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Introduction

A recent survey examining the consumption of major foods 
and nutrients among adults aged 25 or older in 195 countries 
has estimated that improving diet can potentially prevent one 
in every 5 deaths globally.1 Using a number of dietary risk 
factors (eg, diet high in sodium, or low in fiber), the study 
concluded that poor diet was responsible for more deaths 
than any other risks globally, including tobacco smoking.1 
An essential step to improve diet is to monitor food intake 
and eating behaviors. However, conventional methods for 
monitoring diet are based on self-report measures (eg, food 
diaries, 24-hour recall), which are problematic. For example, 
food diaries require manual input, which is burdensome2 and 
often leads to low adherence rates.3 Further, 24-hour records 
suffer from memory recall, which can lead to severe over and 
under-reporting.4 Compounding the problem are the very 
large inter-individual differences in the response to the same 
foods,5 which puts into question the utility of universal 
dietary recommendations. Thus, there is a need for new tech-
niques that can reduce the burden of monitoring food intake 
and also allow individuals to personalize their diets to 
achieve optimum health.

To address these issues, this article provides an overview 
of current technology in 3 key areas related to precision 
nutrition, as illustrated in Figure 1: advances in mobile appli-
cations for diet logging, new wearable sensors to detect 
dietary behaviors, and personalized nutrition programs based 

on analyzing biochemical markers (gut microbiome, blood 
glucose) through artificial intelligence (AI) techniques. The 
article concludes with a discussion of potential pitfalls when 
relying excessively on technology to solve the problems of 
diet monitoring and personalized nutrition, and other impor-
tant health problems.

Mobile Applications for Diet Monitoring

A major step in reducing the burden of diet monitoring has 
been the replacement of paper-based journals with smart-
phone apps. The ubiquity of smartphones makes dieting apps 
very convenient, since the user does not need to carry around 
a physical log book or diary. Further, dieting apps provide 
access to databases containing the nutritional content of a 
very large number of foods and meals. As an example, one of 
the most popular dieting apps, MyFitnessPal,11 has over 
11 million food items, though not all of its entries are verified 
for accuracy (to our knowledge, the largest verified nutrition 
database is Nutritionix, with nearly 800,000 grocery items 
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and 170,000 restaurant items). Having access to such mas-
sive databases can greatly simplify guesswork for users (ie, 
by providing precise nutritional information of meals) and 
guide them when
choosing portion sizes and meals. An additional advantage of 
mobile apps is their ability to scan barcodes for packaged 
foods, which reduces the need to look up the food in a data-
base or enter food nutrients manually. Finally, dieting apps 
can also be integrated with external devices, such as smart 
scales, fitness trackers, and continuous glucose monitors 
(CGMs) to help users understand the effect of diet and exer-
cise on their weight trends and glucose patterns.

However, written food diaries –whether paper-based or 
electronic, require a high level of engagement that can lead 
to fatigue and reduced adherence over time.12 An alternative 
that has gained popularity over the past decade are photo-
graphic food diaries.13 Photographic food diaries offer sev-
eral advantages over written diaries. They can reduce data 
hording, the situation where the user completes multiple 
entries at once, typically at the end of each day. Because pho-
tographs have to be taken at the point of consumption, they 
tend to encourage in-the-moment awareness and more accu-
rate recalls (eg, the context in which the meal was eaten, the 
preparation and makeup of the food, and how much of the 
food was eaten). In addition, studies with adult and pediatric 
populations have shown that photographic diaries are pre-
ferred to paper diaries, and are easier to use. Further, previ-
ous studies have shown that combining images with other 
forms of information (eg, written, verbal) can increase reten-
tion, understanding and future problem solving.14 An inter-
esting example in this direction is Undermyfork,15 a diabetes 
app that combines photo-based food logging with glucose 
data from CGMs. The app shows food photographs with the 

corresponding glucose responses, which helps users identify 
foods that lead to high postprandial glucose, and foods that 
keep glucose within a more normal range. A further advan-
tage of photo-based food diaries is they can be combined 
with AI techniques to detect and identify foods, and estimate 
the nutritional content of foods.16 An increasing number of 
commercial apps use these techniques to track nutrition from 
food photographs, for example, Lose It!,17 CalorieMama,18 
Snaq,19 Undermyfork, and several software libraries for food 
image recognition are available for integration with mobile 
apps, for example, bite.ai,20 FoodAI.21

Sensors for Tracking Eating and 
Nutrition

In parallel with advances in mobile apps, a number of sensor-
based approaches are being developed to automate the pro-
cess of tracking eating behaviors, thus reducing user burden 
and increasing measurement accuracy. We organize these 
various sensing modalities into two broad categories: physi-
cal sensors and chemical sensors.

