized models.  We will provide a brief history 
of speech-to-text recognition and text-to-speech synthesis through the lens of computer assisted 
pronunciation training, and present two state-of-the-art models based on modern deep-learning techniques. 
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1 FEEDBACK IN PRONUNCIATION TRAINING  

Conventional wisdom about second language (L2) learning states that simple immersion in the L2-speaking 
environment will lead to pronunciation improvements.  And this appears to be true for the first year in the 
new environment. However, research also shows that, without instruction that focuses on pronunciation 
(e.g., vs. lexical/grammatical development), further gains in pronunciation beyond that initial period are 
negligible (Derwing & Munro, 2013).  Further, pronunciation training requires individualized attention and 
intense practice, which do not lend themselves well to the format of modern language classrooms.  For 
these reasons, computer-assisted pronunciation training (CAPT) has received significant attention over the 
past two decades.  CAPT allows L2 learners to follow personalized lessons, work at their own pace, practice 
as often as they like, and avoid the anxiety and potential embarrassment of practicing pronunciation in a 
social setting (Felps et al., 2009). 

Critical to the success of any pronunciation training program (computer- or human-mediated) is providing 
effective feedback to learners.  In CAPT, feedback is arguably the biggest challenge. Early CAPT systems 
relied on visualizations (e.g., speech waveforms, spectrograms) that are both difficult to interpret for non-
specialists and potentially misleading: two utterances can have different acoustic representations (e.g., due 
to pitch and vocal-tract length differences across speakers) despite both having been pronounced correctly.  
Automatic speech recognition (ASR) addresses many of these limitations and has long been promoted for 
use in CAPT systems.  However, prior to the deep-learning revolution of the past decade, ASR had limited 
accuracy, in no small part due to the inherent variability of L2 speech.  Errors in ASR feedback can be so 
disruptive to L2 learners that early critics suggested CAPT should rely on implicit rather than explicit 
feedback (Felps et al., 2009). 

In what follows, we discuss how advances in ASR techniques over the past decade can be used to provide 
explicit feedback to the learner by detecting, identifying and correcting pronunciation errors in their speech, 
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and how text-to-speech (TTS) techniques can also be used to provide implicit feedback by generating 
synthetic voices that L2 learners can use as personalized models for self-imitation training.   

2 EXPLICIT FEEDBACK VIA SPEECH RECOGNITION  

The primary form of feedback in CAPT, to which we refer as explicit (or corrective), is based on 
mispronunciation detection (MPD). In this setting, the learner is given a sentence to read, and the algorithm 
highlights severe deviations from the sentence’s canonical pronunciation. MPD is closely related to ASR, 
in that both seek to produce a text transcription of an utterance, but there are major differences between the 
two. An ASR system (such as those on Siri or Alexa) treats mispronunciations as noise; that is, the goal of 
ASR is to transcribe the intended sequence of sounds.  In contrast, an MPD system treats mispronunciations 
as the signal to be extracted; in other words, MPD seeks to identify errors, not overlook them. State-of-the-
art ASR systems are trained on massively large speech corpora containing millions of utterances from 
millions of speakers, regardless of their dialect or accent.  As an example, the publicly available LibriSpeech 
ASR corpus contains approximately 1,000 hours of speech from over 1,000 speakers. In contrast, training 
an MPD system requires a dedicated speech corpus that is phonetically annotated to capture the actual 
sounds that were produced, a process that is manually intensive and perceptually demanding.  As an 
example, the largest publicly available corpus for MPD (L2-ARCTIC) only contains 24 hours of speech, 
one hour for each of 24 non-native speakers of English whose first languages (L1s) were Arabic, Hindi, 
Korean, Mandarin, Spanish and Vietnamese.   

