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Improving mispronunciation detection
using speech reconstruction
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Abstract—Maulti-task learning shows that solving two related
machine learning problems simultaneously can improve perfor-
mance compared to solving them independently. This paper
examines whether combining mispronunciation detection and
diagnosis (MDD) with text-to-speech (TTS) synthesis can improve
MDD accuracy. We propose a MTL model that uses predicted
phone sequences from an MDD system and feeds them to a TTS
system to reconstruct the original speech. We hypothesize that
a multi-objective loss that combines the speech reconstruction
error (TTS loss) with the MDD error (i.e., predicted vs. ground-
truth phoneme sequences) will boost MDD performance. To
test this hypothesis, we compare the proposed sequential MDD
system against that of an identical MDD system without the
speech reconstruction loss and a state-of-the-art MDD baseline.
When evaluated on unseen test sentences, the sequential system
achieves higher MDD scores than the other two systems, which
suggests that the joint loss helps the system generalize to new
test sentences. Further, we examine whether the TTS system
can reconstruct non-native accented speech when the predicted
phoneme sequence from the MDD has mispronunciations. Re-
sults from perceptual listening experiments show that speech
generated from non-native phoneme sequences is rated as more
accented and less intelligible than that from native phoneme
sequences, which suggests that, when trained jointly with an
MDD system, the TTS system can capture differences in phoneme
sequences between native and non-native speech.

Index Terms—Multi-task learning, mispronunciation detection,
text-to-speech, speech reconstruction.

I. INTRODUCTION

ISPRONUNCIATION detection and diagnosis (MDD)

can be used to provide automatic feedback to help
second language learners (L.2) improve their pronunciation. An
MDD system takes speech from an L2 learner as input and
identifies parts of an utterance that were mispronounced. As
such, MDD systems can provide personalized pronunciation
feedback at scale, addressing the scarcity of qualified teachers
in this critical area of competency for L2 speakers.

Current MDD systems are based on deep learning (DL)
techniques. Given sufficient training data, DL models can ex-
tract phonological rules from the speech and avoid the need to
hand-craft these rules [1] [2]. Further, DL-based sequence-to-
sequence (seq2seq) models can also learn to align the speech
signal and the target phones via an attention mechanism,
thus avoiding the need to perform forced alignment, which
is challenging with non-native speech. As an example, Leung
et al. [3] proposed a DL model that uses convolutional and
recurrent layers with a Connectist Temporal Classification loss

Anurag Das and Ricardo Gutierrez-Osuna are with the Department of
Computer Science and Engineering, Texas A&M University (TAMU), College
Station, TX 77843 USA (e-mail: adas@tamu.edu; rgutier @tamu.edu).

[4] to map Mel-spectrograms directly into phone sequences,
and showed their model outperforms prior methods that rely
on forced alignment. Prior research [5] has also shown that
adding text as a feature along with acoustic features can further
improve MDD performance. Further performance improve-
ments can be achieved by combining text and acoustic inputs
with phonetic embeddings extracted from an automatic speech
recognition (ASR) system [6]. Despite these advances, the
highest MDD accuracy reported on the L2-ARCTIC corpus
[7] (80%) is substantially lower than that on ASR tasks.

Research in multi-task learning (MTL) shows that solving
two related tasks simultaneously can improve performance on
both tasks. For example, training ASR and automatic speaker
verification (ASV) systems simultaneously can improve ASR
accuracy [8]; similar results are reported when training ASR
and TTS simultaneously [9]. Given that MDD and ASR are
related tasks (i.e., both predict phone sequences from input
speech), we predict that MDD performance will also improve
when combined with a TTS downstream. In particular, we
hypothesize that using a TTS system to reconstruct the original
speech from the predicted phone sequence, and using the
reconstruction loss as additional feedback to the MDD system
can help reduce errors in the predicted phone sequence.

To test this hypothesis, we propose a MTL model for
MDD that predicts phone transcriptions from the input speech
and reconstructs the original speech from them. Our model
takes an input speech signal and extracts a wav2vec latent
representation [10]. Then, a seq2seq model combines this
wav2vec embedding with the original text (which is generally
available in pronunciation training tasks) to predict the phone
sequence. Finally, a Tacotron-based [11] TTS system recon-
structs the original speech from the predicted phone sequence
and a speaker embedding from a pre-trained ASV system. The
MDD system is trained by combining the phone prediction
loss with the speech reconstruction loss. This approach is
akin to invertible networks such as CycleGAN [12], which
use the predicted output to reconstruct the input signal. Our
approach is also related to Karita et al. [9], which combines
ASR and TTS tasks to improve ASR accuracy. However,
their system combines the two tasks in parallel, whereas our
approach combines MDD and TTS in a sequential manner.
Since the reconstructed speech also captures segmental in-
formation, we also hypothesize that segmental differences
between phones with and without mispronunciations will be
reflected in the reconstructed speech. To test this secondary
hypothesis, we compare perceptual ratings of accentedness
and intelligibility when speech is reconstructed using either
canonical phone sequences (i.e., without mispronunciations) or
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phone sequences manually annotated by a linguist (i.e., which
capture mispronunciations).

II. BACKGROUND
A. Mispronunciation detection

Traditional MDD methods evaluate mispronunciation using
likelihood-based scores, such as the well-known Goodness of
Pronunciation (GoP) score [13]. To calculate a GOP score, an
L2 learner’s utterance first needs to be force-aligned against
the canonical phone sequence, Then, a GOP score is computed
for each phone as the ratio of the posterior probability of
the canonical phoneme relative to the phone with the highest
posterior. A phone is deemed to have been mispronounced
by comparing the GOP score to a pre-determined threshold
optimized through cross-validation. Several modifications of
the GoP score have been proposed since its original pub-
lication, including scaled log posteriors [14], sub-phonemic
transition probability from an Hidden Markov Model (HMM)
[15], and classifier-based methods that use features from phone
segments to determine if the pronunciation is correct or not.
As an example of the latter approach, Hu ef al. [16] proposed a
transfer learning-based method where an acoustic model was
first pre-trained on all phones, and then logistic regression
classifiers, one for each phone, were built to detect mispro-
nunciations. The proposed method improved mispronunciation
detection by 7.4% precision and recall when compared to a
GMM-HMM baseline. Other classification methods that have
been explored include decision trees [17], [18], and Support
Vector Machines (SVMs) [19]. These methods can detect
mispronunciations by comparing the target phone to the most
likely pronounced phone, but are unable to diagnose the errors.

