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Abstract—Methods to measure work stress generally rely on subjective measures from questionnaires or require dedicated sensors

that are cumbersome to wear and interfere with the task. To address this problem, we propose a method to detect stress unobtrusively

using commodity devices (keyboards, mice) instrumented with pressure sensors. We propose a minimalist design that can be easily

replicated by other researchers using off-the-shelf and low-cost hardware. We validate the design in a laboratory experiment that

simulates office tasks and mild stressors while avoiding methodological limitations of previous studies. We compare stress-detection

performance when using conventional features reported in the literature (keystroke dynamics, mouse trajectories) augmented with

information from pressure sensors. Our results indicate that pressure provides additional information for stress discrimination; adding

pressure information to keystroke dynamics and mouse trajectories improves classification performance by 6% and 3%, respectively.

These results show how devices that are already part of the modern workplace may be used and enhanced to automatically and

unobtrusively detect stress.

Index Terms—Stress detection, pressure-sensitive keyboard, pressure-sensitive mouse, keystroke dynamics, mouse dynamics,

affective computing

Ç

1 INTRODUCTION

WORK stress is dramatically increasing as a result of ris-
ing competitiveness, more intense workloads, and

longer and harder working hours [1], [2]. Although stress
can help people stay focused and motivated, severe stress
puts employees at a higher risk for health problems [3]. For
example, acute stress exacerbates negative coping behav-
iors, such as smoking [4] and substance abuse [5], and can
also lead to depression [6].

Monitoring stress levels throughout the day may allow
employees to identify stress triggers and stressful episodes
early on and develop healthier coping strategies [7]. The
gold standard for monitoring stress objectively is stress hor-
mones (e.g., cortisol, alpha-amylase) [8]. However, this
method is impractical in the workplace and only provides a
single-pointmeasurement rather than a continuousmeasure.
Self-report instruments can also be used [9], [10], but these
instruments are sensitive to subjective biases and also only
provide single point measurements. Wearable sensors can
also be used to measure physiological correlates of stress,
such as heart rate variability and skin conductance [11], [12].
However, the most common among these measures (wrist-
based heart rate and skin conductivity) are sensitive to
motion artifacts from physical activity (e.g., walking) or even
subtle behaviors (e.g., typing). Contactless measures, such as

facial expression analysis from webcams [13], can also be
used but are subject to changes in illumination, differences
in skin tones, among others.

Several studies have explored the possibility of monitoring
stress indirectly by analyzing keyboard and mouse use pat-
terns [14], [15], [16]. Keystroke andmouse dynamics have long
beenused for user authentication [17], [18] and recently to infer
emotional state [15], [19], [20]. Most of these studies use timing
and latency information, which can be easily obtained from
off-the-shelf devices. Studies have also explored the use of
experimental keyboards and mice to predict stress. For exam-
ple, Hernandez et al. [21] found greater typing pressure and
mouse grip pressure when subjectively-rated stress and elec-
trodermal activity levels were higher. This suggests that addi-
tional stress-related information may be obtained by
instrumenting keyboards andmicewith sensors.

This study presents two low-cost designs to measure typ-
ing pressure and mouse-grip pressure from off-the-shelf
devices. Our designs use force-sensitive resistors placed on
keyboards and mice to record changes in pressure. To eval-
uate our design, we conducted a user study aimed at detect-
ing stress while participants completed two conventional
tasks in knowledge work: typing texts and filling out multi-
ple-choice questionnaires. Then, we trained binary classi-
fiers to discriminate stress versus neutral states using
features derived from keystroke and mouse dynamics, and
from our pressure measurements. We obtained higher clas-
sification accuracy when combining keystroke and mouse
dynamics with their corresponding pressure features.

The rest of the paper is organized as follows. First, we
discuss related work on using keystroke and mouse infor-
mation to recognize emotion. Next, we present our key-
board and mouse designs, as well as the experimental
protocol. Finally, we present results from the user studies,
followed by a discussion of findings and conclusions.
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2 RELATED WORK

Various sensing modalities have been used for emotion rec-
ognition, including facial expression and speech [22], physi-
ological sensors [23], and thermal and visual imaging [11],
[24]. Other approaches have relied on measuring changes in
behavior, especially keyboard and mouse usage [25], that
may be affected by the user’s emotional state. In an early
study, Zimmerman et al. [26] provided a rationale for assess-
ing user affect using keyboard and mouse. Following this
seminal work, dozens of publications have investigated
how these commodity devices can be used to infer user
affect, as we review next.

2.1 Emotion Detection With Keystroke
and Mouse Dynamics

A number of features from keystroke dynamics have been
explored to detect emotions, including typing speed,
latency, and pause frequency, to mention a few. Banerjee
et al. [27] found that individual keystroke patterns are
affected by the user’s emotional and cognitive states (e.g.,
reduced typing speed when in a negative emotional state).
Tsihrintzis et al. [28] used keystroke features to improve
visual-facial emotion recognition. They showed that recog-
nition of anger and sadness was greatly improved by add-
ing keystroke features.

In most of the emotion-detection literature, the studies
were conducted in a laboratory setting, but a few studies
sought to capture natural behaviors while participants per-
formed daily tasks in the wild [19], [29]. As an example of
an in-situ experiment, Epp et al. [19] used keystroke dynam-
ics features to model data collected from 15 different emo-
tional states. The authors logged keystroke information
from 26 participants for an average of 4 weeks. For each
sample logged, participants also rated their emotion using
self-reports. The authors reported 77–88% correct classifica-
tion of confidence, hesitance, nervousness, relaxation, sad-
ness, and tiredness.

While in-situ studies can capture more realistic interac-
tions, they are subject to uncontrolled external factors. For
this reason,most of the emotion-detection literature has relied
on lab studies. Khanna and Sasikumar [30] used keystroke
features to differentiate between positive, negative, and neu-
tral emotional states. They found that most people tend to
type more slowly when in a negative emotional state and
faster while in a positive emotional state. In a related study on
typing patterns, Bixler and D’Mello [31] used task appraisals
and stable traits to differentiate bored, engaged, and neutral
emotional states. Theirmodel achieved 56% accuracy.

Several studies have focused on differentiating between
low and high cognitive load conditions based on keystroke
and mouse dynamics [32], [33], [34], [35], [36], [37], [38]. As
an example, Lim et al. [25] used both keystroke and mouse
features to detect cognitive load induced by time pressure
and mental-arithmetic problems. They found that when
problem difficulty increases, task error, task duration, stress
perception, and mouse idle duration also increase, whereas
mouse speed, left mouse click rate, and typing speed
decrease. Brizan et al. [34] have explored the use of key-
stroke dynamics combined with linguistics to predict cogni-
tive load levels. In their experiments, participants were

asked to type freely when asked to answer questions that
elicited six different levels of cognitive load. Their models
were able to differentiate the six cognitive load levels with
above-chance accuracy, and their best performing models
achieved 72% classification accuracy when differentiating
behavior elicited by the more extreme cognitive load induc-
ing prompts (level one versus level six).

A good number of studies on cognitive load have focused
exclusively on mouse dynamics [33], [35], [36]. For example,
Chen et al. [33] studied the effects of cognitive loadwhile par-
ticipants performed the primary task of screening partici-
pants for a fictitious human resource department. Cognitive
load was elicited by a secondary task, which popped-up on
the user’s screen and required a classification action. They
reported that, when under high cognitive load, participants
presented more frequent contemplation (i.e., from 1–5 sec)
and hesitation (i.e., from 0.5–1 sec) pauses in mouse activity,
which was attributed to hesitant/cautious behavior. Grimes
andValacich [36] usedmouse dynamics to detect various lev-
els of cognitive load, elicited using N-back lag tasks. They
observed higher mouse distance traveled, more frequent
direction changes, and lower mouse speed during tasks per-
formed under higher cognitive loads.