Physical Sensors

Physical sensors have been a popular approach to tracking 
diet in an automated fashion,4 either with wearable sensors 
or smart utensils. Wearable sensors containing inertial mea-
surement units are often used to log food intake by detect-
ing the specific gestures that accompany eating.22 These 
gestures could be generic hand-to-mouth movements or 
more specific actions, including using a specific utensil or 
even eating with one’s hands directly.23 While these sensing 
systems provide accurate results in laboratory settings, 

Figure 1. Overview of the chapter in 3 key areas. advances in mobile apps for diet monitoring, wearable and handheld sensors, and 
personalized nutrition. (a) Snapshot of the Undermyfork app,6 which tracks glucose patterns (bottom) and aligns them with food 
photographs (top). (b) Recognition of foods from photographs.7 (c) Tooth-mounted sensor (from Tseng et al 8). (d) Smart fork utensil.9 
(e) Epidermal sweat sensor (from Sempionatto et al10). Personalized nutrition is achieved by combining (f) continuous glucose monitors, 
(g) microbiome information and (h) machine learning techniques. (a) Provided, with permission, by Undermyfork, (b) reprinted (adapted) 
with permission from authors7 (c) reprinted (adapted) with permission from Tseng et al,8 (d) reprinted (adapted) with permission from 
Zhang et al,9 (e) reprinted (adapted) with permission from Sempionatto et al,10 Copyright 2020 American Chemical Society, (f) photo 
credit: iStock.com/AzmanJaka, (g) photo credit: iStock.com/Design Cells, and (h) photo credit: iStock.com/KENGKAT.
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accounting for accurate results in real-life environments 
remains a challenge using only wearable motion sensors,24 
though recently, some success has been found in moving 
these motion sensors from the wrist to the head and mouth 
area (eg, jawbone).25

In order to enhance food intake detection, additional 
wearable sensors are used, including electromyography 
(EMG), piezoelectric, and acoustic sensors, to sense the 
movement of muscles around the jaw and identify chewing 
and swallowing sounds. EMG sensors attached to eyeglasses 
are able to detect chewing and swallowing motions through 
muscle activation.26 Similarly, a combination of piezoelec-
tric sensors and accelerometers can also track muscle move-
ment to differentiate between eating actions and motions 
related to talking.27 As these approaches to combine informa-
tion across multiple sensors expand, some have even worked 
on integrating cameras, either within the environment or 
directly on the body, to help segment the data captured by the 
wearable sensors.28 As wearing a large number of sensors 
may be uncomfortable, physical sensors have also been 
placed in plates and utensils. These “smart utensils” can 
detect eating and, if embedded with additional sensors, also 
to recognize the food and its composition.29

Chemical Sensors

While physical sensors can be used to detect moments of 
dietary intake, in most cases they have limited ability to esti-
mate the nutritional content of foods. The latter requires 
measuring dietary biomarkers that are associated with intake 

of nutrients. A number of biomarkers have been identified 
that correlate with intake of various foods, such as fruits and 
vegetables (eg, vitamin C and carotenoids in blood), sugar 
(eg, urinary sucrose and fructose), or protein (eg, urinary 
nitrogen), to mention a few.30,31 Here we focus on dietary 
biomarkers that can be measured with wearable or handheld 
sensors.