An alternative to GOP-based scoring methods are tech-
niques that use use Extended Recognition Networks (ERNs).
An ERN is a pre-designed set of phonological rules that model
L2 learners’ typical mispronunciations, and can be used in
the ASR decoder lattice. Rules for ERNs can be divided into
two categories: hand-crafted rules and data-driven rules. As
an example of a hand-crafted rule, Meng et al. [20] derived
mispronunciations made by Chinese learners of English by
comparing their L2 productions against the corresponding
native productions. They also used a pronunciation lexicon
to generate additional erroneous variants of words. Harrison
et al. [1] used a hand-crafted lexicon containing the correct
pronunciations of a word as well as the mispronunciation
variants in the L2 learners’ speech to detect and diagnose
errors. Data-driven techniques have also been used to derive
ERNs automatically from transcribed L2 speech and their
corresponding canonical pronunciations [2]. Qian ef al. [21]
developed a two-pass framework to avoid the need to ex-
plicitly model errors . However, obtaining building ERNs
is a time-consuming process that often requires access to a
large amount of speech data. An additional problem with
ERN-based approaches is that they rarely cover all possible
pronunciation rules. As a result, these systems can only detect
mispronunciations that are included in the rule set.

To overcome the limitations of ERNs, DL models have been
a major focus of recent research in MDD. These systems can

identify errors in pronunciation in a data-driven fashion and do
not require explicit pronunciation rules. Li ef al. [22] devel-
oped an acoustic graphemic phonetic model (AGPM) to pre-
dict likely pronunciations from acoustic features, graphemes,
as well as canonical transcriptions using a multi-distribution
DNN. The network outperformed an existing ERN based
method with a reduction in false rejection and false acceptance
rate by 6.4% and 12.9% respectively. In later work, Mao [23]
used an MTL model to separately recognize correct pronunci-
ations and mispronunciation from input acoustic features and
phones. The model outperformed an existing network that also
processed acoustic and phonetic features. End-to-end models
for MDD have also been explored to avoid the need for forced
alignment. Leung et al. [3] developed an end-to-end MDD
system (CNN-RNN-CTC) that uses 1D CNN layers and a bi-
directional Gated Recurrent Unite (GRU) with a CTC loss [4]
to predict the L2 learners’ phone sequences. Their proposed
system outperformed an ERN as well as the DL-based system
(APGM) by 44.75% and 2.77% respectively, both of which
relied on force alignment. To improve on the CNN-RNN-CTC
model, Feng et al. [5] proposed an SED-MDD model that takes
a Mel-spectrogram of the input speech an the text (which the
L2 learner was asked to produce) as inputs, and outputs the
corresponding phone sequence. The SED-MDD model uses
an Encoder-Decoder architecture with an attention mechanism
and a cross-entropy loss. The model outperformed the CNN-
RNN-CTC model by 18% in both correctness and accuracy.
More recent studies have also used text as an additional
input for MDD. Fu et al. [24] aligned acoustic features with
canonical phone sequences from a sentence encoder using
an attention mechanism and then decoded the pronounced
phone sequence. To improve phone predictions, the authors
also proposed a data-augmentation technique that randomly
replaced vowels and consonants with alternate vowels and
consonants. The system achieved a higher F measure of
56.08% compared to 49.29% for the CNN-RNN-CTC model.
Ye et al. [6] combined text, acoustic features and phonetic
features from an acoustic model as inputs to predict the target
phone sequence. Adding all three inputs improved accuracy
and F1 score by 9.93% and 6.17%, respectively, compared to a
baseline that only used acoustic features and linguistic features
as inputs. These studies show that using additional features
as inputs boosts MDD performance. Further improvements
in MDD accuracy have also been reported when replacing
MFCC-based encodings with advanced feature representations
such as wav2vec embeddings [25] [26] and fine-tuning on
the dataset, training the fine-tuned wav2vec model on pseudo-
labels [27] obtained from non-annotated sentences, and using
Transformer architectures [28]. The main conclusion from
these studies is that using text as an additional input does
improve MDD accuracy. Our study contributes to this prior
research by examining whether adding a reconstruction loss
from a TTS synthesizer that consumes the predicted phone
sequences to resynthesize the original utterance can further
improve MDD accuracy.
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B. Text-to-speech

The goal of TTS is to synthesize speech waveforms from
text inputs. Early TTS systems were based on concatenative
techniques [29]. A concatenative TTS system identifies speech
segments (or units) in a database that match the input text, and
concatenates these segments to produce a speech waveform.
However, concatenative TTS systems require access to a large
database of recordings of speech units, and the synthesized
voices generally contain noticeable discontinuities and lack
naturalness. Concatenative TTS gave way to statistical para-
metric speech synthesis (SPSS) methods, which leveraged
prior work on HMM-based ASR [30], [31]. These systems
generate acoustic parameters associated with the target text,
and then recover speech from those acoustic parameters. Syn-
thesized speech from SPSS system does sound more natural
than that of concatenative approaches, but it still suffers from
artifacts such as muffled sounds or noise.

State-of-the-art TTS systems are based on DL techniques.
These systems generally consist of two components: a neural
front-end that maps characters or phonemes to intermediate
features such as Mel-spectrograms, and a synthesizer that
converts those intermediate features into speech waveforms. A
primary example of DL-based TTS is Tacotron [11]. Tacotron
takes characters/phones directly as inputs, which simplifies the
text analysis modules. To generate audio, Tacotron outputs are
then passed to a neural synthesizer such as WaveNet [32].
Later systems such as Deep Voice 2 [33] and Deep Voice 3

[34] have replaced Tacotron with a fully convolutional neural
front-end, which has been shown to improve the acoustic
quality of the output waveforms. Shen et al. [35] used a similar
architecture to synthesize speech that rivaled the acoustic
quality of natural speech. However, these models have slow
inference times due to their auto-regressive nature: a Mel-
spectra depends on previously generated Mel-spectra [36]. To
reduce inference time, more recent TTS models avoid auto-
regression by generating sequences in parallel. As an example,
FastSpeech [36] uses a Transformer architecture to achieve
a 38x speedup in inference speed over auto-regressive TTS
synthesis. Parallel Tacotron [37] uses self-attention and a Vari-
ational Autoencoder (VAE) style residual encoder. The system
achieved comparable naturalness and much faster inference
compared to a Tacotron 2 baseline. However, a limitation
of these neural TTS systems is that they use a two-stage
pipeline, which requires fine-tuning to generate high-quality
speech [35].

C. Multi-task learning in speech

Multi-task learning (MTL) involves training a neural net-
work for multiple different but related tasks. Typically, each
MTL network has one primary task and one or more comple-
mentary auxiliary tasks. In speech research, MTL has found
wide application across multiple speech tasks, including ASR
[38], [39], TTS [40], [41], ASV [42], [43], and emotion
recognition [44], [45].

