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Abstract—We propose an approach to estimate the macronu-
trients in a meal automatically by analyzing the meal’s glucose
response using off-the-shelf wearable sensors (continuous glucose
monitors). We rely on the fact that the shape of the glucose
response to a meal depends on all the macronutrients in the meal,
not just its carbohydrates (carbs). However, protein, fat, and fiber
tend to affect the glucose response in similar ways, so recovering
their individual amounts is numerically ill-conditioned. To ad-
dress this problem, our approach compresses macronutrients into
a latent variable that captures their correlated effects on glucose.
Then, we train a machine learning model to predict the latent
variable from the glucose response of a meal. Finally, we recover
the amount of the original macronutrients by incorporating
prior knowledge of how they co-occur in conventional meals.
Using experimental data from 45 participants, we show that
predicting carbs indirectly (through the latent variable) reduces
the prediction error when compared to predicting carbs directly,
i.e., without considering the protein and fats in the meal.

Index Terms—continuous glucose monitors, diabetes, diet mon-
itoring, macronutrients

I. INTRODUCTION

Foods1 rich in carbohydrates (carbs) lead to high levels
of blood glucose after a meal, which increases the risk of
developing diabetes (T2D). To manage diabetes, patients have
to monitor their diet, particularly carbs. However, conventional
diet monitoring methods are cumbersome (e.g., manually
logging meals in a diary) [1] and error-prone (e.g., 24-hour
recalls) [2], [3]. A potential solution is to use continuous
glucose monitors (CGMs) to estimate the macronutrients
(macros) in a meal, in a manner akin to how fitness trackers

This work was supported by the National Science Foundation award IIS
2014475.

1The abstract of this manuscript has been accepted to the Annual Nutrition
Meeting (NUTRITION 2024). The abstract presented contains preliminary
results on a subset of the participants in the study. This submission describes
all details and includes results on all participants.

use accelerometers to estimate physical activity. CGMs are
wearable devices that measure glucose every 5-15 minutes
using a flexible electrode inserted under the skin. To predict
macros from CGMs, we rely on the fact that glucose levels
after a meal –known as the post-prandial glucose response
(PPGRs), are affected not only by carbs, but also by other
macros. For example, adding protein, fat and fiber to a carb-
rich meal reduces and delays the peak glucose, and also slows
baseline recovery. This suggests that the shape of the PPGR
can be used to estimate the macros in a meal.

However, predicting the individual amounts of protein and
fat is challenging since they have similar effects on PPGRs.
Further, the macros in conventional meals tend to be corre-
lated: macros are not generally single-sourced (e.g., when you
eat avocado for its 15% in healthy fats, you are also consuming
9% in carbs), and they may be added to improve shelf life (e.g.,
breads with fat dry out more slowly) or ensure that the meal
is palatable.

To address these two issues, we propose an approach that
uses (1) an embedding equation to compress macros into a
latent variable, and (2) a prior distribution over macros, as
illustrated in Fig. 1. The embedding equation generates a latent
variable Z = f(C,P, F,B) that captures domain knowledge
about how macros affect the PPGR (e.g., carbs increase it
whereas protein and fat reduce it). It is this latent variable Z,
rather than the individual macros, that we predict from a meal’s
PPGR via machine learning. Once the model predicts Z, the
original macros can be recovered using the inverse function
f−1(·) and a joint prior distribution of macros based on the
dietary habits of an individual, a region, or a culture [4] [5].

II. RELATED WORK
Multiple studies have been conducted to understand how

different macros affect PPGRs. The main determinant is the
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Fig. 1. Overview of the proposed approach. We measure the post-prandial
glucose response (PPGR) of a meal with a Continuous Glucose Monitor
(CGM), and then pass it to an inverse metabolic model (IMM), which predicts
a macronutrient embedding (Z). The embedding is combined with priors from
a dietary database to recover the original macros —in this case, carbs.

amount and type of carbs. Carbs are typically compared
by their glycemic index (GI) [6], a measure of how they
raise glucose levels compared to a reference food (typically
glucose) defined as having a GI=100. Most vegetables have
low GIs (<55), whereas sugars and starches have high GI
(>70). However, the GI does not consider that most meals
have other macros as well. Specifically, adding protein, fat
or dietary fiber to a meal reduces and/or slows down the
PPGR [7], [8], typically due to gastric emptying or insulin
secretion ( [9]–[11]. To illustrate, [9] conducted a study where
participants consumed breakfasts rich in carbs, protein or
fat before consuming white bread. The glucose response to
the bread was lower after consuming a protein- or fat-rich
breakfast than after eating a carb-rich breakfast. Similar studies
[10] have found that foods containing protein and fat have
lower PPGRs than those only containing glucose.