Some studies have also explored the use of keystroke
dynamics to differentiate stressed from non-stressed behav-
ior. For example, Gunawardhane et al. [14] collected non-
stress behaviors when participants (college students) had no
exam pressure, and during exam week. In their study, key-
stroke featureswere extractedwhile participants solved arith-
metic problems. The authors found significant differences in
several features, such as the duration of certain bigraphs and
trigraphs, when comparing stressed and non-stressed emo-
tional states. In a recent work, Lau [20] compared the efficacy
of personalized and generic models to predict stress from
keystroke dynamics. The author used a baseline-stressor-
recovery design, where stress was elicited using multi-task-
ing and social evaluative threats. The personalized models
obtained accuracies in the range of 83–92%, while the generic
models achieved chance-level accuracy.

Although most of the studies reported in the literature
employ a single-day experimental procedure, a few works
analyzed how keystroke features generalize over multiple
sessions [15], [39]. For example, Vizer and Sears [39] com-
pared personalized and generic models to discriminate
high and low cognitive demand using keystroke and lin-
guistic features. In their study, participants were asked to
write freely about any topic either in the presence of a
stressor (N-back lag tasks) or without it. Participants com-
pleted four baseline sessions (used for normalization pur-
poses) and two experimental sessions, where high and low
cognitive demand behavior was collected. A subset of the
participants completed 13 additional experimental sessions,
which allowed for the development of their personalized
models. Their generic model achieved 66% accuracy while
their personalized models reached accuracies in the range
of 65–93%.

Some studies have focused exclusively on mouse dynam-
ics to perform emotion recognition. Yamauchi [40] investi-
gated the relation between mouse activity and state anxiety.
In the study, participants performed a task where they had
to select and click geometric figures based on their
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similarities. The author extracted mouse features such as
velocity and directional change, and fed them to a support-
vector-regression model to predict state anxiety scores
measured from questionnaires. He found that correlation
coefficients between predicted and observed state anxiety
scores were significantly higher than zero. Sun et al. [16]mod-
eled the arm-hand dynamics as a mass-spring-damper sys-
tem to studymuscle stiffness duringmouse movement. Their
participants performed a set of abstract mouse tasks that
involved pointing and clicking, dragging and dropping, and
steering themouse cursor through a tunnel. The authors used
mental arithmetic to induce stress and mindfulness medita-
tion to induce relaxation. They found higher damping fre-
quency and lower damping ratio when participants were
stressed. More recently, Hibbeln et al. [41] studied the rela-
tionship between mouse movement and negative emotion.
They induced negative emotion by introducing delays and
errors into time-limited tasks. The authors found that mouse
movement distance increased and mouse speed decreased
during the tasks. They explained this phenomenon in terms
of attentional control theory, which suggests that negative
emotion decreases attention control, shifting cognitive resour-
ces from goals to distractions.

2.2 Emotion Detection With Instrumented Devices

Keystroke and mouse dynamics features are easy to extract
and require no specialized hardware. For this reason, they
have been used extensively in emotion recognition, and
show promise as an approach to measure stress in the work-
place. However, researchers have found that the pressure
the user applies to the keyboard and mouse can provide
additional emotion-related information. In a study by Tsih-
rintzis et al. [28], 65% of the participants reported typing
harder when angry, whereas Karunaratne et al. [42] found
that 15% of participants reported an increase in typing pres-
sure when under stress. A few works have also observed
variations in mouse grip pressure when experiencing differ-
ent emotions. Picard et al. [43], for example, observed an
increase in mouse grip pressure when participants were
frustrated. Prior studies have also found that mental stress
increases arm muscle activity and muscle tension [44], [45].
As such, pressure sensors could capture these changes and
provide additional features to assist with automatic emotion
detection. However, to the best of our knowledge, there are
currently no keyboards or mice embedded with pressure
sensors available on the market and little research has been
reported regarding this type of device.

To our knowledge, the first work on instrumenting a
computer mouse with pressure sensors dates back to 1993
[46]. In this work, the authors built a force-sensing mouse to
investigate injuries related to intensive mouse use. The
authors used foil strain gauges to measure finger forces
applied to the mouse sides and buttons. They analyzed the
applied force to distinguish between different activities,
such as holding, moving, and dragging. In a later study
[47], the authors recruited 16 subjects to test their proposed
force-sensing mouse. They collected mouse data while par-
ticipants performed their daily work in a field setting, and
standardized tasks (e.g., pointing, dragging) in a lab setting.
The authors observed that changes in applied force were

task- and setting-dependent, but not time-dependent. In a
subsequent study [48], the authors delivered stress by using
time pressure and verbal provocation during a text editing
task. They collected finger forceswith theirmouse, and phys-
iological measures and subjective ratings of stress. They
found higher forces applied to mouse buttons and more
repetitive wrist movements during stress compared to a con-
trol condition. In 2001, Qi et al. [43] instrumented a computer
mouse with eight pressure sensors. They asked participants
to fill out a web form and delivered a fictitious data-loss
problem at submission time by erasing all the content they
had filled out, with the goal of inducing frustration. Since
participants had limited time to complete the task, they also
experienced time pressure the second time they filled out the
form. Initial tests on a limited number of participants were
promising, achieving 88% classification accuracy.

In 2009, Dietz et al. [49] proposed an experimental key-
board design capable of sensing the force level at every
depressed key by means of a pressure-sensitive membrane.
In subsequent work, Hernandez et al. [21] used that experi-
mental keyboard as well as a Microsoft Touch Mouse (a
mouse with capacitance sensors on its surface) to analyze
how typing pressure and mouse grip pressure change under
stress. The authors collected data from 24 participants per-
forming typing tasks and mouse-clicking tasks under
relaxed and stressed conditions. They observed significantly
higher typing pressure when comparing the stressful condi-
tion to the relaxed condition, for around 85% percent of par-
ticipants. They also found increased capacitance value on
the mouse for 75% of the participants, which indicates an
increased hand contact area on the mouse surface. However,
they did not report how these results compare to using tradi-
tional keystroke analysis for stress detection.