Not surprisingly, then, a significant number of studies on L2 pronunciation training rely on off-the-shelf 
ASR systems. This is largely possible because the practice words/sentences are generally known in advance.  
Thus, mispronunciations can be detected by analyzing the output probabilities of an ASR model trained on 
native speech.  The classical example is the Goodness of Pronunciation (GOP) measure, which is computed 
as the ratio of the posterior probability of the target phoneme (i.e., in the practice word/sentence) relative 
to that of the most likely phoneme (i.e., according to the ASR model).  Then, a mispronunciation is detected 
by comparing the GOP measure against a threshold that has been optimized through cross-validation.  
However, the accuracy of such methods relies heavily on the accuracy of the alignment between speech 
audio and text transcription (i.e., forced alignment), which can be challenging if the L2 learner’s production 
differs significantly from the target pronunciation.  Moreover, these methods only deal with substitution 
errors, but not insertion errors.  To avoid these issues, newer approaches consider alternative pronunciation 
sequences that are likely to be uttered by the learner, known as extended recognition networks.  While this 
approach allows the system developer to take advantage of common error patterns and phonotactic 
constraints, building these extended recognition networks is time consuming and requires linguistic 
expertise. Further, these systems are unable to detect mispronunciations that are not included in the set of 
hand-crafted rules. Techniques have also been developed to discover pronunciation error patterns in a data-
driven fashion, though this requires access to fully transcribed non-native corpora, which are generally 
limited. 

As more accurate MPD models continue to be developed, it is unclear whether corrective feedback that is 
100% accurate is necessary in order for L2 learners to benefit from it and improve their pronunciation.  A 
recent study by Silpachai et al. (in press) sheds light on this issue.  In the study, Chinese learners of English 
were trained to produce nine sound contrasts in English while receiving corrective feedback from a web-
based MPD system.  Unknown to the students, the MPD system was being partially operated by one of the 
experimenters following a Wizard-of-Oz paradigm.  L2 learners’ recordings were provided to the 
experimenter in real time, who then selected the appropriate corrective feedback.  Finally, the 
experimenter’s recommendations were changed randomly so that the system was accurate 33%, 66%, or 
100% of the time (the latter being the unmodified feedback from the experimenter). When rated for 
accuracy by native speakers of English, L2 learners’ productions were similar for the 100% and 66% 
accuracy conditions, and both were more accurate than for the 33% accurate condition.  In other words, 
MPD feedback was beneficial even when it was less accurate than the gold standard (human feedback). 
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3 IMPLICIT FEEDBACK THROUGH SPEECH SYNTHESIS 

Several studies during the last three decades have suggested that it would be beneficial for L2 students to 
be able to listen to native voices similar (if not identical) to their own voices. In a landmark study, Probst 
et al. (2002) sought to identify important dimensions of similarity that a model voice should have for it to 
be a good match for a given L2 learner.  Their rationale was that matching an L2 learner to a model voice 
with similar characteristics, would “free” the learner from having to attend to these variables, thus reducing 
the complexity of the pronunciation learning task. In a pronunciation training experiment, L2 learners who 
imitated a well-matched speaker improved more than those who imitated a poor match, suggesting the 
existence of a user-dependent “golden speaker.”  Among the three characteristics they considered (gender, 
pitch and speed of articulation), the latter was the most influential factor.  It is worth noting that a similar 
concept has emerged in the talker-adaptation literature: the existence of a “a “golden talker” whose inherent 
range of systematic variability allows generalization to a novel talker” (Baese-Berk et al., 2013). 

Building on this prior research, Felps et al. (2009) argued that the ideal golden speaker for each L2 learner 
would be their own voice, resynthesized to have a native accent.  A handful of studies over those three 
decades had shown that when L2 learners imitate their own voices (self-imitation) with native-like prosody 
they were able to improve their pronunciation, and these findings have been corroborated across multiple 
L1-L2 language pairs (Japanese learners of English, L2 learners of English, German and Italian with various 
L1 backgrounds). A recent study by Pellegrino (2024) summarized this prior research and examined the 
extent to which self-imitation leads to pronunciation improvements. In her study, Japanese learners of 
Italian practiced three different speech acts (commands, requests and grants), first without guidance or 
instructions (pre-test), then with prosodically corrected versions of their own voices (post-test). Compared 
to their pre-test utterances, L2 learners’ utterances at post-test showed convergence to the prosody of L1 
utterances, measured in terms of duration, F0 mean and F0 max per syllable. More interestingly, 
convergence to the L1 prosody was stronger when the initial acoustic distance between the L1 model and 
the L2 speaker was larger, corroborating results. However, the study did not include a control condition 
(i.e., L2 learners who only practiced with the L1 model), so these results are inconclusive.  

