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Abstract—Managing diabetes often involves monitoring 
blood glucose in real time to detect excursions (e.g., 
hypoglycemia and hyperglycemia). Continuous glucose 
monitors (CGMs) are generally used for this purpose, but 
CGMs are both expensive and invasive (they require 
inserting a flexible needle under the skin).  To address this 
issue, we examine whether non-invasive devices, such as 
electrocardiograms (ECG), can be used to predict glucose 
excursions. In particular, we consider two types of cardiac 
information: (1) heartbeat morphology, which generally 
requires ECG recordings, and (2) heartbeat timing, which 
can be obtained from inexpensive wrist-worn devices, such 
as fitness trackers. We use convolutional networks to 
analyze beat morphology, and recurrent networks and 
feature engineering to analyze the inter-beat interval (IBI) 
time series.  Then, we validate individual models and their 
combinations on an experimental dataset containing ECG 
and CGM recordings for then young adults with type 1 
diabetes.  We find that beat morphology outperforms beat 
timing in hypoglycemia prediction, but the reverse happens 
for hyperglycemia prediction. In both prediction problems, 
combining morphology and time-domain information 
outperforms using each source of information 
independently.  
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I. INTRODUCTION 

Complications from diabetes are significant causes of 
morbidity and mortality worldwide [1]. Sustained 
hyperglycemia (𝐻𝐺; high glucose) can lead to serious long-
term complications, including heart disease, kidney disease, 
stroke, blindness, and amputations [2, 3]. In contrast, 
hypoglycemia (ℎ𝑔; low glucose) is more problematic in the 
short-term, as it can lead to confusion, irritability, 
palpitations, or even result in severe loss of attention, coma, 
or death [3]. Therefore, monitoring glucose is a critical 
component in diabetes prevention and management. 

The most common method to monitor glucose requires 
patients to prick themselves with a lancet, draw a drop of 
blood, place it onto a disposable test strip, and insert into a 
glucometer [4]. This technique is inexpensive and accurate, 
but drawing blood is painful and only provides a one-time 

measurement that can potentially miss critical events. 
Continuous glucose monitors (CGMs) overcome this 
limitation, as they can measure glucose continuously and in 
real time. However, CGMs are invasive devices, as they 
require inserting a microneedle through the patient’s skin, 
and keeping the sensor in place for 7-14 days. Further, 
CGMs are expensive, and generally only prescribed to 
patients with poorly-controlled diabetes.  This is particularly 
problematic since 75% of patients with diabetes live in low- 
or middle-income countries [5]. 

As an alternative, several physiological signals that can 
be measured noninvasively, such as electrocardiography 
(ECG) and skin conductivity, contain information that 
correlates with glucose excursions [6]. Among them, the 
ECG signal, has achieved state-of-the-art performance when 
combined with deep learning (DL) [7].   However, ECGs are 
expensive and not designed for long-term use.  Thus, recent 
interests have shifted towards photo-plethysmography 
(PPG) at the wrist, as it is widely available in consumer 
products (e.g., smartwatches, fitness trackers).  

This study examines cost-accuracy tradeoffs between 
ECG (accurate but pricey) and PPG (affordable but less 
accurate) when used to detect glycemic excursions. 
Specifically, we compare the two main sources of 
information in these signals: (1) beat morphology, which 
generally requires an ECG, and (2) inter-beat intervals (IBI), 
which can be obtained from PPG.  Experimental data for this 
work is part of a larger study where patients with type-1 
diabetes wore a number of physiological sensors for up to 
two weeks, along with their prescribed CGM.  In particular, 
we use ECG recordings to extract the two types of 
information; this avoids confounding information in PPG 
(the IBI sequence) with its signal quality (motion artifacts).  
Then, we use convolutional neural networks (CNN) and 
long-short-term memories (LSTMs) to predict glycemic 
excursions (𝐻𝐺, ℎ𝑔) from beat morphology and beat timing, 
respectively, and in various combinations.   

II. RELATED WORK 

When considering the problem of predicting glucose 
excursions, the vast majority of studies have focused on 
forecasting: use glucose readings from the past few hours to 
predict glucose levels –or risk of ℎ𝑔—at a future time [8]. 



