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Abstract—Widespread speech technologies may change the
dynamics of mental health (MH) diagnosis, monitoring, and care
by tracking spectrotemporal patterns of speech in a personalized
manner. Yet, these technologies have given rise to a large public
debate about the ability of users to protect their privacy. This
work examines a speech anonymization algorithm that preserves
information that is diagnostic of the MH condition of the speaker
and representative of the phonological content of speech, while
suppressing characteristics related to the speaker identity. The
proposed anonymization algorithm relies on an auto-encoder that
conducts an identity mapping between the original input, repre-
sented as the superposition of Mel-spectrogram coefficients and
posteriogram (PPG) vectors, and the reconstructed output. The
auto-encoder is trained in an adversarial manner to minimize the
loss corresponding to MH-related information and maximize the
loss corresponding to the identity (ID) of a speaker. The proposed
algorithm is evaluated on data from healthy participants and
patients with depression from the Distress Analysis Interview
Corpus Wizard of Oz (DAIC-WoZ) dataset. Results indicate that
the speech signals synthesized by the proposed anonymization
algorithm have higher word error rate (WER), as calculated
between the original speech transcripts and transcripts from the
anonymized speech signals obtained via an automatic speech
recognizer (ASR), and are rated as being less comprehensible
by MTurk listeners compared to the original signals. However,
the intelligibility of the synthesized speech appears equivalent to
baseline speech anonymization algorithms that solely suppress
the speaker ID without considering MH-related information, or
rely on a cascade of signal processing methods that perform
consecutive speech transformations. The proposed algorithm can
further effectively suppress information related to the speaker
ID, since the corresponding anonymized signals achieve 15.9%
reduction in speaker classification accuracy compared to the
original speech signals. Finally, the anonymized speech signals
yield similar performance to the original speech when they are
used as an input for estimating degree of depression severity,
and superior performance compared to conventional speech
anonymization algorithms that do not consider the preservation
of MH-related information as an optimization criterion.

Index Terms—Mental health, depression, speech anonymiza-
tion, adversarial learning, auto-encoder

I. INTRODUCTION
In 2014, it was estimated that 9.8 million adults aged 18

or older had a serious mental illness (SMI), which includes
schizophrenia, bipolar disorder, and major depression. Mental
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illnesses can impede carrying out daily activities, interacting
with family, and fulfill other major functions [1]. Speech
technology has great potential as an alternative method to
track mental health (MH) and treatment outcomes. Speech
signals can reflect changes in muscle tension in articulators,
which are indicative of MH disorders, such as depression
and post-traumatic stress disorder (PTSD). Speech-based AI
algorithms have been heralded as promising solutions to track
the severity of MH disorders, since they can learn patient-
specific spectrotemporal patterns in speech that are indicative
of MH degradation [2]. In addition, speech data is easy to
collect using mobile devices, such as smartphones and wear-
able sensors, and can be captured continuously, unobtrusively,
and discreetly over time. As such, MH interventions that
rely on speech biomarkers have the potential to be widely
adopted [3]. Collecting speech data in a natural setting further
makes it easier to capture micro-level behaviors, which are
difficult to record in traditional healthcare settings [4], thus
allowing to observe factors and antecedents that contribute
to MH in real-life. Ambulatory speech-based technologies
can also help overcome the limitations of conventional self-
report instruments, such as retrospective bias, subjectivity,
and temporal sensitivity. Speech data collected from mobile
devices has been used in tandem with machine learning (ML)
methods to capture individuals’ mood, stress, and other well-
being markers [5], therefore enabling pervasive computing
applications. These can further reduce barriers to accessing
MH care, since mobile devices can transcend geographic
boundaries, reaching many people otherwise unable to access
MH care services [6].