To our knowledge, Ding et al. (2019) were the first to examine self-imitation of both prosodic and segmental 
characteristics.  In the study, Korean learners of English practiced with a “golden speaker” version of their 
own voice, resynthesized using statistical machine learning techniques running on a web application 
(Golden Speaker Builder). L2 learners’ productions at posttest were rated (by independent listeners) as 
being more comprehensible and fluent than those at pretest. Further, L2 learners reported that practicing 
with their “golden speaker” voices helped them perceive differences in intonation and stress in their 
unmodified speech.  As in Pellegrino (2024), the study lacked a control group, so it is possible that 
practicing with a different model voice would have been equally or more effective.  

4 CASE STUDIES 

The field of speech technology experienced remarkable progress from 2010 to 2020 and does not appear to 
be slowing down.  ASR systems have accuracies that exceed that of humans (less than 5%). State-of-the-
art synthesized speech is perceptually indistinguishable from natural speech, though that is not anymore 
always a good thing (e.g., President Biden’s deepfake robocalls in 2024 are not a desirable outcome of this 
technology). At the same time, such advances make it possible to develop pronunciation training tools that 
in 2010 would appear in the “future work” section of grant applications.  This section explores two state-
of-the-art systems that have been specifically developed for pronunciation training.  The first system can 
generate “accent conversions” of L2 speech with independent control of segmental and prosodic 
characteristics.  The second system combines text-to-speech recognition with mispronunciation detection 
to improve detection accuracy. 
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4.1 Accent conversion  

The problem of generating “golden speaker” voices for L2 learners is commonly referred to as “accent 
conversion,” in reference to the closely related problem of “voice conversion.” In voice conversion, one 
seeks to transform utterances from a source speaker to sound as if a (known) target speaker had produced 
them. The conversion aims to match the organic properties of the target speaker (vocal tract configurations, 
glottal characteristics, age, gender) as well as the speaker’s pronunciation patterns, including their dialect 
or accent; the only information to be preserved from the source utterance is its orthographic transcription. 
In contrast, accent conversion seeks to disentangle organic properties from pronunciation. Its goal is to 
produce speech with the orthographic content and pronunciation characteristics of a (native) source 
utterance with the organic characteristics of the (non-native) target speaker. Thus, accent conversion is more 
challenging than voice conversion.  Not only does it require a more fine-grained disentanglement of voice 
characteristics, but it must do so without a ground truth since recordings of the (non-native) speaker 
producing speech with the desired (native) target accent do not exist.  

Early approaches for accent-conversion required parallel recordings of the native and non-native speakers 
producing the same sentences. Before building a model, parallel recordings would first have to be aligned, 
frame by frame.  The resulting lookup table of short audio frames for both speakers would then be used to 
build a multivariate regression mapping via machine learning algorithms.  To generate an accent conversion, 
a source utterance from the native speaker would be split into frames and each frame mapped into the 
corresponding frame for the target speaker while minimizing acoustic discontinuities at the output.  The 
critical step of these models was the initial alignment step; otherwise, the machine-learning model would 
preserve the accent of the non-native speaker. 