 
 

Early work in this area used traditional techniques (e.g., 
autoregressive models), but current approaches are based on 
recurrent DL models, such as LSTMs [9, 10].  Note that 
glucose forecasting requires the patient to wear a CGM, so 
the forecasting model is an early warning system. 

Alternatively, noninvasive wearable sensors may be used 
to estimate glucose [6]. Early work focused on skin 
temperature/conductivity, which chance during ℎ𝑔 [11].  
Several devices were marketed in the 1980s [12, 13], but 
they had multiple issues, such as false alarms due to 
perspiration unrelated to ℎ𝑔 (a reported 3:1 false alarm to 
true alarm ratio [14]), and missed alarms in patients who do 
not experience these symptoms due ℎ𝑔 unawareness [15]. 
More recent work has focused on ECG, as several changes 
in cardiac output have been associated with ℎ𝑔, most notably 
a lengthened QT interval [16] and a reduction in HRV [17].  
HRV measurements are particularly appealing since they 
only require detection of the R peaks, which are prominent 
in ECG and also in PPG, whereas extracting the QT interval 
and other morphological features requires somewhat clean 
ECG recordings. In a recent study, Porumb et al. [7] used DL 
techniques to learn changes in ECG heartbeat morphology 
that occur during ℎ𝑔 without requiring extraction of ECG 
fiduciary points. On an experimental dataset with non-
diabetes adults, the authors report 76% accuracy in 
predicting nocturnal ℎ𝑔 when using individual beats and 
81% when using 200-beat segments.  

III. METHODS 

We adopt similar signal-processing steps and DL 
architectures as those in [7] to compare beat morphology and 
IBI series by their ability to predict glycemic excursions.  

A. Preprocessing 

In a first step, we identify ECG segments of good quality. 
For this purpose, we rely on two signal-quality measures that 
the BioHarness reports every minute: heart-rate confidence 
(HRC) and ECG sensor noise (ECG-N), and only consider 
segments with HRC=100 and ECG-N<0.001. Next, we 
extract R peaks from valid ECG segments using Neurokit2 
[18]. To extract ECG beats, we then place an analysis 
window around each R peak. Porumb et al. [7] used a fixed-
length (160 sa.) window, but this can be problematic 
because, as heart rate increases (RR interval decreases), a 
fixed-length window can extend into the neighboring heart 
beats.  Instead, we used a variable window whose length is a 
percentage of the RR interval (33% back, 66% forward), and 
zero-pad to ensure beats are of the same length.  Finally, we 
label each ECG according to the next (closest) CGM reading:  
ℎ𝑔: <70 mg/dl, 𝐻𝐺 >180 mg/dl, normal otherwise.  

                                                           
1 We use ‘glorot_uniform’ as the kernel initializer, ‘zeros’ as the bias 
initializer, and the Adam optimizer with a learning rate of ‘0.0001’ for 
model development. 
2 Mean of RR intervals; median of absolute values of successive diffs. b/w 
RR intervals; standard deviation (STD) of RR intervals; median absolute 
deviation of RR intervals; STD of average RR intervals; median absolute 
deviation of RR intervals divided by median of absolute diffs. of their 
successive differences; mean of STDs of RR intervals; interquartile range 

B. Morphology information 

To extract information from beat morphology, we use a 
CNN that consumes individual ECG beats (a 200-dim 
vector). To optimize hyper-parameters, we evaluate CNNs 
with (5, 7, 10) layers and (50, 100, 200, 300) kernels.  As 
network size increases, so does training time and memory 
size, and also accuracy. However, past an “optimal” size, 
larger models only show modest improvements in accuracy 
but at a significant cost in training time and memory 
requirements. Based on these results (not shown), the final 
model has 10 layers with 50 kernels, each kernel of size 5, 
with batch normalization. We flatten the output of the final 
CNN layer and feed it to a fully connected (FC) network with 
three layers (size: 256, 30, 1). It is this final FC layer that 
performs binary classification1; the previous dense layer 
(size: 30) serves as an embedding for each ECG beat in 
subsequent models 

C. Timing information 

We use two distinct approaches to extract information 
from IBIs. Following [7], our first approach consists of 
feeding 200-beat IBI sequences to an LSTM and training it 
to predict glucose excursions. The LSTM contains a single 
layer with 400 units, and three fully connected (FC) layers 
(size: 256,30,1).  Our second approach is more conventional, 
computes various statistical measures of heart rate and HRV 
[18] from the 200-beat IBI sequence, and feeds them to a FC 
model (size: 256,128,30,1). We extract 16 statistical features 
(SFs) using the Neurokit2 toolbox [18]; see footnote2. 