Recent studies have focused on personalized nutrition by
modeling individual differences in food metabolism. As an
example, Zeevi et al. [12] used CGMs to track the glucose
levels of 800 subjects for one week while they kept detailed
records of their diet. Then, the authors developed a direct
metabolic model that predicted the PPGR to different meals
based on their macros. To account for individual differences,
the model could be personalized to each patient’s “phenotype”,
e.g., anthropometric features, blood panels and gut microbiota.
To validate the model, the authors used an independent group
of 100 subjects who consumed two types of meals: those the
model predicted would lead to low PPGRs (“good” diet), or the
opposite (“bad” diet). Post-prandial glucose excursions when
following the “good” diet were significantly lower than those
for the “bad” diet. Compared to [12], our work addresses the
inverse problem: predicting macros from PPGRs [13]. In a
prior study, we had participants consume breakfast shakes with
various macros, and then rest for 8 hours. To predict macros
from PPGRs, we built a machine-learning (ML) model using
eXtreme Gradient Boosting (XGBoost) [14]. We found that
subtracting the baseline of each meal (i.e., the first glucose
reading) and then normalizing each patients’ table of PPGRs
by its mean/variance (z-score) improved predictions substan-
tially, compared to using un-normalized PPGRs. The best
model achieved an NRMSE (normalized root-mean-square
error) of 22% for carbs, 50% for protein, and 40% for fat.
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Fig. 2. Extracting temporal features (gAUC) using 5 Gaussian kernels from
the post-prandial glucose response (shown in red) using a family of gaussian
kernels, (shown in gray).

In a follow-up study [15], we tested if post-prandial responses
of other nutritional biomarkers (amino-acids, triglycerides, and
insulin), which we had also measured, would further improve
predictions. Feeding those additional biomarkers to the model
reduced errors significantly for protein (from 50% to 23%)
and fat (from 40% to 32%)

III. METHODS

This section describes our procedures to extract features
from PPGRs, compress macro amounts into a latent variable
(Z), predict Z from PPGRs, and convert Z back to macros.

A. Feature extraction from PPGRs
Following prior work [13], we compress a PPGR into

a small number of Gaussian-windowed area-under-the-curve
(gAUC) features at various time delays, as illustrated in Fig.
2. First, we align the start of the PPGR with the time of
meal intake by resampling the PPGR using linear interpolation.
Then, we subtract the baseline (glucose at time t = 0), as it
correlates with an individual’s metabolic health (e.g., HbA1c).
Next, we extract the gAUCs and z-score them, as in [13].

B. Macronutrient encoding
Our embedding is adapted from a model that has been

proposed to estimate the GI of mixed meals [8]. The original
model separates glycemic macros (carbs) from non-glycemic
macros (protein, fat, and fiber), and defines the GI as the ratio
of glycemic macros to all macros. To make model coefficients
easier to interpret, we use a linear model to compute the latent
variable Z:

Z = 1 +
C −B

max(C −B)
− αP

P

maxP
− αF

F

maxF
(1)

where C,P, F,B are the amount of carbohydrates, protein,
fat, and fiber expressed in calories to account for their relative
caloric effect2, (C −B) are net carbs (i.e., carbs minus fiber),
and αP , and αF describe how much protein and fat (P, F )
counteract the effect of net carbs. Finally, we normalize each
macro by its maximum amount across all meals, and add an
intercept term to minimize scaling effects.

2To compute calories, we multiply C,P, F,B in grams (Table 1) by 4, 4,
9, 2.



C. Inverse metabolic model (IMM)
The IMM uses XGBoost to predict Z from gAUCs. We

chose XGBoost, as opposed to other regression models, as
it has achieved state-of-the-art results on multiple ML chal-
lenges, e.g., text classification, customer behavior prediction,
product categorization. XGBoost outperforms other gradient
boosting models and runs much faster and scales more easily
to new examples [14]. Moreover, our previous study [13] con-
firmed that XGBoost is a good choice for our problem, when
coupled with baseline subtraction and z-scoring. We use a
leave-one-subject-out procedure to optimize hyperparameters:
number of trees, depth of trees, and regularization term 3.
Namely, we split data into training (41 subjects), validation
(1 subject), and test (1 subject). Using grid search, we train
a model on 41 subjects, optimize hyper-parameters on the
validation set, and report the final results on the test set. We
repeat this process exhaustively for all possible splits.