In ASR, the primary task is to recognize phones and words,
but auxiliary tasks may also include recognition of gender [38],
phonetic units [39], and symbolic units such as graphemes

[46]. It has been shown that predicting phonological features
(e.g., manner and place of articulation) along with phoneme
labels can improve ASR and phone recognition accuracy [47].
Most methods compute the auxiliary loss from the output
of the final layer in the architecture, but the auxiliary loss
may also be computed from intermediate layers. For example,
Krishna er al. [48] used a hierarchical MTL framework to
predict words and phones from intermediate layers of the
encoder. The hierarchical framework reduced word error rates
(WER) compared to a single task baseline on the Switchboard
evaluation set [49]. Computing the loss at intermediate layers
can also avoid the need to label intermediate sub-word units
such as phones or characters [S0]. MTL has also been used in
multilingual ASR. Huang et al. [51] proposed a multilingual
DL model that shared hidden layers across languages, followed
by separate softmax layers for each language. Sharing the
hidden layers was shown to improve ASR for each language.
Likewise, Hou et al. [52] proposed a hybrid CTC/attention-
based MTL framework that used language identification as
an auxiliary task. The authors showed that after transferring
a model pre-trained on 42 languages to 14 low-resource
languages reduced the word error rate (WER) compared to
a randomly initialized model.

In TTS, linguistic and/or acoustic features are generally used
to predict the parameters that a vocoder uses to synthesize
the speech waveform. Several MTL approaches have been
proposed for this purpose. Hu ef al. [40] developed a mono-
lingual TTS system that predicted both the spectral envelope
and the log amplitude of the output speech. Their results
showed that combining the two tasks improved accuracy on
both. Riberio et al. [41] used a wavelet-based decomposition
of f0 as a secondary task. Listeners rated utterances from the
MTL model as more natural (45% preference) than those from
the TTS model (36.5% preference) without fO0 decomposition.
Stacked bottleneck features from a DL model have also been
shown to improve synthesis performance. For example, Wu
et al. [53] used MTL to predict both acoustic features and
vocoder features, and found that using bottleneck features
improved the naturalness of the synthesized speech. Gains in
TTS quality have also been reported by combining phoneme
classification with regression on the spectral parameters of a
vocoder. For example, Toth ef al. [54] showed that this joint
training improved the performance of both tasks compared to
solving each task separately.

MTL has also been used in emotion recognition from
speech. Parthasarathy et al. [44] developed a model that jointly
predicted arousal, valence, and dominance. Though these
emotion attributes are generally assumed to be orthogonal,
the authors showed that joint prediction improves accuracy
when compared to predicting each attribute individually. Li
et al. [45] showed that predicting the speaker’s gender as
a secondary task improved emotion recognition by 7.7%.
Cai et al. [55] reported noticeable improvements in emotion
classification from speech when using ASR as an auxiliary
task.

MTL has also been shown to improve ASV tasks. As an
example, Yu et al. [56] showed that using an MTL model for
joint ASV (primary task) and ASR as a secondary task im-
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Fig. 1. Block diagram of the proposed sequential model comprising of an MDD system (left, in green) and a TTS system (right, in red). The MDD system
predicts the phone sequence from an input utterance and its text, and passes the predicted phone sequence to the TTS system to reconstruct the input utterance.
The MDD system is trained to minimize the phone-recognition loss (Lo ) and the speech reconstruction loss (Lrgc) jointly.

proved ASV accuracy compared to a single-task ASV baseline.
Ding et al. [42] showed that adding a generative adversarial
network (GAN) improved ASV performance compared to an
i-vector baseline and a triplet loss baseline. Sigtia et al. [43]
showed that training a model to perform ASV and voice trigger
detection achieves similar performance as dedicated baseline
models for each task.

III. METHODS

The workflow of the proposed sequential system is shown
in Figure 1. The model consists of five modules: (1) a
wav2vec feature extractor that generates a latent representation
for the input utterance, (2) a speaker encoder that generates
an embedding that captures the voice characteristics of the
speaker for ASV purposes, (3) a text encoder that generates an
embedding of the input text sequence, (4) a seq2seq model that
consumes the latent speech representation, the text embedding
and the speaker embedding and produces the phones contained
in the speech signal, and (5) a TTS module that combines
the predicted phone sequence and an embedding of the target
speaker to synthesize the speech waveform. In this fashion,
the seq2seq system is forced to produce the phone sequence
that matches the one produced by the source speaker.

Before training the sequential model, we fine-tune a
wav2vec-based acoustic model on the L2-ARCTIC corpus
[7], and pre-train the speaker encoder and TTS system. Then,
we extract features from the acoustic model and the speaker
encoder and use them to train the sequential model. At this
point, we freeze the weights of the TTS system, and only learn
the weights of the seq2seq model, guided by the TTS loss and
the MDD loss.

A. wav2vec 2.0 model

The wav2vec 2.0 model consists of CNN and Transformer
layers. Raw audio is first sent to a CNN to obtain a latent

representation Z, which is then discretized via a learnable
codebook to obtain Q. In parallel, random segments from Z
are masked and fed to the Transformer layers to generate a
contextualized representations C. Let us denote the values
of Z and C at time t by 2, and ¢, respectively, and the
corresponding (Q vector at time ¢t by ¢ and all other time
steps by ¢~. The model is trained with a contrastive loss to
maximize the similarity between c; and ¢t , and minimize the
similarity between c; and ¢—. The total loss is the weighted
sum of the contrastive loss and the codebook loss.

B. Speaker Encoding

Our speaker encoder is based on the ASV model in [57] and
[58], which prior work on accent conversion has shown to gen-
eralize to unseen speakers [59]. The workflow of the speaker
encoder is illustrated in Figure 1. It takes 40-dimensional Mel-
spectrograms with a 25ms window and a 10ms step as input,
and passes it to a 3-layer long-short-term memory (LSTM)
with 256 hidden units and a fully connected (FC) layer with
256 nodes. The output of the FC layer is passed through a
rectified linear unit (ReLU) activation to generate a sparse
embedding. The hyperparameters of the speaker encoder are
summarized in Table III. For each enrolled speaker, we create
a template by computing speaker embeddings of a few utter-
ances. At runtime, we extract a speaker embedding from the
input utterance and compare it against the templates using
generalized end-to-end loss (GE2E) [57]. If the similarity
between the embedding and the template is above a threshold,
the speaker is verified. During training, the model computes
embeddings e;;(1 < i < N,1 < j < M) of M utterances
from N speakers. A speaker embedding is derived for each
speaker: ¢; = 1/M Zj\il e;;. The similarity matrix S;j x
is obtained by comparing all embeddings e;; against every
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speaker embedding ¢, 1 < k < N in the batch using scaled
cosine similarity:

Sij,k: :w.cos(eij,ck)—i—b:w.eij.||ck\|2 +b (D)

where w and b are parameters learned by the model, and
the cosine similarity is the dot product between the two
embeddings. The model outputs high similarity when utterance
matches the speaker (i = k) and low similarity (i # k)
otherwise. In our experiments, we remove the similarity matrix
computation and directly use the 256-dimensional feature as
the speaker embedding. To obtain an utterance-level embed-
ding for an unknown speaker, we split a test utterance into 1.6-
sec segments with a 50% overlap, and feed each segment to the
encoder. Finally, we average resulting outputs and normalize
them to produce the final embedding for the utterance.