D. Model comparisons 

Illustrated in Fig. 1, we evaluate five different models 
that predict glycemic excursions from beat morphology 
(CNN), IBI series (LSTM and SFs), and combinations of 

of RR intervals; square root of the mean of the sum of successive diffs. b/w 
adjacent RR intervals; proportion of RR intervals <50ms; STD of successive 
diffs. b/w RR intervals; (12) proportion of RR intervals <20ms; STD of RR 
intervals divided by mean of RR intervals; HRV triangular index, measuring 
the total number of RR intervals divided by the height of the RR intervals 
histogram; root mean square of the sum of successive diffs. divided by the 
mean of the RR intervals; geometrical parameter of HRV. 

 
FIG. 1. (LEFT) EXTRACTING MORPHOLOGY EMBEDDINGS 
AND RR TIME SERIES. (RIGHT) COMBINING MULTIPLE 
SOURCES OF INFORMATION INTO A SINGLE PREDICTION. 
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them in an ensemble learning fashion. 
- Model M0 (CNN): The model makes an individual 

prediction for each ECG beat, as described in Section 
III.B. Thus, this model relies exclusively on beat 
morphology. 

- Model M1 (CNN→LSTM): This model feeds a 
sequence of 200 consecutive CNN embeddings to an 
LSTM.  Thus, this model relies on temporal changes 
in beat morphology. 

- Model M2 (RR→LSTM): This model feeds a 
sequence of 200 consecutive RR intervals to an 
LSTM, as described in Section III.C. Thus, this model 
relies exclusively on beat timing. 

- Model M3 (SF): This model takes sixteen SFs [18],  
obtained over 200-beat IBI sequence, and feeds them 
to a FC network.  Thus, this model also relies 
exclusively on beat timing.  

- Model M4 (Combination): This model combines 
predictions from M1-M3 using non-negative least 
squares. 

For the 200-beat sequences that are consumed by the 
LSTMs, we determine missing beats from the IBI series and 
then introduce synthetic beats via linear interpolation. We 
use the same procedure to generate synthetic CNN 
embeddings for missing beats. 

IV. RESULTS  

We evaluated the five models on two binary 
classification problems: ℎ𝑔 vs. normal, and 𝐻𝐺 vs. normal.  
For each patient, we performed stratified three-fold cross 
validation, with 2/3rds of the data used to train the model and 
the remaining 1/3rd for testing.  Splitting was done at the 
level of CGM readings, rather than ECG beats.  Thus, all the 
heart beats associated with a given CGM reading are used 
either for training or for testing. 

In a first analysis, we validated our choice of using a 
variable length-window to extract individual heart beats vs. 
using the fixed-length window of Porumb et al. [7].  For each 
participant/fold combination, we trained two separate CNNs, 
one that consumed fixed-length ECG beats and one that 

                                                           
3 As heart rate increases, notice how the T wave is closer to the R peak; 

this is the reason why hypoglycemia prediction studies often use the 

consumed zero-padded variable-length ECG beats. As 
shown in Fig. 2, at high heart rates (low RR intervals), the 
fixed-length window can cause problems as it extends into 
the previous heartbeat3, whereas a variable-length window 
does not. Across patients, the average AUC for ℎ𝑔 using 
fixed-length windows is 52.2%, and increases to 56.1% 
when using variable-length windows, a difference that is 
statistically significant (𝑝 = 0.008; one-tailed).  For this 
reason, we use a variable-length window for all future 
analyses. 

Performance of the five models on ℎ𝑔 prediction is 
summarized in Fig. 3; each bar represents the average AUC 
across patients.  One-way ANOVA shows that there is 
statistically significant difference across models (𝑝 ≪
0.001).  Post hoc-comparisons shows no statistical 
differences between M3 and M2 (𝑝 = 0.08) or between M2 
and M0 (𝑝 = 0.06), indicating that beat timing and beat 
morphology provide similar amount of information about 
ℎ𝑔.  However, we find statistically significant differences 
between M0 and M1 (𝑝 = 0.001), and between M1 and M4 
(𝑝 = 0.01), indicating that combining both sources of 
information achieves significantly higher performance than 
using either source of information alone.   