CGMs have gained acceptance to manage type 1 diabetes, 
but also offer promise for monitoring dietary intake. The 
mechanism by which CGMs may be used to monitor diet is 
based on the fact that the change in blood glucose after a 
meal, also known as the post-prandial glucose response 
(PPGR), depends on the macronutrients in the meal (eg, car-
bohydrates, protein, fat, fiber). The major determinant of 
post-prandial glucose is the amount of carbohydrates, but 
adding protein, fat, or fiber to a meal generally yields smaller 
increases and lengthier responses; see Figure 2. This suggest 
that the shape of the PPGR can be used to recover the macro-
nutrient composition of the meal through the use of machine 
learning techniques. To test this hypothesis, we recently con-
ducted a study in which 15 healthy participants (not diag-
nosed with prediabetes or type 2 diabetes, 60-85 years, body 
mass index 25-35 kg/m2) consumed 9 different meals over 
the course of 2-3 weeks while wearing a CGM. Each meal 
had a known but varying amount of CHO (low C1: 42.5 g, 
medium C2: 85 g, high C3: 170 g), protein (low P1: 15 g, 
medium P2: 30 g, high P3: 60 g), and fat (low F1: 13 g, 
medium F2: 26 g, high F3: 52 g). Then, we trained several 
machine learning models to predict the amount of macronu-
trients from the PPGRs in a leave-one-participant-out 

Figure 2. PPGRs to mixed meals with carbohydrates (C), protein (P) and fat (F), denoted as CxPxFx, where x represents the amount 
of each macronutrient in the meal (1: low; 2: medium; 3: high). (a) Average PPGR across subjects as the amount of carbohydrates 
increases (C1, C2, C3) while the other 2 macronutrients remain fixed (P2, F2). The PPGR becomes more pronounced at higher levels of 
C. (b) Average PPGR protein increases (P1, P2, P3) while the other 2 macronutrients are fixed (C2, F2). As protein increases, the PPGR 
decreases, with lower maximum levels and slower return to baseline. (c) Average PPGR as fat increases (F1, F2, F3) while the other 2 
macronutrients are fixed (C2, P2). As with protein, as fat increases, the PPGR also decreases, with lower maximum levels and slower 
return to the baseline (from Das et al.32).
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fashion, for example, using data from 14 participants for 
training and the remaining participant for testing.32,33 The 
best performing models were able to predict the amount of 
macronutrients in the meal with a normalized root mean 
squared error (NRMSE) of 22% for carbohydrates, 50% for 
protein and 40% for fat, a promising result given the large 
inter-individual differences in food metabolism5 and the fact 
that the models were not customized for each participant.

Handheld devices are also available to analyze breath bio-
markers associated with metabolism. A primary target of 
these devices are ketones (eg, acetone). During prolonged 
fasting or carbohydrate restriction, the body resorts to burn-
ing fat in order to produce ketones, which are then used as an 
alternative source of energy instead of glucose.34 This results 
in elevated values of ketones in the breath, which can serve 
as an indicator of whether the body has reached ketosis (ie, 
the metabolic state where the body generates energy primar-
ily from fat). Several breath ketone meters exist currently in 
the market, including the Ketonix analyzer,35 and the 
Biosense monitor.36 These devices are aimed at people 
attempting to lose weight through ketogenic diets, but may 
also be beneficial for people with diabetes who may be at 
risk of ketoacidosis (this type of breath analyzers provide a 
single-point measurement of ketones; for continuous mea-
surement, several recent studies have proposed the develop-
ment of continuous ketone monitors (CKMs) to measure 
ketones in interstitial fluid37,38).

Another metabolic biomarker that can be derived from 
breath analysis is metabolic fuel, a parameter that reflects the 
body’s fuel preference for energy production (ie, carbohy-
drates vs. fat). Metabolic fuel is generally estimated as the 
respiratory exchange ratio (RER), the ratio of CO2 produced 
during metabolism and oxygen used. But this requires the 
use of metabolic carts, which are only available in special-
ized clinics and thus are unsuited for regular use. To address 
this issue, a hand-held device by Lumen39 has become avail-
able that estimates metabolic fuel by measuring CO2 while 
the user performs a brief breath maneuver. This information 
is then used to provide personalized nutrition and exercise 
recommendations.