However, speech recordings are a rich source of sensitive
data that can be misused to predict personally identifiable
information (PII) [7] such as age, gender, race, ethnicity, and
speaker identity [8]. Thus, malicious users who gain unautho-
rized access to non-anonymized speech can potentially misuse
PII from this signal, facilitating attacks on other systems and
causing safety risks. In fact, recent reports highlight how the
increasing use of ambulatory devices is creating new oppor-
tunities for cyber-attacks [9], such as identity theft by using
another person’s voice to fool voice authentication systems
and impersonation attacks via utilizing speech synthesis or
voice conversion to fake another person [10]. In light of
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these considerations, speech-based technologies for MH face
increasing skepticism and mistrust by patients and consumers.
Patients are hesitant to share their data, due to increased
concerns over how the data will be used by technology and
health care companies alike. According to a recent survey,
only 37% of patients feel comfortable in sharing their voice
data [11]. Another survey revealed that, while consumers are
willing to share health data with their doctors, they are less
willing to do so with research institutions, tech companies,
and health companies [12]. In fact, public willingness to share
health data has declined over time, even when it comes to
sharing with physicians [12]. These trends highlight the need
to improve speech anonymization methods, particularly in
healthcare.

Speech anonymization methods typically rely on the ex-
traction of three different types of information: (1) speaker
information that encodes the characteristics of the voice of a
person; (2) segmental information that captures the linguistic
content of vowels and consonants in speech; and (3) prosodic
information that refers to intonation, rhythm, and vocal stress.
Prior work in speech anonymization typically seeks to alter
information related to the speaker identity, while preserving
the segmental and prosodic characteristics of speech [13], [14].
However, disentangling speaker information from segmental
and prosodic information is not always straightforward, since
the latter is heavily affected by the idiosyncratic characteristics
of a person’s voice. This task becomes even more challenging
when speech anonymization is conducted under the constraint
of preserving MH information, since the evidence of MH
severity in speech is typically manifested in prosodic and
supra-segmental characteristics, such as pitch, loudness, and
rhythm [15].

In this paper, we aim to anonymize speech signals while pre-
serving MH information, specifically for the task of estimating
depression severity from speech. We propose a auto-encoder
architecture that is trained to preserve acoustic characteristics
related to depression severity and linguistic information, while
reducing information that could be used to predict PII, and
specifically the identity (ID) of a user. The encoder module
takes in as input mel-spectrograms and phonetic posterior-
grams (PPGs) to generate a low-dimensional embedding. This
embedding serves as an input to three additional modules: (1)
a decoder module that is trained to reconstruct the original
signal; (2) a depression-estimation module that is trained to
estimate the degree of depression severity; and (3) a speaker-
classification module that is trained to identify the speaker.
To anonymize the speech signal, the speaker-classification
module is trained in an adversarial manner (i.e., via gradient
reversal), which forces the encoder to learn an embedding
that removes speaker-dependent information, while preserving
information that is diagnostic of MH. Via quantitative and
qualitative experiments, we evaluate the anonymized speech
signals in terms of their ability to capture depression severity
information and speaker information, as well as in terms of
speech intelligibility.

II. PRIOR WORK

A. Speech-based detection of MH conditions

A large number of studies have investigated speech as a key
behavioral marker for diagnosing and tracking the severity of
MH conditions. According to a recent systematic review [16],
the majority of studies focus on depression and schizophrenia,
while some studies also consider PTSD and anxiety. In a
seminal study, Mundt et al. tracked the progression of voice
acoustic measures from 35 patients with depression for 6-
weeks, while they were receiving pharmacotherapy and/or
psychotherapy treatment [17]. Results indicated significant
differences in terms of fundamental frequency (F0) variability,
speech pause duration, and speaking rate between patients
responding to treatment and patients not responding to treat-
ment. Cummins also examined potential relationships between
changes in speech cues and depression severity and found
that the spectral feature space becomes more concentrated for
patients with depression compared to their healthy counter-
parts [18]. Trevino et al. reported that this reduction in the
spectral feature space appears to be stronger when extracted
at the phoneme-level, rather than at the global utterance-
based level [19]. Williamson et al. quantified the degree of
coordination in vocal tract articulation via a set of correlation
structure features computed across formant frequencies and of
delta-functions of the Mel-cepstral coefficients [20]. Results
indicate that these features computed over 4-minute speech
excerpts provide promising performance in estimating the
degree of depression severity.

