
Joint Embedding of Food Photographs and Blood
Glucose for Improved Calorie Estimation

Lida Zhang1, Sicong Huang1, Anurag Das1, Edmund Do1, Namino Glantz2, Wendy Bevier3, Rony Santiago3,
David Kerr4, Ricardo Gutierrez-Osuna1, and Bobak J. Mortazavi1

Computer Science & Engineering, Texas A&M University, College Station, TX1, Santa Barbara County Education Office,
Santa Barbara, CA2, Sansum Diabetes Research Institute, Santa Barbara, CA3, Diabetes Technology Society, Burlingame, CA4

{lidazhang, siconghuang, anuragdiisc.ac.in, rgutier, bobakm}@tamu.edu,
nglantz@sbceo.org, wbevier@sansum.org, rofsanti@ucsc.edu, kerr@diabetestechnology.org

Abstract—Type 2 diabetes has a significant impact on individ-
uals’ health and well-being, and diet monitoring is an important
tool in treating individuals. Accurate estimation of meal intake
is essential for promoting diet and behavior interventions. While
continuous glucose models (CGMs) have demonstrated the ability
to estimate carbohydrate quantities in meals, CGMs-alone have
been insufficient in capturing other meal nutritional information
due to the different types of food and people’s health conditions.
Therefore, we propose a multi-modality model for augmenting
CGM-based inverse metabolic models by using both CGM-
captured interstitial glucose data and food image data. A late
fusion approach is used to aggregate the extracted glucose
information from the attention-based Transformer and Gaussian
area under the curve (gAUC) features, and image information
from the vision transformer. We test our model on a dataset
collecting Freestyle Libre Pro CGM data and meal photographs
of breakfasts and lunches on 27 participants, with meals with
known fixed caloric content. Our joint embedded approach to
learning calorie estimations from both CGM data and image
data achieved an average Normalized Root Mean Squared Error
(NRMSE) of 0.34 for calorie prediction, with a correlation of
0.52, a 15.0% improvement over CGM-only models and 17.1%
over image-only models.

Index Terms—Machine learning, Continuous Glucose Moni-
tors, Diabetes, Diet monitoring, Nutrition

I. INTRODUCTION

Type 2 Diabetes (T2D) is a major condition that leads to
over one million deaths in 2020 in the United States alone
[1]. A primary component to prevent the progression from
pre-diabetes to T2D is monitoring and controlling diet. With
the development of remote sensing and machine learning
analytics, automated techniques have explored aiding diet
monitoring. These techniques include nutrition estimation of
meals from both remote sensing and computer vision-based
models. Continuous glucose monitors (CGMs), for example,
have been used to estimate the constituents of a meal, poten-
tially resulting in tools to log food intake automatically [2],
such as estimating carbohydrate quantity [3], [4] and even
estimating proteins and fats when paired with other sensors
[4]. Computer vision techniques, which process photographs
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of meals, have also been used to estimate meal nutritional
content, such as calories [5]–[8].

However, macronutrient predictions from either CGMs or
images have some limitations. Predicting meal macronutrients
from post-prandial glucose responses (PPGR) is a complex
many-to-one inverse mapping [2], [9], with individual vari-
ability leading to significant changes in PPGR from the
same meals across participants [4], [10]. This variability in
absorption and metabolism limits CGM-based model efficacy
in macronutrient estimation. Similarly, additives (i.e., sugars
and salts) are a source of uncertainty for food image-based
models, where even cooking style can greatly impact nutrition
estimation. As a result, many computer vision studies are
limited to a certain type of food [11], such as Chinese food
[12], Thai food [13] and Indonesian food [14]. The two
modalities, however, may provide complementary information.
Therefore, we design a multi-sensor fusion approach and
multimodal modeling using both CGMs and food images.

We demonstrate our multimodal model improvement on the
estimation of calories in a meal. A late fusion architecture
[15] is applied to create a joint embedding of information
from CGM and images and we demonstrate the improvement
in calorie estimation from the joint embedding rather than
learning from each individual modality. We conduct an ab-
lation study on models that estimate calories in meals from
just CGMs, from just images, and then jointly from both
modalities, from a set of known breakfasts and lunches in
a cohort of 27 participants.