C. Text Encoding

As shown in Figure 1, the text encoder takes text sequences
as inputs and generates a text representation that is then fed to
the seq2seq model. Following [5], we convert a text sequence
into a sequence of integer IDs corresponding to characters in
the text, and then pass the latter to a Pre-Net consisting of
two FC layers with ReLU activation and 0.5 dropout. The
Pre-Net acts as an information bottleneck, which helps the
model converge and generalize [5], [11]. Following [11], we
set the number of hidden layers in the second layer of the
PreNet to half of those in the previous layer. The PreNet output
is consumed by a CNN-RNN module that produces the final
output of the text encoder. The CNN-RNN module consists of
five CNN layers with ReL.U and batch normalization [60] and
a bidirectional LSTM layer. The rationale behind using CNN
layers is that they model longer-term context (e.g. N-grams)
in the input text sequence.

D. Mispronunciation Detection and Diagnosis

Our MDD system is based on a seq2seq model proposed
by Feng et al. [5]. The seq2seq model consumes wav2vec
embeddings from the input utterance along with the text
sequence, and produces the corresponding phone sequence
as the output. We pass wav2vec embeddings to an acoustic
encoder consisting of an embedding layer, followed by a
PreNet layer with two FC layers with 0.5 dropout rate and
ReLU activation, followed by two bidirectional GRUs layers
with 256 units each.

We align the outputs of the audio and text encoders using a
Bahdanau attention mechanism [61]. Denoting the last hidden
layer of the text encoder as (£1, t2,...,trs) and the last hid-

den state of the audio encoder output as (@1, @2, ..., A1,),
we compute attention scores as:
score(t;, aj) = v X tanh(Wit; + Waay) (2)
a;; = softmaz(score(t;,a;)) 3)
Ts
cj = Z oit; “)
i=1
aj; = concat(c;, a;) 5)

where v, Wi, and W, are model parameters. We normalize
the cross-attention scores between the acoustic encoder output
and the text encoder using softmax and scale them with the
text encoder’s output to create a context vector c;. We then
concatenate c; with the acoustic encoder’s GRU output a; and
pass them to the decoder GRU followed by a post-processing
net with similar CNN-RNN architecture as the Text encoder
except it has 512 units instead of 1,024 units. Finally, we use
a softmax layer to classify the output of the post-processing
net into phone sequences.

E. Text-to-speech

The last component of our sequential model is a seq2seq
TTS system that takes phones produced by the MDD system
and the speaker’s embedding as input and generates Mel
spectrograms. The TTS architecture follows Wang ef al. [11],
which has been shown to generate natural-sounding speech. A
detailed list of hyperparameters is shown in Table III.

The encoder of the TTS system converts an input phone
sequence into a hidden representation. We pass the phone se-
quence predicted by the MDD to an Embedding layer followed
by a PreNet, as in the Text Encoder. Then, we pass the PreNet
output through five 1D convolutional layers with Max pooling
and batch normalization followed by four FC layers and a
bidirectional GRU. To capture the voice characteristics of the
target speaker, we concatenate the encoder output (which only
contains text information) with the target speaker’s embedding
from the pre-trained speaker encoder (see Section III-B) and
feed it to the decoder.

The decoder uses a location-sensitive attention mechanism
[62] to generate Mel-spectrogram frames in an auto-regressive
manner. At each decoding step, we pass the predicted Mel-
spectrogram from the previous time step to a PreNet consisting
of two FC layers. Then, we apply an attention mechanism
between the PreNet output and the hidden representation from
the Encoder to generate a context vector. We then concatenate
the PreNet output with the context vector and feed it to a 2-
layer LSTM . Finally, we pass the output of the second LSTM
layer to an 80-dim linear layer to generate Mel-spectrograms.
An additional layer predicts the stop token to decide the end
of decoding using binary cross entropy.

To improve synthesis quality, we pass the Mel-spectrogram
through a post-processing net that predicts the residual. Fol-
lowing [11], the post-processing net consists of five 1D
convolution layers, four FC layers, and a bidirectional GRU.
In a final step, we add the residual back into the predicted
Mel-spectrogram to obtain the final prediction.

We train the sequential model to minimize two losses: the
Euclidean distance between predicted and ground truth Mel-
spectrograms (Lrgc) (TTS loss) and the CTC (Lore) loss
between predicted and ground truth phones (MDD loss).

Lrec = |[@post — yll5 + |13 — yll3

Lsrop = CrossEntropy(t,t)

Lere = CTC(p,p)

L =a(Lrec + A X Lstop) + (1 —a)Lere

(6)
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TABLE I
DISTRIBUTION OF TRAIN, TEST, AND VALIDATION SENTENCES FOR SEEN
AND UNSEEN CONDITIONS

Train Test Validation
L2-ARCTIC TIMIT L2-ARCTIC | L2-ARCTIC
Speakers 18 630 6 6
Seen Utterances 2,520 6,300 60 60
Duration 2.6 hr 4.5 hr 3.4 min 3.7 min
Speakers 18 630 6 6
Unseen |Utterances 2,340 6,300 60 60
Duration 2.4 hr 4.5 hr 3.4 min 3.7 min

where @post 1S the output of the post-processing net, §
is the predicted Mel-spectrogram before the post-processing
net, £ and t are the predicted and ground-truth stop tokens,
respectively, p and p are the predicted and ground-truth phone
sequences, respectively.

IV. EXPERIMENTAL SETUP
A. Speech corpora and training-test splits

We used two publicly available datasets for our experiments:
TIMIT [63], and L2-ARCTIC [7]. TIMIT is a native English
corpus consisting of 6,300 audio recordings from 630 speak-
ers, with a total duration of 4.5 hours of speech. L2-ARCTIC
is a non-native corpus consisting of 24 speakers, four speakers
from six different first languages (Hindi, Korean, Mandarin,
Spanish, Arabic and Vietnamese). Both corpora include anno-
tated phone transcriptions that can be used for MDD. However,
TIMIT uses 61 phones whereas L2-ARCTIC uses 48 phones.
To unify the two phone sets, we map TIMIT’s 61 phones and
L2-ARCTIC’s 48 phones into 40 phones (including silence)
following [14]. We also resample the L2-ARCTIC recordings
(48KHz) down to 16KHz to match TIMIT’s sampling rate.