2.3 Emotion Detection With Mobile Devices

Mobile devices have become an integral part of modern life,
with an estimated 3.5B people using smartphones [50].
Accordingly, a number of studies have investigated how
typing behavior on mobile devices can be used to recognize
emotions [51], [52]. In a field study, Ghosh et al. [51]
recorded participants’ keystrokes on their smartphones dur-
ing daily activities. Participants used typing-intensive apps
(e.g., instant messaging, email) and self-reported their affect
right after each typing session. The authors obtained a clas-
sification accuracy of 73% when differentiating between
stressed, happy, sad, and relaxed states. Lee et al. [52] devel-
oped a Twitter-like application that logged participants’
keystrokes and additional contextual information such as
illuminance, location, and weather. Their models obtained
68% classification accuracy when differentiating happiness,
surprise, anger, disgust, sadness, fear, and neutral emo-
tions. Sarsenbayeva et al. [53] investigated the effects of
stress on several daily life-like tasks, including a text entry
task in which participants were asked to type both easy and
difficult texts, under neutral and stressed states. Mental
stress was elicited utilizing the Trier Social Stress Test
(TSST) [54] and mental arithmetic tasks. The authors found
that participants tended to make more errors when under
stress (though the effect was not significant) and a signifi-
cant effect between text difficulty and number of errors.
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Other studies have taken advantage of additional built-in
sensing capabilities (e.g., accelerometer, pressure-sensing
screen) when recognizing emotion on mobile devices. As an
example, Carneiro et al. [55] collected a multimodal dataset
while participants performed tasks under neutral and
stressed mental states, elicited by means of time pressure,
sounds, and vibration. The dataset included accelerometer
data, touch intensity and duration, video recordings, and
others. The authors performed participant-specific statisti-
cal analysis and observed significant differences in at least
one feature group when comparing stressed and unstressed
behavior. They reported that acceleration, and mean and
maximum touch intensity were the most successful features
for recognizing stressed behavior. In recent work, Exposito
et al. [56] investigated how stress is manifested in touch
intensity. In their user studies, participants performed
expressive writing, where they were asked to write about
neutral and stressful memories. The authors observed a sig-
nificant positive correlation between the increase in touch
intensity and self-reported stress across the two conditions.

2.4 Limitations of Previous Work

A number of the above studies have reported high accura-
cies, even when performing multi-emotion classification.
We believe that some of these results are optimistic, owing
to their experimental design and data analysis, which we
discuss below.

One of most common type of stressor in the above stud-
ies is time pressure (e.g., [21], [32], [44], [47], [57]). Time
pressure is an effective stressor, but its use is problematic
when combined with keystroke and mouse timing features.
Since time pressure is confounded with stress, it is not clear
whether an algorithm is predicting stress or simply detect-
ing the natural changes in behavior caused by the time pres-
sure, since the analyses rely on timing and latency features.
A second problem is the lack of multi-day protocols. In
some cases [43], [58], classification results were obtained by
splitting data from the same session into a training set and a
testing set. This inevitably overestimates the accuracy of the
classification models due to the highly correlated nature of
the time-series data. To demonstrate that the models are
robust, we feel that they must be tested across different ses-
sions. As noted by Lau [20], several works lack a vetted
emotion-induction procedure. For example, some studies
elicited emotions by asking participants to read a text [58]
or watch a video clip [26], but these emotion-elicitation
methods were not validated with physiological measures or
subjective ratings. Another problem in prior studies is the
lack of sufficient details about the experimental procedures,
which can make it difficult to replicate a study or compare
results across studies [28], [30], [58], [59].

To our knowledge, only two studies [15], [39] have
employed multiday protocol with a vetted stress induction
procedure. However, these studies only involved keystroke
and linguistic feature analysis. Our paper aims to address
all the limitations discussed here.

3 DESIGN OF THE PRESSURE-SENSITIVE DEVICES

Due to the lack of pressure-sensitive keyboards or mice on
the market, we propose a simple and low-cost design that

researchers may adopt to measure pressure with off-the-
shelf keyboards and mice.

3.1 Keyboard Design

Our experimental keyboard uses an array of force-sensitive
resistors (FSRs) to measure typing pressure. FSRs can be
used to detect physical pressure, squeezing, and weight.
This type of sensor is easy to use and is low cost, making it
ideal for our design. However, most FSRs suffer from signal
drift, i.e., a monotonic decrease in resistance when they are
subject to a static load. Drifting is especially problematic in
our design because, when a keyboard is standing on a sur-
face, its weight naturally applies pressure to the sensors,
causing drift. To address this issue, our design uses Shunt-
Mode FSRs manufactured by Sensitronics1, shown in
Fig. 1a, which have low-drift characteristics. The FSRs are
arranged in a voltage-divider configuration, with one termi-
nal connected to a 5 V power source and the other con-
nected to an analog input to a microcontroller, as well as to
ground by means of a 10 kV pull-down resistor. To stream
data, we use an HC-06 Bluetooth module manufactured by
KEDSUM, which is also connected to the microcontroller.
Wiring is shown in Fig. 1b. The HC-06’s RX pin expects a
3.3 V input, so we used a voltage divider to reduce the input
voltage from the microcontroller from 5V to 3.3 V.

Our design uses an off-the-shelf keyboard (Dell model
KB212-B). We chose this specific keyboard because it has a
flat underside, most of its feet are close to corners of the
case, and it has enough room to route the sensors to the
microcontroller. In addition, the keyboard is comfortable
and low-cost (note, though, that our design could be easily
adapted to many other keyboard models, including lap-
tops). We placed four FSRs on the underside of the key-
board, near the four corners, and connected them to analog
inputs on the microcontroller, as shown in Fig. 2.

No changes were made to the upper side of the key-
board. In addition, we attached gel bumpers to the FSRs to
distribute the pressure more efficiently across the sensor
surface. When the user types, pressure is applied to the key-
board, which in turn presses the bumpers that apply pres-
sure to the FSRs, generating a response. We attached the
FSRs to the keyboard using their built-in adhesive tape,
secured the cables with duct tape, and connected them to
the microcontroller. Finally, we connected the keyboard’s
internal ground and 5 V pins to the microcontroller and
Bluetooth module, eliminating the need for an external bat-
tery. The sensors’ sampled pressure data at 100 Hz.

3.2 Mouse Design

During the early stages of the mouse design, we compared
two choices: capacitive sensors and FSRs. Capacitive sen-
sors have been used to detect and measure position and
force because of capacitance coupling [60]. In our first proto-
type (Fig. 3a), we used copper tape to build a conductive
surface as a capacitive sensor. We attached copper tape to
the mouse shell surface and covered it with electrical tape
to protect the sensor from abrasion and prevent signal satu-
ration. The sensors were placed on the mouse buttons (one

1. https://www.sensitronics.com
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sensor for each button) and on either side of the mouse. We
used the same microcontrollers as in the keyboard design.
The entire circuit (except for the sensor itself) is invisible to
the users as it fits inside a regular computer mouse and is
powered from the mouse’s own power line. We drilled four
holes in the mouse shell to connect the sensors placed on
the outer part of the mouse to the microcontroller inside the
mouse shell.

Our second prototype (Fig. 3b) also used capacitive sen-
sors. This time, however, we replaced the copper tape with
conductive paint, which has the advantage that the sensor
can be of any shape and can be placed inside the mouse,
underneath its shell, hiding it completely from the user. We
tested these two prototypes and found that both sensors
behaved similarly: capacitance values increased as the user
made more skin contact with the mouse. However, we
could only observe an increase in capacitance when the
users held the mouse unrealistically tightly.

This result led us to investigate the use of FSRs to mea-
sure grip pressure. We compared FSR and conductive paint
by applying different weights to the sensors and recording
the corresponding responses. Results in Fig. 4 show a linear
relationship between weight and FSR response, whereas the
capacitance sensor saturates rather quickly. Based on these
results, we decided to use FSRs for our final mouse design.
Namely, we used an Interlink 408 FSR, a 0.6-inch wide strip
that can be cut to length.