Additional dietary biomarkers can be extracted ambula-
torily with wearable sensors from other bodily fluids. A pri-
mary target of these devices is sweat, since it can be 
measured at convenient body locations and is ideal for con-
tinuous monitoring. A variety of analytes present in sweat 
may be of interest for metabolic disorders, including various 
electrolytes, glucose, lactate, ammonia, ethanol, cortisol, 
and hydration markers.10,40 As an example, Sempionatto 
et al.10 developed an epidermal biosensor to track the 
dynamics of vitamin C in sweat. The device is in the form of 
a flexible tattoo, and uses iontophoresis stimulation to draw 
sweat and an enzymatic process for detection. Along the 
same lines, Yang et al.41 developed a sweat sensor that can 
detect uric acid and tyrosine, analytes that are well estab-
lished for metabolic and nutritional management. For 

personalized nutrition, another interesting target is saliva, 
since it can be highly informative of eating behaviors (eg, 
increase in salivary secretion with eating) and the nutritional 
composition of the meals. Kim et al.42 developed a non-
invasive mouthguard biosensor that was capable of monitor-
ing lactate continuously during sport activities. However, 
wearing a large mouthguard is impractical for long studies, 
so better mounting solutions have also been investigated, 
such as tooth-mounted sensors. Along these lines, Tseng 
et al.8 developed a hydrogel-based sensor that, attached to a 
tooth, could track glucose, salt and alcohol intake. However, 
in contrast with CGMs and breath analyzers, which are 
already available commercially, many of these sweat/saliva 
sensing devices are still at the research stage.

Technologies for Personalized 
Nutrition

Finally, we describe how technologies are being used to 
develop personalized nutrition programs. Here we discuss 
measurements of gut microbiome (i.e., collection of microor-
ganisms, such as bacteria, viruses and fungi, and their genetic 
material present in the gastrointestinal tract) and blood glu-
cose to develop personalized nutrition recommendations. In 
a seminal study on personalized nutrition, Zeevi et al.5 used 
CGMs to track the glucose response of 800 participants 
(healthy and with prediabetes) for 1 week while participants 
kept detailed records of their diet. The authors then devel-
oped a machine-learning model (gradient boosting regres-
sion) that could predict the glucose response of a meal for 
each participant based on individual factors, such as anthro-
pometric variables, blood panels, and gut microbiome. Note 
that after the machine-learning model is trained, CGMs are 
no longer needed to make predictions (ie, CGMs only pro-
vide the outputs of the model during training). When tested 
on an independent cohort of 100 participants, the model was 
able to generate personalized diets that led to improved glu-
cose responses (ie, reduced postprandial hyperglycemia). In 
a related study, Hall et al.43 used CGMs to estimate the fre-
quency of hyperglycemia among healthy adults (not previ-
ously diagnosed with diabetes). Surprisingly, they found 
glucose levels that reached prediabetes and diabetes ranges 
15% and 2% of the time, respectively, suggesting that glu-
cose dysregulation is more prevalent than commonly 
assumed.

A number of companies have emerged that seek to pro-
vide personalized recommendations of diet intake to improve 
glucose control and weight loss. As an example, the com-
pany DayTwo44 measures gut microbiome to provide nutri-
tion recommendations using the machine-learning model 
developed in the study by Zeevi et al.5 The company Thryve45 
also uses gut microbiome measurements to customize probi-
otics and food recommendations to improve health. The gut 
microbiome company Viome46 conducted a study that 
tracked the glycemic response of 550 adults for up to 2 
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weeks, while they consumed a set of standardized meals 
carefully designed to cover a broad range of proportions of 
carbohydrates, proteins, fats and fiber.47 Then, they built a 
multilevel mixed-effects regression model to predict PPGRs. 
This allowed the authors to quantify (for the first time) the 
relative influence of meal composition, anthropometric, gut 
microbiome and lifestyle variables to postprandial glucose. 
Based on a proprietary analysis of the gut microbiome, 
Viome also makes recommendations about the likely posi-
tive, neutral, or negative impact that certain dietary choices 
will have on individual’s health. Note that these companies 
do not require CGM use: nutrition recommendations are 
based on information from the gut microbiome and other 
individual factors; as noted earlier, CGMs are only needed to 
build the machine-learning model.