II. RELATED WORK

Recent work has explored the potential of using PPGRs
from CGM devices for meal monitoring purposes. Das et
al. proposed a sparse decomposition model using Gaussian
area under the curve (gAUC) features from PPGR signals
for the same purpose [9]. We leverage these gAUC features
for modeling both as baseline comparisons and in our joint
architecture.

In addition, we compare several computer vision techniques
for identifying meal information. IM2Recipe demonstrated a
joint embedding of images with recipes to define distinctive
representations of meals from photographs [5]. We adopt this
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Fig. 1. The model framework of macronutrient prediction with multiple
modalities of data from CGMs and food images.

approach of modeling food images into an embedded space
for joint learning, using vision transformers as our primary
image pretrained backbone [16]. In addition, we compare
our technique against a series of baseline computer vision
backbones, pretrained to be agnostic of downstream predictive
tasks [17], [18].

III. METHODOLOGY

Our multimodal model is illustrated in Fig 1. We developed
modality-specific models that contain three feature extractors
that extract image embedding from food images, CGM em-
bedding from CGM readings and gAUC features from CGM
readings. We then concatenated all embeddings with a late-
fusion mechanism through a fully-connected projector network
to generate calorie estimations. This section describes the
data processing, modeling, and evaluation approach taken. The
study will be described further in Section IV. In brief, each
participant (N=27) in our study captured a photograph of each
breakfast and lunch, with known calories and macronutrient
composition, and consumed them while also wearing a CGM,
in a 10-day study.

A. Data Preprocessing and Feature Extraction

The CGM sensor used in this study recorded interstitial
glucose levels every fifteen minutes. We applied a linear
interpolation to process the CGM data to have a frequency
of every minute. After interpolating the data, we extracted
the gAUC features from prior work [9]. Specifically, we
applied five Gaussian-based kernel functions to extract the
features. Each Gaussian kernel was convolved with the time
series data, which results in smoothed signal, and then each
smoothed signal was used to obtain the statistical gAUC value
by calculating the total area under the smoothed signal curve.
Figure 2 is an example of this process with five gAUC kernels.

For image data, we resized all the images to be the same
size. Standard size is commonly used in deep neural network
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Fig. 2. An example of five Gaussian kernels.

models, which require input images to be of a fixed size. Fac-
ing the challenge of limited computation resources, we reduced
the standard image size to 112 by 112 pixels. Reducing the
image size can also help model training by reducing the impact
of variations in image size and aspect ratio.

B. Calorie Estimation Modeling

For time-series CGM data, we applied an attention-based
Transformer [19] to process the data. Since we were build-
ing a supervised learning task, instead of using the original
encoder-decoder architecture of Transformer for the purpose
of data reconstruction, we only utilized the encoder part for
data representation learning and remove the decoder part for
reconstruction. Transformers use a multi-head self-attention
mechanism that allows them to learn important temporal rela-
tionships and dependencies within time-series data, which is
crucial for accurate predictions. We designed our Transformer
architecture of four self-attention stacks with four heads and
a fully-connected layer with a hidden size 64, and obtain a
final CGM embedding size of 64. A dropout layer with a
dropout rate of 0.2 is also applied in each stack to avoid
overfitting. By attending to different time points in the input
sequence, attention-based transformer models can effectively
capture patterns and trends in the CGM data that may be
representative of different macronutrients (and calories) in a
meal. We then took that embedded data and fused it with
five more nodes, representing the gAUC features manually
extracted, to represent the CGM data.

We use vision transformers (ViT) on the images of food,
leveraging its ability to learn hierarchical representations of
image features to effectively analyze food images and predict
the macro-nutritional content of different types of food. ViT
can learn different information from food images, such as
their color, texture, and shape, which provides important
information about their nutritional content. In brief, ViT breaks
down an image of 112 by 112 into 784 patches with a patch
size of 4, and then flattens and embeds them into a sequence of
vectors. These patch embeddings are then fed into a standard
Transformer encoder with a stacked self-attention with two
heads, a feed-forward layer, and a dropout layer with a dropout
rate of 0.2 to present a final image embedding of 64 size. For
additional detail, we refer you to [16].