Much of the recent work has focused on examining ML
models that use speech samples from clinics or real-life
environments for estimating MH conditions. Scherer et al.
showed that the combination of voice quality characteristics
capturing the capturing the tenseness of the speaker’s voice
with ML algorithms can yield 75% accuracy in automatically
classifying between patients with depression and health partic-
ipants, and and 69% accuracy in classifying between patients
suffering from PTSD and health participants [21]. Khorram
et al. further explored personalized ML models that rely on a
small portion of labelled samples from a target speaker using
rhythm statistics and i-vector based features [22]. The authors
showed that the combination of personalized and general
models (i.e., the latter modeling general speech patterns from
all speakers) achieve superior results in estimating the degree
of depression severity compared to each method separately.
He & Cao showed examined features learned by CNN-based
architectures from the speech spectrogram [23]. They found
that these deep-learned features can estimate the degree of
depression severity more accurately compared to hand-crafted
spectral and energy-related features. However, the two types
of features yields a reduction of approximately one unit of
absolute error in estimating the degree of depression severity,
as compared to the deep-learned features alone. A detailed
review of ML algorithms that have been used to detect MH
conditions can be found in [24].
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B. Speech anonymization
Speech anonymization has become an increasingly impor-

tant topic. A variety of approaches have been used, ranging
from accent conversion [25], sanitization [26], and watermark-
ing methods [27]. Initial speech anonymization approaches
have employed voice conversion methods to modify the per-
ceived attributes of speech. For instance, Patino et al. and
Gupta et al. proposed to transform the spectral envelope of
a speech signal by altering the position and radius of the
poles of the linear prediction spectral envelope, obtained via
the McAdams-based solution [28]. Adversarial learning has
been also proposed for speech anonymization. Champion et
al. designed an end-to-end deep encoder-decoder for the task
of automatic speech recognition (ASR) [29]. The bottleneck
features of the deep auto-encoder were learned so that they
minimize the ASR loss and maximize the speaker classifi-
cation loss. The deep auto-encoder was trained in a semi-
adversarial manner, according to which the weights of the
network were first optimized based on the ASR loss only and
then learned based on the speaker classification loss. Following
that, the weights of the encoder were frozen and the decoder
was trained based on both the ASR and speaker classification
loss. Auto-encoders have been also proposed for converting
the identify of one speaker to that of another target speaker
(i.e., voice conversion), while preserving the linguistic content
of speech data. Yoo et al. proposed a variational auto-encoder
that encodes speaker information as a one-hot-encoding vec-
tor [30]. The encoder is trained to extract a latent vector which
corresponds to the linguistic information of the input speech,
and the decoder is trained to reconstruct the input speech
from the latent vector and the source speaker identity vector.
Bahmaninezhad et al. also used an auto-encoder architecture
to encode spectral information and excitation features of
speech [31]. The auto-encoder mapped the bottleneck features
to a target speaker that was characterized by the average of
other speakers.

Recent approaches to speech anonymization focus on re-
placing the identity of the original speaker with that of another
speaker via voice conversion. In that direction, as part of
the VoicePrivacy 2020 Challenge [14], Fang et al. used an
ASR system based on a deep neural network architecture
to capture segmental information in the form of a phoneme
posteriorgram (PPG) [13]. They further leveraged a pre-trained
x-vector system to encode the speaker identity. Prosodic in-
formation related to pitch was captured by extracting the F0
from the original waveform. Anonymization was conducted
by replacing the x-vector of the original speaker with another
x-vector corresponding to a different set of arbitrary speakers.
The anonymized speech waveform was generated by using
the PPG and F0 of the original speech and the anonymized x-
vector. Following that, Srivastava et al. showed that the quality
of anonymization using the x-vector methodology is affected
by the choice of the pseudo-speaker [32], [33]. The authors
examined various design choices for choosing a pseudo-
speaker, including different distance metrics between speakers
and the region of x-vector space where the pseudo-speaker is