TABLE I
MACRONUTRIENT COMPOSITION OF BREAKFASTS. THE NUMBERS IN RED

INDICATE HIGH AMOUNTS OF MACRONUTRIENTS

Study day Carb (g) Protein (g) Fat (g) Fiber (g)
1 66 22 11 00
2 66 66 11 00
3 66 22 42 00
4 73 66 42 07
5 24 22 11 00
6 66 22 11 00
7 66 66 11 00
8 66 22 42 00
9 24 22 11 00

10 66 22 42 07

D. Inverting the latent variable back to macros
Once Z has been estimated from gAUCs, we can recover

the original macros by inverting eq. (1). As an example, net
carbs can be obtained by rearranging eq. (1) as

C −B = maxC−B × (Z − 1+αP
P

maxP
+αF

F

maxF
) (2)

Note that eq. (2) needs an estimate of the amount of protein
and fat in the meal. This information can be obtained from a
variety of sources, such as an individual’s dietary habits, the
menu of a restaurant, or the culinary traditions of a region
or a culture [4], [5] . When predictions can be reduced to a
few meal choices, it may be advantageous to feed each meal’s
(P, F ) values to eq. 2, and then compute confidence intervals
from the multiple predictions for net carbs.
E. Evaluation

Following prior work [13], we use the normalized root mean
squared error (NRMSE) to measure model performance:

NRMSE =

√√√√ 1

N

N∑
i=0

(
ŷ − y

y
)2 (3)

where ŷ and y are the predicted and ground truth amounts of
the macros respectively, and N is the number of samples in
the test set. Because the NRMSE is a percentage, it makes it
easier to compare the prediction errors for different amounts
of food and different macros.

3The search space of each hyperparameter is as follows: number of trees:
20, 30, depth of trees: 2, 3, regularization: 1, 2

Fig. 3. Prediction error (NRMSE) for carbohydrates using different embed-
ding coefficients for protein and fat.

IV. EXPERIMENTAL SETUP

In this study, subjects are monitored in free-living conditions
for ten days (approved Advarra IRB Protocol Pro00049227).
For each study day, subjects are provided two types of
prescribed meals with known macros: (1) breakfast shakes,
and (2) lunches from a fast-casual restaurant chain (Chipotle
Mexican Grill, Inc.). Subjects have free choice of dinners and
are not given any dietary restriction other than to avoid food
intake for three hours after each prescribed meal. For the ten
days, subjects wear an Abbott Freestyle Libre Pro CGM on
their upper arm, and a Dexcom G6 Pro CGM in their abdomen.

The data consists of forty five subjects (age: 18-69 years;
BMI: 20-46). Based on fasting HbA1c measured at recruit-
ment, 15 subjects can be considered healthy, 16 as having
pre-diabetes, and 14 as having type 2 diabetes. We evaluate
the proposed model on breakfast shakes using glucose mea-
surements from the Libre CGM. We removed data from two
subjects due to sensor failure.

Shown in Table I, the breakfast shakes vary between low
(L) and high (H) amounts of carbs, protein, fat, and fiber,
according to the average American diet [4]. Some breakfasts
are repeated to quantify intra-individual variability to identical
meals. Subjects submit before/after photographs of each meal
via WhatsApp, from which we extract meal times.

V. RESULTS
We developed XGBoost models for each combination of

parameters αP and αF in the range (0,1) in increments of 0.1.
For each model, we generated ten predictions of net carbs by
combining the predicted Z with the protein and fat contents of
each of the ten breakfast shakes –see eq. (2), and then averaged
the ten predictions. To ensure that NRMSEs are comparable
for different αP and αF , we report errors on net carbs, the
critical macro to monitor in diabetes and pre-diabetes.

Results are summarized in Fig. 3. Several observations can
be made. First, NRMSE changes radially from the bottom-
left corner, corroborating that the effects of proteins and fat
on PPGRs are somewhat interchangeable. Second, the highest
NRMSE is obtained at the end of each axis. At the bottom-
right (αP = 1, αF = 0), the model assumes that fat has
no effect on PPGRs, and that the effect of carbs can be



cancelled out by adding the same amount of protein (in
calories). Likewise, at the top-left (αP = 0, αF = 1), the
model assumes that protein has no effect on PPGRs, and that
fat cancels the effect of carbs (calorie-by-calorie). We do not
report performance on models with αP + αF > 1, since Z
can become negative for some meals, which is physiologically
questionable. Most importantly, the results in Fig. 3 show that
predicting Z for combinations around αP = αF = 0.1 lead
to the lowest NRMSE (0.40) for net carbs, whereas predicting
net carbs directly (αP = αF = 0) has an NRMSE of 0.51. A
two-tailed t-test reveals that these differences are statistically
significant (p < 0.001).