Finally, we used a late fusion approach, similar to that from
Shukla et al. on time-series and text data [15], to aggregate the
embedding information into a single, joint model. We designed
a fully-connected projector network for a more comprehensive
representation of the data and then make the final predictions
from the output of this network. The late fusion approach
allows each modality of data to be processed independently,
which can result in more accurate and robust embeddings. In
our study, CGM and images may have very different structures
and features; processing them separately allows each modality
to be optimized for its own unique characteristics, and the
concatenation of them effectively leverages the complementary
information from each modality.

C. Predictive Tasks and Evaluation Metrics

The model was trained to optimize calorie estimation of
each meal, as its regression task. To evaluate the performance
of the model, two common metrics used were the Normalized
Root Mean Squared Error (NRMSE) and Pearson’s Correlation
Coefficient (correlation). The NMRSE is defined as:

NRMSE =

√
1

n
(
y − ȳ

ȳ
)2

where n is the number of samples, y is the predicted value, and
ȳ represents the ground truth. NRMSE measures the average
error between the predicted and true values, normalized by
the true value, while correlation measures the strength and
direction of the linear relationship between the predicted and
true values. NRMSE is particularly useful in evaluating the
accuracy of the model in terms of relative errors, which is
important when dealing with nutritional data that can vary
widely in magnitude (e.g. quantity of carbohydrates versus
quantity of fats in a meal). A lower NRMSE indicates that the
model is able to predict calorie values with greater accuracy
and precision.

IV. EXPERIMENTS AND RESULTS

A. Dataset

We collected meal images and CGM data in a trial con-
ducted with 27 participants (Advarra IRB Pro00049227). Of
the 27 participants, 12 had pre-diabetes, 10 were considered
healthy, and the remaining had T2D. Each participant wore an
Abbott Freestyle Libre Pro sensor on an arm to capture glucose
data. The Abbott Freestyle Libre Pro is a blinded CGM that
captures interstitial glucose readings every 15 minutes. Then,
each day over a ten-day protocol, participants were given a
breakfast shake (with known calories and macronutrient com-
position), asked not to consume anything for three hours, given
a lunch from Chipotle (with known calories and macronutrient
composition), asked not to consume anything else for the next
three hours, then were given free choice of dinners. For each
meal, participants were asked to take an image of the meal at
the start of each meal, and a photograph afterwards to show the
end of the meal and whether food remained. In addition, for
the dinner, they were asked to provide myfitnesspal logs of the
meal. In this study, we use the three hours post-prandial data

TABLE I
COMPOSITION OF MEALS AND THE CODE OF LOW (L) OR HIGH (H)

MACRONUTRIENTS FOR CARBOHYDRATES, PROTEINS, FATS, AND FIBERS.

Breakfast Meal (BM) Lunch Meal (LM)
Index Description Calorie Index Description Calorie
BM1 LLLL 268 LM1 HHHH 1180
BM2 HLLL 448 LM2 HLHL 830
BM3 HHLL 608 LM3 LHLL 435
BM4 HLHL 712 LM4 HLLL 555
BM5 HHHH 902 LM5 LLLL 355
BM6 LLLL 268 LM6 HHHH 1180
BM7 HLLL 448 LM7 HLHL 830
BM8 HHLL 608 LM8 LHLL 435
BM9 HLHL 712 LM9 HLLL 555

BM10 HHHH 902 LM10 LLLL 355

from breakfasts and lunches, whose description and calories
are shown in Table I.

B. Experiment Setup and Hyperparameter Tuning

We designed our experimental setup to conduct ablation
studies across modality-specific models, and then compared
a variety of fusion models. We compared the model perfor-
mance using CGM data only, image data only, and then we
compared models using both CGM and image data, intended
to understand if the multiple modalities of data actually
benefit the modeling. For CGM data, we compared against
[9] by using the gAUC features to implement a generalized
linear regression and tree-based XGBoost. In addition, we
evaluated two deep learning models LSTM and Transformer.
For image data, five state-of-the-art deep learning models
were compared: VGG16, VGG19, Resnet18, Resnet50, and
ViT. For the multiple modalities of data, we tested different
combinations of the two deep learning models for CGM and all
five models for image data, given the fusion of the models with
the predictions from the other CGM models is not possible for
joint embedding and backpropagation of the loss function.