We train our system on the entire TIMIT corpus and 18
speakers from L2-ARCTIC, leaving one speaker from each
accent for testing (NJS: Spanish; TXHC: Mandarin; SVBI:
Hindi, YKWK: Korean; ZHAA: Arabic; HQTYV: Vietnamese).
We consider two testing conditions: seen and unseen. In
the seen condition, test sentences are also used for training
(test speakers are always unseen). In the unseen condition,
we exclude test sentences from the training set (i.e., unseen
speakers and sentences). Validation sentences are never part of
the training and test sets. Table I shows the breakdown of the
train, test and validation sentences for each condition. For each
test speaker, we used 10 sentences for testing, 10 sentences for
validation, and the remaining 130 sentences for training. To
reduce variance, we use the same test and validation sentences
for all speakers. Following [64]. we select sentences using a
greedy forward selection method that maximizes the entropy
of the phonetic transcriptions (i.e., phonetic balance). First,
we select the sentence with the highest entropy for training.
Conditioned on this sentence, we select the sentence with
the highest entropy out of the remaining ones for validation.
Finally, we select the next most phonetically balanced sentence
(conditioned on the previously selected sentences) for testing.
We repeat this procedure until all sentences are covered.

B. wav2vec 2.0 model

We used a wav2vec 2.0 model that had been pre-trained
for phone recognition on 54.2 thousand hours from the Lib-
rispeech, and LibriVox corpora [65], and fine-tuned it on the
training set from L2-ARCTIC following the procedure de-
scribed in [27]'. The fined-tuned wav2vec 2.0 model generates
a 768-dimensional embedding, which we then reduced down
to 300 dimensions using two linear layers.

C. Speaker encoder

We use a pre-trained speaker encoder trained on 1.2k
speakers from VoxCelebl, 6k speakers from VoxCeleb2 [66],
and 2.4k speakers from LibriSpeech, or approximately 3,000
hours of speech. It takes 40 channel Mel-spectrograms as
input and outputs a 256-dimensional speaker embedding. We
obtain Mel-spectrograms using 25 ms analysis windows with
a step of 10 ms. As previously described in section III-B, we
split speech samples into 1.6-sec windows with 50% overlap
and pass them to the encoder. To obtain the final speaker
embedding, we L2-normalize each individual window and then
compute their average. The model achieves an equal error
rate (EER) of 4.5% on the combined test sets of Librispeech,
VoxCelebl, and VoxCeleb2 [58].

D. Multi-task and single-task MDD systems

We train our multi-task MDD model (MT-MDD) and an
equivalent single-task MDD model without TTS (ST-MDD)
using a batch size of 96 and an Adam optimizer [67] with a
learning rate of 10~3. We empirically set the hyperparameter o
for the MT-MDD system (see Eq. 6) to 0.2. For both systems,
we used an early stopping of 15 epochs. We implemented both
systems in PyTorch and trained them on an NVIDIA GeForce
RTX 3090 GPU.

E. Text-to-speech

We train the Tacotron-based TTS system on L2-ARCTIC
on the same train-test split described in section IV-D to be
consistent with the MDD system. We set the batch size to
32 and the initial learning rate to 102 annealed to 10~°
using an exponential decay. We implement the model using
PyTorch and stop training after 300k steps on an NVIDIA
GeForce RTX 3090 GPU. The TTS system generates Mel-
spectrograms.

E Vocoder

To generate speech waveforms from TTS Mel-spectrograms,
we use a WaveRNN vocoder that had been pre-trained on
Librispeech [68]. WaveRNN generates speech waveforms with
audio quality comparable to WaveNet but with a significantly
shorter inference time (13x) [69].

Uhttps://github.com/Mu-Y/mpl-mdd
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V. RESULTS

We compared the performance of the proposed system (MT-
MDD) against its single-task counterpart (ST-MDD) and a
state-of-the-art MDD baseline [27]. The baseline model uses
wav2vec as a self-supervised model and then fine-tunes using
pseudo-labels obtained from 17,403 unannotated sentences
from all train speakers in L2-ARCTIC and annotated sentences
using the configuration in Table I. Unlike in the original imple-
mentation of the baseline model, we do not remove duplicate
silences during pre-processing —for consistency with the pre-
processing steps in the MT-MDD and ST-MDD models.

We evaluated the three MDD models on mispronunciation
detection and mispronunciation diagnosis tasks, first when
test sentences were seen during training, and then when
test sentences were unseen. This allowed us to assess their
relative generalization properties. We also evaluated speech
reconstruction performance of the MT-MDD system using ob-
jective and subjective evaluations. For objective evaluation, we
examined speaker embeddings for recorded and reconstructed
speech. For subjective evaluations, we conducted perceptual
listening test of accentedness and intelligibility.

A. MDD performance on seen sentences

In a first experiment, we evaluated the three MDD sys-
tems on test sentences that were seen during training. In
mispronunciation detection, the goal is to identify if a phone
has been mispronounced (i.e., a binary classification task). In
mispronunciation diagnosis the goal is to identify which phone
was actually produced (a multi-class task).

Mispronunciation detection. To compute a mispronunciation
detection score, we align the annotated and predicted phone
sequences using the Needleman-Wunsch algorithm [70]. Then,
we count the number of insertions, deletions, and substitution
errors. Following prior work [5], we use accuracy and correct-
ness as detection metrics:

correctness = m (7)
N-S-D-1
N

where N is the number of phones, S is the number of sub-
stitutions, D is the number of deletions, and [ is the number
of insertions. We aggregate results across the six test subjects
from L2-ARCTIC, and report error bars. Figure 2 shows the
accuracy and correctness scores of the three systems. MT-
MDD achieves an average correctness of 0.901, while ST-
MDD and baseline achieve an average correctness of 0.876
and 0.880, respectively, both of which are significantly lower
than that of the MT-MDD system (one-tail t-test p < 0.05). We
observe a similar trend for accuracy. Notice that accuracy is
lower than correctness due to the inclusion of insertion errors.
MT-MDD achieves an average accuracy of 0.879, whereas
ST-MDD and baseline achieve average accuracy of 0.856
(p < 0.05) and 0.860 (p < 0.05), respectively. Because MT-
MDD outperforms ST-MDD and baseline in correctness and
accuracy, this indicates that adding TTS as a secondary task
is beneficial.