Alternatively, the company NutriSense48 relies on CGMs 
to develop personalized nutrition recommendations. 
NutriSense combines CGMs with a smartphone application 
that integrates diet logging and physical activity, and allows 
the user to interact with nutritionists that provide recommen-
dations to improve health through a balance of food, exercise 
and rest. While CGMs are primarily prescribed for people 
with diabetes (PwD), this is (to our knowledge) the first com-
pany to provide CGMs and integrate them with an applica-
tion for personal health. Other companies in this space also 
exist, for example, Signos,49 Levels,50 but at the time of this 
writing they appear to be in the early-access stage. These 
nascent companies and technologies are laying the ground-
work for personalized nutrition and health, through improved 
logging of meals through intelligent smartphone applications 
and CGMs, and through individualized reporting and recom-
mendation with the measurement of the gut microbiome.

Discussion

We have reviewed a number of technologies and digital tools 
that can significantly reduce the burden of dietary monitor-
ing, compared to traditional methods that require users to 
look up the nutritional content of foods in a calorie book and 
then manually enter the information in a log book. We have 
also reviewed innovative personalized-nutrition approaches 
that overcome the limitations of universal dietary recom-
mendations by modeling the unique metabolism of each 
individual through machine learning techniques. These 
advances in precision nutrition can be invaluable tools in the 
fight against diabetes and other metabolic diseases, if used 
properly. Accordingly, and in the interest of providing a bal-
anced treatment of this field, we wish to close this article by 
highlighting some potential pitfalls of these tools, and also 
highlight the need to engage behavior-modification research-
ers to help design interventions with the highest likelihood of 
adherence and lifestyle modification.

With diet monitoring tools, the hope is that reducing bur-
den will result in increased adherence and eventually better 
clinical outcomes (eg, weight loss, glucose control). 

However, there is a well-established “law of attrition”51 in 
eHealth trials, which tend to experience significantly higher 
dropout rates than drug trials. Thus, it seems likely that 
adherence to dietary monitoring tools will decrease with 
time, no matter how low-burden the tool is. A further issue is 
whether full automation of diet monitoring (ie, no burden) is 
desirable, as it may prevent users from developing the in-the-
moment awareness that comes with food logging.12 As an 
example, Turner-McGrievy et al52 conducted a study (DIET) 
where participants were randomly assigned to 2 different 
diet-monitoring methods, a standard diet tracking app (high 
burden), and a wearable bite tracking device (low burden). 
After 6 months, participants in the high-burden group lost 
significantly more weight (−6.8 ± 0.8 kg) than those in the 
low-burden group (−3.0±0.8 kg; p < 0.001). In a follow up 
study (2SMART), the authors compared the standard diet 
tracking app (high burden) against a photo-based app (low 
burden).53 At 6 weeks and at 6 months, both apps were 
equally effective in reducing weight. However, weight loss 
was correlated with adherence only for the high-burden app 
(ie, counting calories more often was associated with more 
weight loss, but taking more food photographs was not). 
Further, at 6 weeks participants in the 2 low-burden groups 
(bite-tracking device in DIET, photo-based app in 2SMART) 
found it more “difficult to remember to use [their] assigned 
diet tracking device on a regular basis” than participants in 
the high-burden condition. Thus, there appears to be a trad-
eoff between developing tools that reduce user burden and 
allowing the users to form the critical habit of monitoring 
their diet.54

Some concerns have also been raised about personalized- 
or precision-nutrition programs that rely on CGMs. In a 
recent study, Howard et al55 asked participants to wear 2 
CGM devices simultaneously (Dexcom G4 Platinum, Abbott 
Freestyle Libre Pro) for 28 days while they consumed ad libi-
tum meals. Then, meals for each participant were ranked 
according to their corresponding post-prandial glucose (eg, 
from low to high). Surprisingly, the authors found a low 
degree of concordance between the meal rankings obtained 
from the 2 CGM devices. While some of these discrepancies 
could be explained by the fact that the 2 CGMs were placed 
at different anatomical locations (upper arm for Abbott, 
lower abdomen for Dexcom), this result raises important 
questions about the effectiveness of personalized dietary rec-
ommendations based on CGM measurements that are 
imprecise.
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