In a final step, we compare several approaches to use
prior information to recover the net carbs in a meal from
eq. (2). Results are shown in Fig. 4. The first bar (blue)
shows the NRMSE if net carbs are predicted directly without
first learning Z. The second bar (green) is the NRMSE when
estimating net carbs for each of the ten meals, and then
compute an average (as in Fig. 3). The third bar (red) shows
the best-case scenario, when net carbs are predicted using
ground truth amounts of protein and fat as the prior, which
leads to the lowest NRMSE (0.37). A two-tailed t-test reveals
that differences between net carbs predicted using ground
truth protein and fats and average estimates of net carbs are
statistically significant (p < 0.01).

Fig. 4. NRMSE when predicting net carbs directly, as the average prediction
for multiple values of protein and fat, and with ground truth amounts of
protein and fat.

VI. DISCUSSION

Our results indicate that predicting the amount of net carbs
in a meal indirectly –through a latent variable Z that considers
the protein and fat in a meal, is superior to predicting net carbs
directly. In particular, the lowest least error occurs in the radial
neighborhood of αP = αF = 0.1, which can be viewed as an
estimate of the effectiveness of non-glycemic macros (protein,
fat) in reducing the post-prandial glucose response of carb-rich
meals. Though the best predictions for net carbs are obtained
when the ground truth amounts of protein and fat are known,
considering the distribution of protein and fat across all meals
also improves predictions significantly.

Future work will examine alternative embeddings, such as
non-linear models that assume non-glycemic macros reduce
post-prandial responses in a multiplicative rather than additive
manner. Future work will also examine approaches to learn
the latent variable in a data-driven fashion (through ML
models), as opposed to manually engineering the embeddings.

As an example, auto-encoder (AE) network may be used
to reconstruct PPGRs. Auxiliary classifiers may be added to
further reduce individual differences, e.g., applying gradient
reversal on an auxiliary classifier that attempts to the patient’s
HbA1c from the AE bottleneck.

REFERENCES

[1] L. E. Burke, V. Swigart, M. Warziski Turk, N. Derro, and L. J.
Ewing, “Experiences of self-monitoring: successes and struggles during
treatment for weight loss,” Qualitative health research, vol. 19, no. 6,
pp. 815–828, 2009.

[2] E. K. Choe, S. Abdullah, M. Rabbi, E. Thomaz, D. A. Epstein,
F. Cordeiro, M. Kay, G. D. Abowd, T. Choudhury, J. Fogarty et al.,
“Semi-automated tracking: a balanced approach for self-monitoring
applications,” IEEE Pervasive Computing, vol. 16, no. 1, pp. 74–84,
2017.

[3] F. Cordeiro, D. A. Epstein, E. Thomaz, E. Bales, A. K. Jagannathan,
G. D. Abowd, and J. Fogarty, “Barriers and negative nudges: Exploring
challenges in food journaling,” in Proceedings of the 33rd annual ACM
conference on human factors in computing systems, 2015, pp. 1159–
1162.

[4] E. Cohen, M. Cragg, J. deFonseka, A. Hite, M. Rosenberg, and B. Zhou,
“Statistical review of us macronutrient consumption data, 1965–2011:
Americans have been following dietary guidelines, coincident with the
rise in obesity,” Nutrition, vol. 31, no. 5, pp. 727–732, 2015.

[5] B. Karamanos, A. Thanopoulou, F. Angelico, S. Assaad-Khalil, A. Bar-
bato, M. Del Ben, V. Dimitrijevic-Sreckovic, P. Djordjevic, C. Gallotti,
N. Katsilambros et al., “Nutritional habits in the mediterranean basin. the
macronutrient composition of diet and its relation with the traditional
mediterranean diet. multi-centre study of the mediterranean group for
the study of diabetes (mgsd),” European Journal of Clinical Nutrition,
vol. 56, no. 10, pp. 983–991, 2002.

[6] D. J. Jenkins, T. Wolever, R. H. Taylor, H. Barker, H. Fielden, J. M.
Baldwin, A. C. Bowling, H. C. Newman, A. L. Jenkins, and D. V.
Goff, “Glycemic index of foods: a physiological basis for carbohydrate
exchange,” The American journal of clinical nutrition, vol. 34, no. 3,
pp. 362–366, 1981.

[7] T. M. Wolever and C. Bolognesi, “Prediction of glucose and insulin
responses of normal subjects after consuming mixed meals varying in
energy, protein, fat, carbohydrate and glycemic index,” The Journal of
nutrition, vol. 126, no. 11, pp. 2807–2812, 1996.
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