®)

accuracy =

TABLE 11
METRICS FOR MISPRONUNCIATION DIAGNOSIS. CANONICAL
TRANSCRIPTION FROM A LEXICON. HUMAN ANNOTATIONS IN
L2-ARCTIC. MACHINE ANNOTATION FROM MDD

Canonical| Human | Machine
Correct True accept (TA) a a a
pronunciation |False reject (FR) a a B
I ¢ False accept (FA) a B a
neorrect  [Correct diagnosis (CD) a B B
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Diagnosis error (DE) a B y
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Fig. 2. Mispronunciation defection performance (correctness, accuracy) of
the three systems on seen sentences

Mispronunciation detection. Following [26], we computed
diagnosis metrics by comparing MDD phone predictions
against canonical transcriptions from a lexicon and human
annotations in L2-ARCTIC —see Table II for definitions. When
the human-annotation and canonical phone match, we denote
it as a correct pronunciation. In this case, whenever the
machine annotation (MDD prediction) matches the canonical
and human annotation, we refer to it as true accept (TA);
otherwise, we refer to it a false reject (FR). Likewise, when the
canonical and human annotations do not match, we denote it
as a mispronunciation. In this case, if the machine and human
annotation match, we refer to it as a true reject (7'R), and false
accept (F'A) otherwise. We further divide TR into correct
diagnosis (C'D) and diagnosis error (DE). From these, we
compute Precision (P), recall (R), and F'1 score as:

TR

P= TR+ FR ©)
TR

= FA+TR (19)
2PR

F1= 11
P+R (b

We also compute false rejection rate (FRR), false acceptance
rate (FAR), and detection error rate (DER) as follows:

FR

FRE=77"FR 2)
FA

FAR= =0 7F (13)
DE

DER = 7CD+DE (14)

Conceptually, FRR measures the number of correct phones
that MDD flags as mispronunciations, FAR measures the



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

[ MT-MDD [ Baseline [ ST-MDD
0.09 0.70 0.50 0.80

=

=N

o
N
B
o

0.70

o o
= w
o o
F1 score

o

(o))

o

False acceptance rate
Diagnosis error rate
o
w
o

False rejection rate

o

w

o
o©
N
o

0.20 0.10 0.40

Fig. 3. Mispronunciation diagnosis performance of the three systems on seen
sentences

number of mispronounced phones that MDD flags as a cor-
rect phone, and DER measures the number of MDD pre-
dictions that do not match either the canonical or human-
annotated phones. Results are summarized in Figure 3. MT-
MDD achieves an average FRR of 0.050, whereas ST-MDD
and baseline achieve average FRR of 0.065 (p < 0.05) and
0.052 (p = 0.40), respectively. MT-MDD achieves an average
FAR of 0.505, whereas ST-MDD and baseline achieve average
FAR of 0.475 (p = 0.25) and 0.525 (p = 0.39), respectively.
In terms of DER, MT-MDD achieves an average score of
0.214, whereas ST-MDD and baseline achieve DER of 0.252
(p = 0.16) and 0.316 (p < 0.05), respectively. For F1 scores,
MT-MDD achieves an average of 0.525, whereas ST-MDD
and baseline achieve averages of 0.498 (p = 0.35) and 0.511
(p = 0.41), respectively. In summary, MT-MDD outperforms
ST-MDD and baseline in terms of mispronunciation detection
(i.e., correctness and accuracy), when considering mispronun-
ciation diagnosis (FRR, FAR, DER, and F1 scores), MT-MDD
outperforms ST-MDD and performs comparably to baseline in
FRR. It also outperforms baseline and performs comparably
to ST-MDD in DER, and trends favorably for F1.

B. MDD performance on unseen sentences

Evaluating MDD performance on test sentences that were
not seen during training represents a more flexible scenario
for pronunciation training where L2 learners practice on a
broad range of sentences than those in the training set. This
condition is also more challenging, but allows us to evaluate
the generalization properties of the MDD system.

Mispronunciation detection. The correctness and accuracy
of the three systems are summarized in Figure 4. MT-MDD
achieves average correctness of 0.874, whereas ST-MDD and
baseline achieve average correctness of 0.859 (p < 0.05) and
0.860 (p < 0.05), respectively. MT-MDD achieves an average
accuracy of 0.854, whereas ST-MDD and baseline achieve an
average accuracy of 0.835 (p < 0.05) and 0.842 (p = 0.06),
respectively. In summary, MT-MDD has higher correctness
than ST-MDD and baseline. It also has a higher accuracy, but
differences are only significant with respect to ST-MDD .

To examine the relative contributions of type of model
(MT-MDD, ST-MDD, baseline) and type of sentence (seen,
unseen), we conducted a two-way ANOVA on accuracy and
correctness with model and sentence as independent factors.
For correctness, we found a main effect for model (p < 0.05)
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Fig. 4. Mispronunciation detection performance of the three systems on seen
and unseen sentences

and sentence (p < 0.05) but no interaction effects (p = 0.67).
For accuracy, we also found a main effect for model (p < 0.05)
and sentence (p < 0.05) but no interaction effects (p = 0.83).
Thus, model and sentence factors provide independent contri-
butions to correctness and accuracy, Finally, to examine gen-
eralization performance, we conducted post-hoc tests between
MT-MMD on unseen sentences and ST-MDD and baseline
on seen sentences. A one-tailed t-test reveals no statistically
significant differences in correctness between MT-MDD on
unseen sentences, and ST-MDD and baseline correctness on
seen sentences (p = 0.38 and p = 0.10, respectively).
Likewise, we find no statistically-significant differences in
accuracy between MT-MDD on unseen sentences, and ST-
MDD and baseline on seen sentences (p = 0.47, and p = 0.06,
respectively). In sum, adding TTS as a secondary task to
an MDD task results in correctness and accuracy on unseen
sentences that are comparable to those of single-task MDD on
seen sentences, indicating that MTL improves generalization
in MDD tasks.

Mispronunciation diagnosis. Figure 5 shows the average
FRR, FAR, DER and F1 scores for the three systems. MT-
MDD system achieves an average FRR of 0.072, whereas
ST-MDD and baseline achieve average FRR of 0.078 (p =
0.19) and 0.079 (p = 0.20), respectively. MT-MDD system
achieves an average FAR of 0.469, whereas ST-MDD and
baseline achieve average FAR of 0460 (p = 0.43) and
0.485 (p = 0.41), respectively. MT-MDD system achieves an
average DER of 0.288, whereas ST-MDD and baseline achieve
average DER of 0.365 (p = 0.29) and 0.313 (p = 0.06),
respectively. Finally, MT-MDD system achieves an average
F1 score of 0.494, whereas ST-MDD and baseline achieve
average F1 scores of 0.475 (p = 0.38) and 0.493 (p = 0.49),
respectively. Thus, MT-MDD performs comparably to ST-
MDD and baseline in mispronunciation diagnosis, although
results show a favorable trend towards MT-MDD. As in the
case of mispronunciation detection, we examined the relative
contributions of the type of model and the type of sentence on
mispronunciation diagnosis. For FRR, we found a main effect
for sentence (p < 0.05) but none for model (p = 0.18) and
interaction (p = 0.42). For FAR, we did not find any effects
for model (p = 0.70), sentence (p = 0.40), or interaction
(p = 0.96). Likewise, for DER, we found a main effect for
model (p < 0.05) and sentence (p < 0.05) but no interaction
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Fig. 5. Mispronunciation diagnosis for the three systems on seen and unseen
sentences