As with the two capacitive prototypes, we attached four
sensors, two on the L/R buttons and two on the sides of the
mouse. Microcontrollers and circuits were able to fit inside
the mouse shell, and sensors were connected to the micro-
controllers through four holes drilled in the plastic shell.
The measurement circuit for these sensors is the same as the
one proposed for the pressure keyboard (Fig. 1b). An exam-
ple of the FSR-based prototype is shown in Fig. 3c. During
pilot studies, we observed that people used a variety of grip
patterns (e.g., palm grip, claw grip, tip grip) with this
mouse, which introduced undesired variability into the sen-
sor data. To overcome this issue, we created a fourth design
using a vertical mouse (Anker Ergonomic). The ergonomic
design of this mouse encourages users to grip the mouse

Fig. 2. Top and back view of the instrumented keyboard. Four FSRs (indi-
cated by the yellow arrows) are placed on the back of the keyboard and
are connected to the analog inputs of an Arduino micro-controller, which
iDs used to interface with a computer.

Fig. 3. Various pressure-sensitive mice prototyped. (a) Mouse with cop-
per tape on the surface. (b) Mouse with conductive paint underneath the
shell. (c) Regular mouse with four FSRs. (d) Vertical mouse with four
FSRs covered by black tape.

Fig. 4. Weight versus FSR sensor response (blue curve) and conduc-
tance response (red curve) in arbitrary units (a.u.).

Fig. 1. Schematic of the circuit used in our instrumented keyboard. (a)
Size of the pressure sensor relative to a quarter dollar. (b) Connecting
the pressure sensor to an Arduino microcontroller, which streams data
to any Bluetooth device.
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consistently, thus reducing variability. After attaching the
FSRs and protecting them with duct tape, we obtained
the final design of the proposed pressure-sensitive mouse
shown in Fig. 3d. As in the keyboard design, we set the
FSRs’ sampling rate to 100 Hz.

4 EXPERIMENTAL PROTOCOL

We conducted a user study to investigate whether the pro-
posed pressure devices could be used to detect stress. We
were particularly interested in determining how features
extracted from the pressure signals compared to traditional
keystroke and mouse dynamics analysis. During the experi-
ment, software running in the background logged the typ-
ing pressure, mouse pressure, keystrokes, and mouse
event-related information.

In this work, we adhere to Lazarus and Folkman’s defini-
tion of stress [61], which states that stress is experienced
when a person perceives that the “demands exceed the personal
and social resources the individual is able to mobilize.” Thus,
mental distress (i.e., negative stress) is causedwhen themen-
tal resources cannot appropriately deal with the demands
posed. In our experiments, the demands we impose upon
our participants are delivered bymeans of cognitive interfer-
ence, cognitive load, and rapid decision making – explained
in more detail throughout this section. As such, we sought to
elicit and capture changes in behavior when participants
experience mental distress, which is often associated with an
increase of arousal and decrease of valence.

4.1 Overview

The user study consisted of four sessions, each session per-
formed on a different day. Fig. 5 shows the structure of each
session. First, we asked participants to fill out a questionnaire
about their arousal and valence at thatmoment. If it was their
first session, we also asked them to provide information
about computer use (how long they have been using com-
puters and how frequently they use them). After filling out
the pre-experiment questionnaire, we instructed participants
to proceed to the study desk and start the experiment. Next,
participants started either the control or experimental block

(counterbalanced). In each block, participants performed a
priming task for 5 minutes, followed by a 10-minute writing
task. After completing the priming andwriting tasks, partici-
pants reported their perceived valence, arousal, and work-
load by filling out a questionnaire using the mouse (details
to follow). During the control block, participants performed
the tasks in an easier mode, while in the experimental block
they performed a more challenging version of the tasks
designed to induce stress.We provide details of both tasks in
the next section. Once participants finished the first block,
they were asked to watch a 3-minute transitional video with
images from nature and calming background music. Next,
participants started the second block (either the control or
experimental block, depending on the first block completed),
which also lasted 15 minutes. At the end of each session, we
thanked and dismissed participants. At the end of the last
session on day 4, participants were debriefed and compen-
satedwith a $30 gift card.

4.2 Priming Task: Stroop Color-Word Test

The priming task was designed to influence the participants’
behavior during the subsequent questionnaire and writing
task. Namely, participants were asked to complete the
Stroop Color-Word Test (CWT), a cognitive task commonly
used to elicit stress via cognitive interference and rapid deci-
sion making [62], [63], [64]. In particular, Tulen et al. [64]
have shown that the CWT simultaneously induces four types
of reactions that are required for a suitable stress test: 1) psy-
chological changes that indicate increased distress, 2) physi-
ological changes that indicate sympathoadrenal activation,
3) muscular exertion as part of the fight-flight defense reac-
tion, and 4) hormonal changes, reflected in plasma and uri-
nary catecholamines, and plasma cortisol and prolactin.

For our study, we developed a version of the CWT which
randomly prompted participants to either choose the correct
font color or text of the word. An example is shown in Fig. 6.
In this particular trial, the font color (orange) does not
match the text (blue) and the instructions ask the participant
to choose word (i.e., blue). If the instructions had asked to
select color, the correct choice would have been orange. We
implemented two versions of the CWT: difficult and easy.
In the difficult mode, participants were presented with
incongruent stimuli in which the font color did not match
the text, as in Fig. 6, and had to select the correct answer
from four options, which were shown in white font color. In
the easy mode, participants were presented with congruent
stimuli, i.e., the target word’s font color and its text always
matched. In addition, the four options were shown with
their respective font colors. In either mode, whenever the
participant selected the wrong option or took more than
5 seconds, the CWT played a loud buzzer sound and dis-
played a visual message as an extra stressor. Note that the
sole purpose of this task was to elicit stress prior to the sub-
sequent tasks, which are described next.

4.3 Writing Task

In this task, participants were presented with various classi-
cal paintings andwere asked to describe them (i.e., how char-
acters are dressed, what activities they are performing). We
also encouraged participants to come up with a story behind

Fig. 5. Procedure of the experiment. The order of control and experimen-
tal blocks were counterbalanced.
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that picture. Fig. 7a shows an example of a description for the
Story of Golden Locks painting, by Seymour JosephGuy [65].
For each painting, participants had towrite at least 200words
before they were allowed to move to the next painting.
Within each block, we presented up to three paintings to par-
ticipants, depending on how fast they completed each
description. The task completed when they finished describ-
ing three paintings or when time ran out after 10 minutes,
whichever came first. In total, we used 24 paintings in our
experiments, whichwere never repeated for a participant.

To make the writing task more stressful, participants had
to perform mental arithmetic tasks (MATs) during the
experimental block. MATs have been extensively used to
create stress by inducing high cognitive load, intensive
mental demand, and rapid decision making [44], [63], [66],
[67]. It has been shown that performing MATs leads to
higher self-reported stress, systolic and diastolic blood pres-
sure, heart rate, urinary catecholamines, salivary cortisol,
and electromyogram activity [44].

Our interface is shown in Fig. 7b. While describing
the paintings, our software prompted MATs at intervals
specified by sampling a Poisson distribution with a mean of
30 sec. When answering a MAT, the participant had to
choose one of the four provided options within 5 sec. If the
participant failed to select the correct option or ran out of
time, a loud buzzer was played.

4.4 Self-Reported Emotional State and Workload

All participants were asked to complete a questionnaire, in
which they reported their perceived valence, arousal, and
perceived workload after finishing each task in both the
control and experimental blocks. The questionnaire served
two purposes. First, it allowed us to determine whether the
stressors delivered were successful. Second, it provides an
opportunity to analyze changes in mouse behavior elicited
by the prior priming task. To do so, we compared the mouse
data logged during the questionnaire after the easy (control)
CWT and after the difficult (experimental) CWT. We
expected changes in mouse behavior after the CWT to be
more pronounced than those after the writing task.