Model performance in 𝐻𝐺 is also shown in Fig. 3.  As 
before, one-way ANOVA indicates there are statistically 
significant differences across models (𝑝 ≪ 0.001).  In this 
case, however, beat morphology (M0) performs worse than 
beat timing, either using the raw RR series (M3; 𝑝 = 0.008) 
or the SFs (M2: 𝑝 = 0.002).  As with ℎ𝑔, the best 
performing model is the one that combines predictions from 
beat morphology and beat timing.  

V. DISCUSSION 

This study examined whether non-invasive sensors, ECG 
in particular, may be used to predict glycemic excursions in 
a type-1 diabetes population.  In particular, we compared two 
types of information:  beat morphology and beat timing.  
This comparison is significant since beat morphology 
generally requires ECG, which is expensive and not 
designed for long-term use, whereas beat timing may be 
extracted from PPG, which are more affordable and available 
as consumer products.  

Results from our study show two different trends.  For 
hypoglycemia, beat morphology outperforms beat timing, 

corrected QT period relative to the RR interval [19]. 

 
FIG. 2. FIXED- VS. VARIABLE-LENGTH WINDOWS. AT HIGH 
HEART RATES (TOP-LEFT), THE FIXED-LENGTH WINDOW 
CAPTURES THE T WAVE OF THE PREVIOUS HEART BEAT 

FIG. 3.  MODEL PERFORMANCE ON HYPOGLYCEMIA (LEFT) 
AND HYPERGLYCEMIA (RIGHT) PREDICTION  
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suggesting that ECG devices are needed. For hyperglycemia, 
however, beat timing outperforms beat morphology, 
suggesting that this problem could be solved using PPG 
devices.  In both problems, however, combining both 
sources of information provides a noticeable boost in 
performance.  

When comparing the two binary tasks, we find that the 
AUC is systematically higher for hyperglycemia than for 
hypoglycemia. This result may be due to the fact that, in our 
dataset, hyperglycemia is three times as prevalent as 
hypoglycemia.  Since both are the minority class, the one 
with more examples will have better class balance, which 
generally leads to better model performance.  

VI. FUTURE WORK 

At present, we extract a single 200-beat sequence for 
each CGM reading.  However, it would be possible to extract 
multiple partially-overlapping sequences per CGM reading, 
and treat each of them as a separate example. This strategy 
can be used to generate more examples for the minority class 
and reduce class imbalance.  Likewise, instead of making an 
independent prediction for each heart beat (i.e., model M0), 
combining predictions from all the beats associated with a 
single CGM reading (e.g., using a majority vote among all 
beat predictions) can improve accuracy as long as the M0 
predictors operate above chance level.  

We used non-negative linear regression to combine 
predictions from multiple classifiers, as this made the model 
easier to interpret. In fact, examining model coefficients 
indicates that, on average, the CNN-LSTM classifier 
receives 65% of the weight, compared to 25% for RR-LSTM 
and 10% for the AF classifier.   However, if interpretability 
is not as critical as accuracy, better ensemble predictions 
could be generated by using more complex functions (e.g., a 
small FC network). More complex functions could also be 
obtained using the “early fusion” approach of combining 
models at the embedding level (second-to-last layer), rather 
than our “late-fusion” approach that combines models at the 
probability level (last layer). 

This study focused on ECG signals.  However, as part of 
our larger study at Baylor College of Medicine, patients wear 
three physiological devices: (1) the BioHarness chest strap, 
which measures ECG, respiration, and 3D accelerometry, (2) 
an Empatica E4 watch, which measures PPG, EDA, 3D 
accelerometry, and skin temperature, and (3) an Oura ring, 
which measures PPG and skin temperature. Thus, our future 
work includes examining these additional sensing modalities 
in isolation and in combination, and understand how 
usability considerations may impact model accuracy. To put 
an example, wearing a ring is less intrusive than wearing a 
watch, but a ring device does not generally provide as much 
information as a watch device.  Combining information from 
multiple devices may also help eliminate potential 
confounders. For example, elevated heart rate could be due 
to glucose excursions or to physical activity; to rule out the 
latter, the classifier could use accelerometer data to verify 
physical activity was not the cause.  
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