(p = 0.93). Finally, for F1 scores we found no effects
for model (p = 0.87), sentence (p = 0.50) or interaction
(p = 0.99). Thus, model and sentence have independent
contributions in DER, but not for the other three measures
of mispronunciation diagnosis. Finally, we examined general-
ization performance on mispronunciation diagnosis. For FRR,
we found no statistically significant differences between MT-
MDD on unseen sentences and ST-MDD (p = 0.18) on seen
sentences, and significant differences between MT-MDD and
baseline on seen sentences (p = 0.01). Similarly, we found no
statistically significant differences in FAR between MT-MDD
on unseen sentences, and ST-MDD and baseline systems on
seen sentences (p = 0.45, and p = 0.23, respectively). A
similar trend was observed in differences in DER between
MT-MDD on unseen sentences and ST-MDD and baseline
on seen sentences (p = 0.16, and p = 0.32, respectively).
Finally, we found no significant differences in F1 between MT-
MDD on unseen sentences and ST-MDD and baseline systems
(p = 0.47, and p = 0.38, respectively) on seen sentences.
Therefore, with the exception of FRR, MT-MDD performs
comparably to the ST-MDD and baseline systems in diagnosis
metrics, again indicating that adding TTS as secondary task
improves generalization.

C. TTS performance

Our final set of evaluations focuses on the auxiliary TTS
task of our proposed MT-MDD system —note that ST-MDD
and baseline do not have a TTS task. We evaluate TTS
performance using both objective and subjective tests. For the
objective evaluation, we examined the voice quality of the
reconstructed speech using t-distributed stochastic neighbor
embedding (t-SNE) [71]. For the subjective evaluation, we
performed perceptual listening test of accentedness and intelli-
gibility for two types of synthetic speech: (1) using canonical
annotations, and (2) using manually-annotated transcriptions.
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Fig. 6. Speaker embeddings of original (color filling) and reconstructed (white
filling) speech for six unseen speakers. Original speech and its reconstruction
cluster together, indicating the TTS model is able to capture the speakers’
identity.

We hypothesized that using canonical transcriptions would
synthesize speech that was more native-accented and intelli-
gible than when using manually-annotated transcriptions (i.e.,
the actual phones L2 learners produced). Following prior work
[72] [73], we conduted listening tests of intelligibility and
accentedness on Amazon Mechanical Turk (AMT).

Objective evaluation: speaker embeddings To examine
whether the TTS system can capture voice quality, we visual-
ize the speaker embeddings of the original speech and speech
reconstructions from MT-MDD using t-SNE scatterplots. Re-
sults are shown in Figure 6 for the 10 test sentences of the
6 test speakers. Each utterance is color coded by the speaker
identity, color filling and white filling indicating original and
reconstructed utterances, respectively. The t-SNE plots reveal
a strong clustering according to speakers, indicating that the
TTS system is able to capture the voice characteristics of
each speaker. More importantly, original and reconstructed
utterances are in close proximity within each speaker cluster,
indicating that the speech reconstructions have similar voice
quality as the original utterances.

Subjective evaluation of foreign accentedness. To participate
in the listening tests, participants were required to pass a
qualification test that required them to discriminate different
accents of American English including Northeast, Southern,
and General American [74]. Further, all participants resided
in the United States and identified as native English speakers.
Prior to performing the evaluations, participants were provided
calibration samples. Then, they were asked to rate synthesized
utterances that had been randomly selected from test sentences.
All experiments were approved by the Institutional Review
Board at Texas A&M University.

We synthesized two types of utterances for the listening
tests: using manual annotations of test sentences as inputs to
the TTS block, and using canonical phone sequences gener-
ated from the original sentence by an English grapheme-to-
phoneme (g2p) 2. Since manual annotations capture speakers’

2We use the g2p system reported in: https://github.com/Kyubyong/g2p
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from canonical g2p transcriptions and manually-annotated transcriptions with
segmental mispronunciations.

mispronunciations, we expected the corresponding reconstruc-
tions would be rated as more accented than those from the
English g2p phone sequence.

Listeners (N=20) were asked to rate the degree of accent-
edness of an utterance on a nine-point Likert scale (1: no
foreign accent, 9: heavy foreign accent). Listeners were told
that the native accent in the task was General American,
and were instructed to ignore voice quality/timbre, and only
pay attention to the accent. Participants (N=20) rated 72
randomly selected utterances, 36 generated from canonical and
manually-annotated phones each, 6 sentences per test speaker.
Results are summarized in Figure 6. Utterances synthesized
from canonical transcriptions were rated as being less accented
(5.03) than those synthesized from manually-annotated phones
(5.47). A two-tailed t-test revealed that these differences are
statistically significant (p < 0.001). These results indicate
that the TTS system can capture segmental differences in
the phonetic sequences of (canonical) native speech and non-
native speech (with its unique mispronunciations), which is
essential for the TTS reconstruction loss to have any positive
effect on the accuracy of the MDD system upstream.

Subjective evaluation of intelligibility. Following the same
recruitment and qualification criteria of the accentedness test,
we recruited a different group of participants (N=20) to rate
the degree of intelligibility of an utterance using a nine-
point Likert scale (1: not intelligible; 9: highly intelligible).
Participants rated the same 72 randomly selected utterances
used in the accentedness test. Results are summarized in
Figure 6. Utterances synthesized from canonical transcriptions
were rated as being significantly more intelligible (5.16)
than those synthesized from manually-annotated phones (4.68)
(p < 0.001). These results corroborate those on the accent-
edness test, indicating that TTS reconstructions have lower
intelligibility if the phonetic transcriptions reflect the mispro-
nunciations that are present in speech productions from L2
learners.

VI. DISCUSSION

Prior work on mispronunciation detection shows that adding
text (that non-native learners are asked to produce) as an
additional input improves MDD performance [5]. This arti-
cle examined whether resynthesizing the non-native learner’s
production from the predicted MDD phone sequences would
provide further improvements in MDD performance. To test
this hypothesis, we proposed a multi-task learning method that

combines MDD and speech reconstruction tasks. Results from
our experiments indicate that adding a speech reconstruction
block does indeed improve mispronunciation detection perfor-
mance, when compared to single-task MDD models.