Fig. 8 shows the user interface of the self-reported ques-
tionnaire. For self-reported valence and arousal, we used

the 7-Point Self-Assessment Manikin [68], which has been
extensively used for self-reporting arousal and valence. We
expected participants to report lower valence and higher
arousal scores in the tasks performed during the experimen-
tal block, as compared to the control block.

To assess task workload, we used the NASA Task Load
Index (NASA-TLX), a survey instrument that asks partici-
pants to report their perceived mental demand, physical
demand, temporal demand, frustration, effort, and perfor-
mance on the tasks they just finished [69]. We expected
higher values of mental demand, physical demand, tempo-
ral demand, frustration, and effort, and lower values of per-
formance reported for the experimental block when
compared to those of the control block.

4.5 Participants

We invited participants using our institution’s bulk mail
system, which sends the invitations to student and staff
mailing lists. The inclusion criteria were that participants
should be 18 years or older and fluent in English. We
received approval from the Texas A&M University Insti-
tutional Review Board (study #IRB2017-0183D) prior to
the study. We obtained written consent from each partic-
ipant before the first session started. In total, 25 partici-
pants (9 male and 16 female) participated in the study.
One of the participants was left-handed, so we decided
not to consider his data in the mouse analysis. Partici-
pants had an average age of 22 years (standard deviation

Fig. 7. (a) An example of a painting and its description; (b) the same
painting and description, overlaid with a mental arithmetic task during
the writing task. Here, the submit button was deactivated because the
participant has only written 127 words.

Fig. 6. Stroop Color-Word test variant used in our experiments. Every
round, the participants must select their choices using the mouse. The
four options are positioned on the corners of the screen.

DA C. SILVA ETAL.: TOWARDS PARTICIPANT-INDEPENDENT STRESS DETECTION USING INSTRUMENTED PERIPHERALS 779

Authorized licensed use limited to: Texas A M University. Downloaded on November 14,2023 at 20:01:07 UTC from IEEE Xplore.  Restrictions apply. 



(SD): 8.1). All participants reported using computers for
at least 2 years (average: 13 years, SD: 6.8 years) and at
least 5 hours of weekly usage (average: 28 hours, SD:
15.3 hours). One participant decided to drop out after
the second session for personal reasons unrelated to the
experiments, but we were able to use the data from her
first two sessions in our analysis.

5 DATA ANALYSIS METHODS

5.1 Keyboard Features

We extracted two types of features from the keyboard data:
keystroke dynamics features2 and pressure features; see
Table 1. We chose keystroke dynamics features that have
been used extensively in the affect-recognition and user-
authentication domains [19], [26], [70]; see Fig. 9 for an illus-
tration of these features. To define the set of pressure features,
we initially referred to the works of Hernandez et al. [21],
Lv et al. [58], and Carneiro et al. [55]. From these works, we
used the features mean pressure, maximum pressure (ref-
erred to as peak pressure), and pressure standard deviation,
and combined them with additional pressure features we
designed. As summarized in Table 1, we extracted six fea-
tures to capture the pressure signature.

To extract pressure features, we sampled the pressure
sensor signal only when keydown events occurred. This
allowed us to discard pressure measurements when there
was no keyboard activity. In a first step, we subtracted the
static load (i.e., keyboard weight) from each sensor’s raw
pressure time series, which helped normalize sessions from
different days and different participants. Then, we assigned
a pressure measurement to each keypress by choosing the
maximum pressure value between the current and the next
keydown event, which we refer to as Peak Pressure (PP);

see Fig. 10. To compute the features Pressure Difference
(PD) and Pressure Time Difference (PTD), we considered
the sampled pressure (PP) as the reference value, as
described above. The Mean Pressure (MP) and Standard
Deviation (STD) features represent, respectively, the mean
and standard deviation of each pressure response. Finally,
the feature Area Under the Curve Difference (AUCD) is
obtained by computing the AUC of each pressure response,
and then calculating the difference in AUC between conse-
cutive keys.

We considered keydown and keyup events only for keys
in the range A, B, . . ., Z. Hence, the features considered are
calculated for either each single key (A, B, . . ., Z) or pairs of
keys ([A,A], [A,B], . . ., [Z,Z]), depending on whether the fea-
ture involves a single key or a pair of keys. For each feature,
we used its average value across the entire session block. In
instances where a key or pair of keys was not observed dur-
ing a session, the corresponding features were assigned a
value of zero. In summary, the features KDU, MP, PP, and
STD have dimensionality 26 (26 keys), and the features
KDD, KUD, DD, PD, AUCD, and PTD have dimensionality
676 (26 keys � 26 keys).

As mentioned previously, we use MATs during the writ-
ing task to elicit stress. However, this procedure also inter-
rupts the participants’ writing process, so keystroke
dynamics during this period should not be used. Namely,
we observed that typing speed decreases to zero while par-
ticipants are answering the MATs (as expected) and that,
once participants resume typing, it takes an average of 2 sec-
onds (or 5 keystrokes) for their typing speed to return to its
average level. Hence, for stress detection purposes we

TABLE 1
Keyboard Features Used.KKDDii: Keydown At Time i,KKUUii:

Keyup At Time i, andKKii: Keystroke At Time i

Feature Acronym Description

Keystroke Dynamics

Keydown-Keydown KDDðKDi; KDiþ1Þ Time between two
consecutive keydown
events

Keydown-Keyup KDUðKDi; KUiÞ Duration of key press
(a.k.a. dwell time)

Keyup-Keydown KUDðKUi; KDiþ1Þ Time b/w releasing a
key and pressing the
next one (a.k.a. flight
time)

Digraph duration DDðKDi; KUiþ1Þ Time between pressing a
key and releasing the
consecutive one

Pressure features

Mean Pressure MP ðKiÞ Pressure value
Peak Pressure PP ðKiÞ Peak pressure value
Standard Deviation STDðKiÞ Standard deviation of a

pressure response
Pressure Difference PDðKi; Kiþ1Þ Difference between two

consecutive pressure
readings

AUC Difference AUCDðKi; Kiþ1Þ Difference between the
AUC of two consecutive
pressures

Pressure Time
Difference

PTDðKi; Kiþ1Þ Time difference of two
consecutive pressures

Fig. 8. Self-report questionnaire. Manikin questions are shown on top of
the questionnaire, and NASA-TLX questions on the bottom.

2. In the keystroke dynamics literature, a key press is called a key-
down event, and a key release is called a keyup event.
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ignore any keystroke logged during the MAT and five addi-
tional keystrokes after each MAT. Further, our analysis
showed that the sensor placed at the bottom-left corner (i.e.,
close to the Z key) was the most sensitive of the four sen-
sors; this was likely because the bottom-left sensor was the
closest sensor for 60% of the keys examined in our study
(the 26 alphabetical keys). Therefore, all preprocessing
methods and data analyses are based on the pressure time
series obtained by the bottom-left sensor3.

5.2 Mouse Features

We extracted two types of features from the mouse data:
mouse dynamics and pressure measurements from the FSR
sensors. As with the keyboard dynamics, we chose mouse
dynamics features that have been used in the related litera-
ture [25], [40], with the exception of the pressure features,
which we needed to design on our own. The mouse features
are listed in Table 2. We extracted six features: two trajec-
tory features (travel distance and direction change), two
speed features (overall speed and moving speed), and two
timing features (dwell duration and moving duration), cal-
culated across the entire session. For example, the Travel
Distance (TD) feature is the total distance covered by the
mouse during a session. We extracted four pressure features

from the FSR sensors. Two of these pressure features were
from the FSR on the left click button: mean and standard
deviation of the click forces (since no right-click was
required during our experiments, we did not extract any
features from the FSRs on the right-click button). The other
two features were the mean and standard deviation of
the grip force, measured from the two FSRs on the sides;
see Fig. 3.