Hyperparameter tuning is applied to all the models, includ-
ing {dropout rate of 0-0.2, batch size of 8-128, learning rate
of 1e−2-1e−4, hidden size of 64-512, weight decay of 0-0.2}.
We also applied the activation function ReLU for the projector
layers of late fusion. We selected the best model and ran
ten repeated experiments for each model. In each experiment,
we shuffled all the meals, and randomly selected 60% data
for training, 20% for validation, and 20 % for testing. The
loss function used sought to minimize the NRMSE of calorie
estimation. The mean NRMSE and its standard deviation were
calculated based on all ten experiments for each model.

C. Result and Analysis

Table II shows the results of our experiment, and our
best result of an NRMSE of 0.34 for calorie estimation. We
observe that using both CGM and image data has a significant
improvement over single modality calorie estimation. Our
proposed model using Transformers and ViT improves the
performance of calorie prediction by 10.8% compared to the
best CGM model, and 19.5% to the best image model, to an
NRMSE of 0.34.



TABLE II
MACRONUTRIENT PREDICTION PERFORMANCE COMPARISON AMONG

DIFFERENT DATA MODALITIES AND MODELS

Data Model NRMSE Correlation

CGM-only

Linear Regression 0.72 (0.03) 0.24 (0.02)
XGBoost 0.52 (0.02) 0.42 (0.03)

LSTM 0.41 (0.03) 0.34 (0.02)
Transformer 0.40 (0.04) 0.40 (0.03)

Image-only

VGG16 0.42 (0.04) 0.23 (0.03)
VGG19 0.43 (0.02) 0.20 (0.04)

ResNet18 0.42 (0.03) 0.31 (0.02)
ResNet50 0.41 (0.03) 0.30 (0.01)

ViT 0.43 (0.02) 0.22 (0.03)

CGM-image

LSTM-VGG16 0.36 (0.03) 0.38 (0.02)
LSTM-VGG19 0.39 (0.02) 0.29 (0.03)

LSTM-ResNet18 0.40 (0.01) 0.31 (0.03)
LSTM-ResNet50 0.39 (0.02) 0.36 (0.04)

LSTM-ViT 0.35 (0.02) 0.46 (0.02)
Transformer-VGG16 0.36 (0.03) 0.34 (0.02)
Transformer-VGG19 0.38 (0.02) 0.33 (0.04)

Transformer-ResNet18 0.40 (0.04) 0.28 (0.04)
Transformer-ResNet50 0.39 (0.01) 0.36 (0.03)

Transformer-ViT 0.34 (0.01) 0.52 (0.02)

When focusing on model selection, we observe that, for
CGM data, both LSTM and transformer perform much better
than linear regression and XGBoost. This result shows bet-
ter robustness of the deep learning models than traditional
machine learning models, and the variation among subjects
could be the reason for the low performance of traditional
machine learning models. The five image models do not make
a significant difference in calorie prediction; however, ViT
provides for stronger joint embedding.

V. LIMITATION AND FUTURE WORK

In this study, we build calorie estimation models on 20
meals with 27 participants. Ultimately, although calorie es-
timation is improved, there is room for further improvement
in both NRMSE and correlation for the model, as well as
extending the estimation to individual macronutrients. In addi-
tion, the variation among subjects (across healthy to those with
diabetes) is likely to be a factor challenging the modeling. We
plan to identify and account for additional sources of subject-
specific variation and incorporate that into future IMMs.

VI. CONCLUSION

In this study, we propose a calorie prediction IMM using
both CGM and food image data. A transformer was used
for CGM data extraction, and vision transformer was applied
for image data. All the features are aggregated through a
projector using the late fusion mechanism. The experimental
results show that our calorie IMM with multiple modalities of
data has significant improvement over models with a single
data modality using three hours of post-prandial CGM data.
Further, our proposed model outperforms all the baseline
models and demonstrates that multiple ”views” of meals are
needed for accurate diet monitoring technologies.
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