We analyzed the mispronunciation defection performance
of the three systems on test sentences that had not been
used for training (unseen condition). Our proposed MT-MDD
model achieves significantly higher correctness and accuracy
scores than the ST-MDD system. Since MT-MDD and ST-
MDD models share the same seq2seq backbone network, im-
provements in correctness and accuracy can only be attributed
to the secondary TTS task. The proposed MT-MDD model
also achieves higher correctness and accuracy than a baseline
system, which is remarkable considering the baseline system
had been fine-tuned on the pseudo-labels.

We also evaluated the three systems on mispronunciation
diagnosis measures of FRR, FAR, DER, and F1 score. We
found no significant differences in diagnosis scores between
MT-MDD and ST-MDD and baseline. Though not statistically-
significant, MT-MDD has higher a FAR than ST-MDD, which
indicates that MT-MDD has a higher tendency to flag mis-
pronunciations as correct pronunciations. This result may be
due to the large class imbalance between correct productions
and mispronunciations in the dataset, and could be traced back
to human annotations in L2-ARCTIC, which tended to focus
on the most severe mispronunciations in each sentence. As
a result, MT-MDD tends to be conservative, which leads to
opposite trends in FRR and FAR. Similar findings have been
reported in the literature [28] as a trade-off between FRR
and FAR, which are complementary measures. In general,
pronunciation training experts tend to favor low FRR scores at
the cost of higher FAR, since flagging correct pronunciations
as mispronunciations can be detrimental to the L2 learner [75],
[76]. The same trade-off is also seen in the baseline system,
which has a low FRR and a higher FAR compared to the
ST-MDD system. These results indicate that MT-MDD and
baseline have a tendency to predict pronunciation errors as
correct pronunciations, compared to ST-MDD.

We repeated the above evaluations on sentences that had
not been used for training (unseen condition). In this case,
MT-MDD outperformed ST-MDD and baseline on mispronun-
ciation detection performance. More importantly, MT-MDD
performance on unseen sentences was similar to that of ST-
MDD and baseline on seen sentences, a clear indication that
adding TTS as a secondary task improves the generalization
properties of the primary task (MDD), thus validating the main
hypothesis of this study.

We also evaluated the performance of the proposed MT-
MDD model on the secondary task (speech reconstruction).
For this purpose, we used t-SNE to analyze speaker embed-
dings from original utterances and their TTS reconstructions.
We observed that speaker embeddings from reconstructed
speech are close to those of the original utterances, with a
clear clustering effect between speakers. Finally, we examined
if speech reconstructions from text, with and without mispro-
nunciations, led to differnces in perceived accentedness and
intelligibility. When we feed canonical phone sequences to
the TTS system, listeners rate reconstructions as less accented
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and more intelligible than those produced when we feed
human annotations. This result indicates the TTS system is
sufficiently sensitive to phone sequences that contain actual
mispronunciations, as is needed for the reconstruction loss
to guide the MDD system towards higher performance in
mispronunciation detection and diagnosis.

A. Future Work

Though our proposed MT-MDD model outperforms the
ST-MDD and baseline models, it is important to note some
of its limitations. First, our speech reconstructions do not
faithfully capture the duration of the original utterance, which
otherwise would provide additional cues to non-native accents.
A potential solution is to include a prosody encoder in the TTS
system to condition the duration of speech reconstructions and
better match the duration of the original utterance [77]. This
would be important when a pronunciation training tool aims
to improve the prosody of L2 speakers. However, when the
objective of pronunciation training is to improve segmental
productions (i.e., reduce substitutions, deletions and additions),
it is not that clear that a prosody encoder would improve
mispronunciation detection and diagnosis.

A major issue for research in MDD systems is the lack
of large speech corpora with manually-annotated phonetic
transcriptions. Our results suggest a potential venue to address
this problem through data augmentation. Given that our TTS
system can resynthesize accented speech (if the phonetic
sequences include mispronunciations), it may be possible to
generate an arbitrarily large corpus of L2 speech by manually
introducing segmental errors into the phonetic transcriptions.
This idea has been previously suggested in the literature. For
example, Korzewka et al. [78] introduced mispronunciations
(insertions, substitutions, and deletions) into phone sequences,
and then synthesized the corresponding speech using a pre-
trained TTS system. Then, they used the synthetic speech
containing manually-inserted phone errors to train an MDD
model. The authors reported an increase in MDD accuracy at
the word level, which opens the possibility for improvements
in MDD at the phone level, which is generally the main target
in pronunciation training.

The MT-MDD model has nearly twice the number of param-
eters of the ST-MDD model due to the TTS block, which can
make it more challenging for deployment. However, current
workstations are well equipped to handle much larger models,
so this issue is not a primary concern at this point. In fact,
with proper regularization techniques (e.g., pruning, dropout),
the increased model size often leads to better generalization
performance, a far more important criterion than storage
requirements. Further, note that the TTS block is only required
for training, but not once the MDD system is deployed. If
MDD model size became an issue (i.e., on mobile devices),
lighter TTS models such as Deep Voice [34] may be used.

VII. APPENDIX

Table III shows the hyperparameters of the proposed MT-
MDD and ST-MDD models. Note that TTS parameters only
apply to the MT-MDD model.

TABLE III

HYPERPARAMETERS OF THE MT-MDD MODEL

Block Component Parameters
. 2 x FC layers
Acoustic PreNet 512 units; ReLU
1 x bidirectional GRU 256 cells
Embedding layer gié:nembeddlngs each 1024
2 x FC layers
Ted PreNet 1024 and 512 units; ReLU
3 x Conv lavers 5 x 1 kernels with 1 x 1 stride
Y ReLU; batch norm
MDD 1 x bidirectional LSTM | 512 cells
Attention | Bahdanau attention 512 dim attention context
1x GRU 512 cells
3 x Conv layer
5 x 1 kernel with 1 x 1 stride
Decoder ReLU; batch norm
PostNet 1 bidirectional LSTM
512 cells
1 x linear layer
42 units; softmax
Embedding 42 embeddings each 512 dim
2 x FC layers
PreNet 512 units; ReLU
5 x 1 kernels with 1 x 1 stride
Encoder | 5x1 Conv layers MaxPooling 2 x 1 kernel
. 4 x FC layers
Highway 512 units; ReLU
1 x bidirectional GRU 256 cells
Projection layer 1 x FC layer
Attention Locatllon sensitive 512 dim attention context
attention
2 x FC layers
T8 PreNet 256 units; ReLU
2xLSTM 1024 cells
Linear (Mel) 1 x FC layer; 80 units
Linear (stop token) 1 x FC layer; 1 unit
Decoder
5x 1 Conv layers
MaxPooling 2 x 1 kernel 4 x
FC layers
PostNet 512 units; ReLU
1 x bidirectional GRU;
256 cells
Speaker | 3xLSTM ?ielfgl::yer
encoder | Linear 80 units: ReLU
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