As with typing pressure, we only considered pressure
values during periods of mouse activity. We used the maxi-
mum peak value immediately after the click event as the
clicking force. As for the grip force features, we sampled the
FSR time series whenever a user interaction event occurred
(e.g., cursor movement, click).

5.3 Classifier Design

Once the time series were preprocessed (as described in the
previous two sections), the feature extractor module con-
verts raw data into feature sets, which are then passed to a
binary classifier trained to discriminate between neutral
and stress conditions, as described below. Due to the large
number of features relative to the number of samples in our
dataset, we used linear discriminant analysis (LDA) [71] to
reduce the dimensionality of the feature vector. LDA proj-
ects the features in a way that maximizes the ratio of
between-class scatter to within-class scatter, leading to
more pronounced differences between neutral and stressed
samples. In addition, since we only have eight samples per
participant, we pooled data from multiple participants to
train subject-independent classifiers (i.e., generic classifiers)
using a leave-one-participant-out procedure. For illustration
purposes, assume we are considering four feature groups in
our keyboard analysis: Keydown-Keydown (676 dimen-
sions: 26 keys � 26 keys), Keydown-Keyup (676

Fig. 10. Segment of pressure data along with keystroke information. Red
vertical lines represent keydown events; black arrows point to the pres-
sure values chosen to represent the pressure of each keystroke, which
we refer to as the Peak Pressure (PP) feature.

TABLE 2
Mouse Features Used in Our Analyses

Feature Acron. Description

Mouse trajectories features
Dwell
duration

DD How long the mouse is idle

Moving
duration

MD How long the mouse moved

Travel
distance

TD Cumulated distance in pixels that the
mouse cursor moved

Overall
speed

OS OS ¼ TD / (DD þMD)

Moving
speed

MS Speed only during mouse movement.
Given by MS ¼ TD / MD

Direction
change

DC Cumulative direction change (in rad) that
the cursor traveled

Pressure features
Click force
mean

CFM Mean of the click peak values from the FSR
on the left click button

Click force
std

CFS STD of the click peak values from the FSR
on the left click button

Grip force
mean

GFM Mean grip force (grip force defined as the
sum of left-side and right-side FSR)

Grip force
std

GFS STD of the grip forces

Fig. 9. Keystroke features computed over consecutive key events. KKDDii

andKKUUii represents the i-th keydown and keyup events.

3. In a separate experiment not reported here, we compared perfor-
mance when using a single sensor vs. using the four sensors, and the
results were virtually identical.
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dimensions), Mean Pressure (26 dimensions), and Pressure
Time Difference (676 dimensions); see Fig. 11. The
dimensionality of this combined set is 2054. Our dimension-
ality-reduction procedure projects each feature group (i.e.,
KDD, KDU, MP, PTD) into a single dimension (i.e., a two-
class problem has one LDA projection), resulting in four
projections – one projection per feature group. The proce-
dure, shown in Fig. 11, is detailed next.

For each run, we split the dataset into a training and a
test set. The test set contains data from a single participant
(8 samples), while the training set contains data of the
remaining participants (180 samples). We use the training
set to compute an LDA eigenvector for each feature group,
as illustrated in Fig. 11. Then, we use the resulting eigenvec-
tors to project the test set. As such, the test data is never
used to compute the LDA eigenvectors. Once the training
set and test set are projected into the LDA subspace, we
use a classifier to generate class labels for the test samples.
We repeat this procedure for each participant and report
the mean classification accuracy obtained by each run of the
leave-one-participant-out analysis. We compared three clas-
sifiers for this purpose: 5-nearest-neighbors (5-NN)4, sup-
port vector machine (SVM), and naı̈ve bayes (NB), using
their corresponding optimized set of features (see below).
On keyboard data, the best-performing classifier was 5-NN,
achieving 74% classification accuracy, whereas SVM and
NB classifiers achieved 73% and 69% classification accuracy,
respectively. On mouse data, 5-NN also yielded the highest
classification rate (73%), compared to SVM (70%) and NB
(72%). We expand on the results achieved by 5-NN in the
following section.

6 RESULTS

In this section, we show how the stressors delivered affected
the participants’ perceived arousal, valence, and workload
with respect to the control block. Then, we present the
results obtained by the automated classifiers.

6.1 Stress Elicitation (SAM)

As described earlier, we used four questionnaires in each
session to rate the participants’ stress levels at different time
points. We administered a questionnaire after the easy
CWT (Easy CWT Questionnaire, or ECQ for short), and
another after the difficult CWT (DCQ). We also adminis-
tered questionnaires for the easy and difficult typing tasks
(ETQ and DTQ, respectively). Fig. 12 shows boxplots for the
arousal and valence ratings, with each session as one sam-
ple. Since each of the 24 participants completed 4 sessions
(except one who only finished two sessions), we have 94
pairs of samples in total. We used paired t-test for statistical
purposes.

First, we examined if the perceived stress level was dif-
ferent between the two versions of the CWT. A comparison
of ECQ to DCQ indicates that arousal ratings during the dif-
ficult CWT were significantly higher (mean increase of 1.05,
t(93) ¼ �7.63, p << 0.01) and valence ratings were signifi-
cantly lower (mean decrease of 0.81, t(93) ¼ 6.12, p << 0.01)
than those during the easy CWT. This confirms that the dif-
ficult CWT did increase participants’ stress levels, as
intended. Next, we examined whether stress levels were
different between the two versions of the typing task. A
comparison of ETQ to DTQ indicates that arousal ratings
during the difficult typing task were significantly higher
(mean increase of 0.44, t(93) ¼ �4.23, p << 0.01), and the
valence was significantly lower (decreased by 0.26, t(93) ¼
2.03, p ¼ 0.04) than those during the easy typing task. These
results confirm that the MAT was able to manipulate the
participants’ stress levels, as intended.

6.2 NASA TLX

Analyzing the TLX results also served as a validity check to
determine whether the nature of the tasks performed dur-
ing the experimental block was more difficult than those
during the control block. Indeed, during the difficult version
of the CWT/typing task, participants reported significantly
highermental demand, higher physical demand, higher tem-
poral demand, lower performance, higher effort, and higher
frustration than during the easy version of the CWT/typing
task – see Fig. 13. The only exception was the self-reported
physical demand for the typing task (mean increase of 0.62,
t(93) ¼ 1.92, p ¼ 0.056). However, we still observed a trend

Fig. 11. Generating a low-dimensional projection from four feature sets
(F1-F4; blue block) using Linear Discriminants analysis. The reduced
feature vector (four dimensions; red block) is passed to a nearest neigh-
bor classifier to generate a class prediction into neutral versus stressed
states.

Fig. 12. Box plots for self-reported valence and arousal. ECQ: easy
CWT, DCQ: difficult CWT, ETQ: easy typing task, and DTQ: difficult typ-
ing task. � indicates statistically-significant differences.