Modern systems based on deep-learning techniques do not require parallel recordings, thus avoiding the 
challenge of aligning source and target utterances.  Instead, these systems are trained to reconstruct the 
input speech at the output (self-supervision) under carefully designed constraints built into the architecture.  
For example, the system illustrated in Figure 1 can generate speech with the segmental characteristics of a 
first utterance (U1), the voice identity of a second utterance (U2) and the prosody characteristics of a third 
utterance (U3).  Utterance U1 is passed through a speech recognizer, which generates a speaker-independent 
representation of the utterance’s contents in the form of a phonetic posteriorgram (a vector that represents 
the probability each frame belongs to one of roughly 5,000 triphones). This phonetic posteriorgram is 
passed through a module that removes speaking-rate information.  This ensures that the speech synthesizer 
downstream learns to reconstruct the utterance based on the prosody contained in utterance U2, and the 
voice quality of utterance U3.  The speaker recognizer and speaker encoder are pretrained on a large speech 
corpus.  Thus, only the speech synthesizer and the prosody encoder need to be trained.  This type of deep-
learning architecture represents the segmental content, prosodic content and voice quality of utterances as 
high-dimensional numerical vectors (embeddings) that can be combined in a manner that resembles 
algebraic operations.  

 
Figure 1.  Deep learning architectures provide a high level of abstraction by representing the content 
of an utterance (segments, prosody, voice quality) as numerical vectors and combining them in an 
algebraic fashion.  
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4.2 Joint mispronunciation detection and speech synthesis 

Research in machine learning shows that solving multiple tasks simultaneously can improve learning 
efficiency and generalization performance, so long as the tasks are related. For example, models trained to 
perform speech recognition and speaker recognition simultaneously outperform models trained to perform 
each task separately. Similar findings have been reported in other related areas such as natural language 
processing and text-to-speech (TTS) synthesis.  The goal of TTS is to generate speech waveforms from text 
inputs.  Early systems were called formant synthesizers because they generated speech by combining 
different frequencies (formants) to mimic the sound of human speech.  Stephen Hawking’s original robotic 
voice was based on formant synthesis.  The next generation of TTS systems worked by concatenating 
sounds from a database of short speech segments.  The database could be relatively small as in the case of 
diphone synthesizers, or large speech corpora (i.e., hours of speech) as in the case of unit-selection 
synthesis.  As with speech recognition, the field of TTS made enormous strides between 2010 and 2020.  
Unit-selection systems, which were state-of-the art around 2010, were slowly replaced by so-called 
statistical parametric speech synthesizers based on hidden Markov models. Over the past 10 years, though, 
the field has come to adopt deep learning techniques.   

Considering that both MPD and TTS operate at the level of individual sound symbols (i.e., orthographic, 
phonetic), a recent study by Das et al. (2024) examined whether combining the two problems in a multi-
task learning fashion would boost MPD performance.  The basic architecture of the system is illustrated in 
Figure 2.  An utterance from an L2 learner is passed through a speech recognizer to generate a phonetic 
posteriorgram, and the phonetic posteriorgram is passed to a sequence-to-sequence (seq2seq) model along 
with the text prompt given to the L2 learner.  The seq2seq model combines both sources of information to 
produce a phonetic sequence.  The phonetic sequence is then compared against the canonical transcription 
of the text prompt, and any mismatches (additions, deletions, substitutions) are flagged as potential 
mispronunciations.  This can be treated as a baseline MPD system.  To improve performance, Das et al. 
(2024) connected the output of the MPD system to a text-to-speech synthesizer that was trained to 
reconstruct the audio waveform at the input from the phonetic transcription and an embedding that captured 
the voice characteristics of the speaker. Effectively, this provided the MPD system with two error signals 
to minimize: (1) differences between the MPD output and the ground truth phonetic transcription, and (2) 
differences between the original speech and its reconstruction.  The combined system (MPD+TTS) 
significantly outperformed the baseline system (MPD) in correctness and accuracy, both on seen and on 
unseen utterances, indicating that the TTS reconstruction task forced the MPD system to learn a better 
decoder function. 

  
Figure 2.  Deep-learning architecture for joint  

mispronunciation detection and text to speech synthesis 

5 CONCLUSIONS 

In the previous section, we presented two modern systems for pronunciation training that take advantage 
of major advances in speech technology.  As shown in the two figures, these systems blur the lines between 
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speaker recognition (biometric authentication). They also allow us to disentangle the various contributors 
to the speech signal, such as speaker characteristics, regional/non-native accents, segmental and prosodic 
information, and later recombine them to generate a variety of speech stimuli for pronunciation training –
see Suggested Reading.  
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