4. To optimize the number of neighbors (k), we varied k from 1 to 10
and did the following. In each iteration of the leave-one-participant-out
analysis, we randomly selected eight samples from the training data
and used them for validation purposes. We then trained a k-NN classi-
fier with the specific value of k using the remaining training samples.
Next, we evaluated the models trained using the validation data. We
repeated this analysis for each participant and considered the average
classification accuracy obtained with each k to decide the final
configuration.
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towards the expected direction (difficult typing task leading
to higher physical demand) and a p-value close to signifi-
cance. These results suggest that the tasks were successful in
eliciting stress.

6.3 Keyboard Analysis

In total, we collected 188 samples (a sample contains all fea-
tures computed during a block), as every participant but
one went through four control sessions and four experimen-
tal sessions. Given that the number of samples in the control
and experimental sessions are the same, a random classifier
would achieve 50% classification accuracy. For the remain-
der of the manuscript, the classification accuracy obtained
by such a random classifier will be referred to as a chance-
level.

To identify the best subset of features for each type (key-
stroke only, pressure only, and keystroke þ pressure), we
performed exhaustive search on the feature sets, i.e., we
evaluated our models on every possible combination of fea-
tures, for a total of 1023 (210 – 1) feature subsets. Average
classification accuracies are shown in Table 3. Using all (tim-
ing and pressure) features as input performs slightly worse
than selecting a subset of them. When using timing features
alone, the classifier obtained an accuracy of 68% using the
feature groups DD and KDU. Using pressure features alone,
our classifier obtained an accuracy of 71% using the feature
groups PP, MP, AUCD, and PDT. When both timing and
pressure features were combined, the optimal feature subset
contained the feature groups KDD, KUD, DD, KDU, PP,
AUCD, and PTD and achieved 74% classification accuracy.
Thus, adding pressure information to timing features led to
a 6% absolute improvement in classification (i.e., from 68%
to 74%). Hence, combining timing and pressure features
provides higher classification accuracy than using each fea-
ture type in isolation.

The confusion matrix for the optimal keyboard feature
set is shown in Table 4. There is no significant correct class

prediction imbalance, as the number of samples correctly
classified do not differ by much (67 versus 73). The same
happened when the prediction did not agree with the actual
class label (21 versus 27). Finally, Fig. 14 shows the ROC of
the optimal keyboard feature set versus a random classi-
fier5. The optimal feature subset obtained an AUC equal to
0.77, outperforming the random classifier (AUC: 0.50).

Results per participant for the optimal feature subset
model are shown in Fig. 15a. The classifier obtained accura-
cies of 60% or higher for all but 3 participants, and accuracy
of 85% or higher for 10 participants. It is important to note
that these classification results were obtained using a leave-
one-participant-out procedure; in other words, the classi-
fiers are subject independent. Classification performance
would likely increase if the classifier were to be adapted to
match the characteristic typing patterns of each user.

6.4 Mouse Analysis

Mouse pressure data was lost due to Bluetooth connection
problem for three sessions, and as mentioned earlier, one
participant dropped out after the second session and one
was left-handed. Thus, we ended up with mouse data for 87
sessions, totaling 174 samples (87 sessions x 2 blocks).

It is tempting to compare mouse features between the
easy and difficult CWT. However, this comparison would
yield overly optimistic results since the difficult CWT
Following the procedures outlined for the keyboard analy-
sis, we perform a leave-one-participant-out analysis with
the mouse data. Then, we computed LDA projections for
three different combinations of features: (1) trajectory fea-
tures only, (2) pressure features only, and (3) trajectory fea-
tures and pressure features combined. All these features
were projected into a one-dimensional feature and fed to a
classifier.

Classification results are reported in Table 5. As with the
keyboard analysis, we used exhaustive search to find the

Fig. 13. Box plots for NASA-TLX. � indicates statistical-significance.

TABLE 3
Accuracy for Different Keyboard Feature Sets

Feature Set Accuracy
(St. dev)

Keystroke Only
Full: [DD, KDU, KUD, KDD] 65.1 %

(16.1 %)

Optimal: [DD, KDU] 67.7 %
(13.7 %)

Pressure Only
Full: [MP, PP, STD, PD, AUCD, PTD] 67.1 %

(14.2 %)

Optimal: [PP, MP, AUCD, PTD] 71.3 %
(13.5%)

Keystroke and Pressure
Full:[KDD,KDU,KUD,DD,MP,PP,STD,PD,AUCD,
PTD]

72.4 %
(14.2 %)

Optimal: [KDD,KUD,DD,KDU,PP,AUCD,PTD] 74.5 %
(14.7 %)

5. To generate this plot, we adapted our 5NN model to classify a
stressed sample for different minimum number of neighbors (e.g., clas-
sify as stressed if at least two out five neighbors are also stressed).
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optimal set of features when building our models. Trajec-
tory features (70%) outperformed pressure features (61%),
both performing above chance levels. More importantly,
combining both types of features into a single vector yielded
higher classification performance (73%) than either feature

alone, a 3% absolute improvement in classification accuracy
from using trajectory features alone.

Table 6 shows the confusion matrix of the actual versus
predicted class label for the optimum feature subset
trained using trajectories and pressure features. As in the
keyboard analysis, there is neither significant imbalance
between the elements of the main diagonal nor of the anti-
diagonal. This indicates the best performing classifier did
not obtain the highest classification rate by mainly predict-
ing one class over the other. Fig. 16 shows the ROC curves
of the classifier trained with the optimum feature subset
using mouse data and that of the random classifiers. As in
the keyboard analysis, optimum feature set trained using
mouse data obtained an AUC (0.75) superior to that of the
random classifier (0.50).

Classification rates per participant are shown in Fig. 15b.
Our models obtained classification accuracies above 60%
for all but one participant, and 80% classification accuracy
or higher for seven participants. As with the keyboard anal-
ysis, it is important to note that these classification models
are subject-independent. It is likely that higher performance
may be obtained by adapting a generic classifier to fit the
individual mouse behaviors of each user.

7 DISCUSSION

We have presented an approach to monitor work stress by
analyzing subtle changes in keyboard and mouse usage dur-
ing knowledge work tasks. Our approach involves instru-
menting computer peripherals that are already part of
modern workplace settings with low-cost external sensors.
We developed an experimental protocol to simulate two typi-
cal tasks in knowledge work (completing questionnaires and
writing reports) that require keyboard and mouse interac-
tion.With our instrumented peripherals, we are able to detect
consistent changes in behavior caused bymild stressors.

We designed a protocol that addresses the limitations
found in the literature; see Section 2.4. First, we used vetted

Fig. 14. ROC for the optimal feature subset on keyboard data.

Fig. 15. Classification accuracy for each participant using the best-per-
forming input set from (a) keyboard, and (b) mouse.

TABLE 5
Accuracy for Different Mouse Feature Sets

Feature Set Accuracy
(St. dev.)

Trajectories Only
Full: [DD, MD, TD, OS, MS, DC] 64.1 %

(12.1 %)

Optimal: [MD, TD, OS] 70.2 %
(17.8 %)

Pressure Only
Full: [CFM, CFS, GFM, GFS] 56.5 %

(15.2 %)

Optimal: [CFM] 61.1 %
(19.8 %)

Trajectories and Pressure
Full: [DD,MD,TD,OS,MS,DC,CFM,CFS,GFM,
GFS]

70.1 %
(16.1 %)

Optimal: [DD, OS, DC, CFM, CFS, GFS] 73.3 %
(15.5 %)

TABLE 6
Confusion Matrix for the Optimum Feature

Set on Mouse Data

Actual
Neutral Stressed

Predicted
Neutral 62 21
Stressed 25 66

TABLE 4
Confusion Matrix for the Optimum Feature

Set on Keyboard Data

Actual
Neutral Stressed

Predicted
Neutral 67 27
Stressed 21 73

Fig. 16. ROC for the optimum feature set on mouse data.

784 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 14, NO. 1, JANUARY-MARCH 2023

Authorized licensed use limited to: Texas A M University. Downloaded on November 14,2023 at 20:01:07 UTC from IEEE Xplore.  Restrictions apply. 



stressors (Stroop effect and mental arithmetic) in our emo-
tion-induction procedure and validated their effects by ana-
lyzing changes in arousal and valence through self-report
measures. Second, we carefully avoided confounding factors
that may yield overly optimistic results, such as time pres-
sure, one of the most widely used stressors in affective com-
puting. Third, we carried out a multiday user study, totaling
four sessions for each participant, and showed that our
method is robust to inter-session variability. Finally, we pro-
vided detailed instructions about our procedure, to enable
other researchers to replicate our study and compare their
methods against ours.

To analyze whether we could correctly discriminate
between neutral and stress conditions, we designed partici-
pant-independent models and trained themwith keystroke or
mouse dynamics and pressure features from the respective
devices. We believe that classification accuracies could have
been even higher if we had trained participant-specific classi-
fiers, but the limited number of samples per participant was
not sufficient to successfully build a model and test it. Alth-
ough the recent literature [21], [29], [59] suggests personalized
models can lead to higher performance, we showed how par-
ticipant-independent classifiers using simple and robustmeth-
ods can also perform well. Participant-independent classifiers
are more practical for workplace settings since they can be
trained with a much larger number of samples and can be
readily available for newworkers.

A major challenge when building participant-indepen-
dent classifiers is how to account for individual differences.
For example, when under stress some people move the
mouse cursor faster; others more slowly. In our analysis, we
did not explicitly apply any type of feature normalization to
account for these individual differences6. Instead, our classi-
fication approach projects the features onto the LDA sub-
space to minimize within-class scatter (i.e., intra and inter-
individual differences) while maximizing between-class
scatter (i.e., due to the stress manipulation). This step makes
the classifier more robust against individual differences.

Our results indicate that combining keyboard and mouse
dynamics with their respective pressure features improves
discrimination between neutral and stressed states. This sug-
gests that features extracted from the two modalities (i.e., time
versus pressure) provide complementary information. How-
ever, since using all features during training is not necessarily
beneficial, we used exhaustive search to find the set of features
that provided the highest discrimination power for the trained
classifiers. Exhaustive search was helpful in both the keyboard
and mouse analysis, where we obtained the highest classifica-
tion rates when using a reduced set of features.

7.1 Limitations of Our Work

One of the challenges in affective computing research con-
sists of labeling behavioral data with the proper emotional
state. In our work, our classification models were trained on
the tasks’ labels (i.e., the intended effect of the tasks), rather
than on the participants’ actual stress levels. While the

questionnaires we administered confirm that our experi-
ments were successful in manipulating the participants’
stress levels, objective measures of stress by means of physi-
ological stress responses would have provided additional
validation. However, gathering these measurements is diffi-
cult using existing technology. The most reliable physiologi-
cal measure of stress, electrodermal activity (EDA), requires
placing electrodes at the fingers or the palms, which inter-
feres with typing tasks. While measuring EDA from the
wrist or the sole/feet is possible, it also has drawbacks; see
Tsiamyrtzis et al. [72] for a recent guide comparing the accu-
racy of different EDA sensors and measurement configura-
tions. Alternatively, perinasal perspiration, a measure
known to correlate with EDA, can be captured from thermal
imaging [73], but this requires specialized cameras.

Even though our experimental protocol was designed to be
realistic (filling out questionnaires and writing descriptions),
performing tasks in a laboratory setting can still cause partici-
pants to behave differently than when they are in their usual
work environments. Thus, our findings must be replicated
with field studies where participants perform their daily com-
puter tasks at work, using ecological momentary assessment
(EMA) to provide the ground truth emotional state at the time
of work [19]. Field studies would also allow collecting more
data per participant, which could help build more robust pre-
dictionmodels or adapt genericmodels to each user.

One potential limitation of our work was the use of desk-
top computers as opposed to mobile devices, such as lap-
tops and tablets. Projections show that by 2023 there will be
approximately four times as many new laptops and tablets
as desktops [74]. However, these projections also show
80 million desktop shipments by the same year, a number
that is far from negligible [74]. More importantly, there is
nothing inherent to our approach that would prevent it
from being used in laptop keyboards and touchpads, other
than we would need to design new features (e.g., specific to
touchpads) and adjust the classification models accordingly.
Yet, the rise of popularity of laptops and tablets cannot be
ignored and we strongly recommend future efforts on the
detection of stress using these devices – some of which
already provide touch intensity [55], [56].

7.2 Future Work

Our work may find application in the domain of user authen-
tication [17], [18], where instrumented devices could be used
to gather additional biometric information to differentiate
between valid users and imposters. One situation where cur-
rent user authentication methods might fall short is when
changes in keyboard and mouse due to stress are recognized
as an anomaly (i.e., potential imposter). To address this short-
coming, user authentication algorithms would require train-
ing on both unstressed and stressed data frommultiple users.

Most office tasks are computer-based and involve signifi-
cant mouse and keyboard usage (e.g., writing an e-mail, fill-
ing out a spreadsheet). As such, future work on stress
detection could benefit from considering tasks which use
the keyboard and mouse simultaneously, and build stress
detection models that use both sets of features. This may
improve the accuracy of the stress detection models, since
complementary information can be extracted from both
mouse and keyboard usage.

6. In an early stage of our analysis, we tried normalizing the data for
each subject by computing the z-score of each feature across the eight
samples, but the results were largely identical when compared to the
ones presented.
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The goal of his research is to help people suffering from
stress. Thus, ultimately we envision deploying our system
in a live workplace, where a software gathers data to detect
moments of stress and then recommends just-in-time relax-
ation interventions to employees (e.g., perform deep breath-
ing exercises, go for a walk, play a relaxation game) to help
them better cope with acute stress. While it can be difficult
to deploy our system at a large scale since pressure-sensing
peripherals are rare, we think the simplicity and low-cost of
our design would not be barriers.

8 CONCLUSION

In this paper, we investigated whether keyboard and mouse
pressure, combined with keystroke dynamics and mouse
dynamics, could be used to predict users’ stress levels. We
designed a simple and cost-effective pressure-sensitive aug-
mentation for keyboard and mouse using force-sensitive
resistors and low-cost microcontrollers. To test our
approach, we recruited 25 participants to perform two sets
of tasks under neutral and stressed conditions. We built a
generic classifier by projecting keyboard and mouse fea-
tures with LDA and fed into a nearest neighbor classifier.
Our leave-one-participant-out analysis showed that com-
bining pressure features with keystroke and mouse dynam-
ics improves classification rates. We achieved a subject-
independent classification rate of 74% with the keyboard
device and 73% with the mouse device, an average absolute
improvement of 6% and 3%, respectively, when adding
pressure information to the set of keystroke and mouse
dynamics. This work presents the first attempt to build a
subject-independent classifier to predict stress with realistic
tasks using a pressure-sensitive keyboard and mouse. This
is especially important because it is a step closer to provid-
ing ways to automatically, continuously, and non-intru-
sively detect stress in the workplace.
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