picked. Results indicate that effective speech anonymization is
accomplished when the candidate x-vectors are selected using
the probabilistic linear discriminant analysis (PLDA) distance
between the original speaker and the pseudo-speaker. In ad-
dition, robust privacy protection was achieved by randomly
selecting a subset of pseudo-speakers from the cluster of x-
vectors with most members (i.e., the most dense cluster). To
effectively disentangle speaker information from language and
prosody, Shamsabadi et al. integrated a differential privacy
method to the existing x-vector system [34]. The authors
employed differentially private feature extractors based on an
auto-encoder and an ASR system. The F0 and PPG extractors
were trained to retain the desired prosodic and segmental
information, respectively, while adding noise via a Laplace
noise layer. The pitch extractor consisted of a pitch estimator
followed by an auto-encoder network with Laplace noise layer
trained to reconstruct the global pitch dynamics using a custom
loss function. Similarly, the PPG extractor utilized a deep ASR
acoustic model, in which a Laplace noise layer was integrated.
The Laplace noise layer provided a provably upper bound of
the amount of residual speaker information embedded in the
F0 and PPG features, thus resulting in a ϵ-differential privacy
(ϵ-DP) guarantee.

While there has been a lot of work on speech anonymization
algorithms that preserve segmental information, to the best
of our knowledge, this is the first work that attempts to
anonymize speech signals while also preserving information
related to the speaker’s MH condition. In addition to typically
used evaluation methods that assess intelligibility and speaker
identification of the anonymized speech, we also assess the
extent to which the anonymized speech can be used to estimate
the speaker’s degree of depression severity.

III. METHODOLOGY

We discuss steps that were taken for data pre-processing
(Section III-A) and feature extraction (Section III-B), as well
as the architecture and the evaluation methods (Section III-C)
for the proposed anonymization algorithm.

A. Data Description and Pre-processing
We used the Distress Analysis Interview Corpus Wizard of

Oz (DAIC-WoZ) dataset [35] for our experiments. The dataset
consists of audio interviews of 107 participants (63 male and
44 female), and each participant was classified as depressed or
not based on their responses to questions on the Patient Health
Questionnaire (PHQ-8) [36]. Thirty participants were classi-
fied as depressed, and the remaining as healthy [35]. Each
audio recording was converted to a sample rate of 22, 050Hz.
Each recording contained speech from the interviewer and
the interviewee; however, for the purpose of this study, the
interviewer’s speech segments were omitted based on the start
and end timestamps of the corresponding turns that were
provided as part of the DAIC-WoZ dataset. Each recording
from the interviewee was then split into individual utterances,
that ranged from 1 second to 30 seconds long, resulting in a
total of 11, 993 utterances.
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B. Feature Extraction
The input of the speech anonymization model (Figure 1)

comprises of Mel-spectrograms and phonetic posteriorgrams
(PPGs). The Mel-spectrograms are used to preserve acoustic
properties of speech, whereas the PPGs are used to extract the
linguistic content in the form of the posterior probability for
each of 40 phonemes occurring in a given analysis window.
The Mel-spectrograms are extracted at an analysis window
of 2048 with a hop length of 256, and 80 coefficients are
used. The PPGs are extracted using an acoustic model based
on deep neural networks (DNN), as described in Zhao et
al. [37]. The Mel-spectrograms are stacked such that each
input contains the previous (n−1), current (n), and next (n+1)
analysis window, which will be denoted as sn−1, sn, and
sn+1. Following that, the three stacked 80-dimensional Mel-
spectrograms are concatenated with the 40-dimensional PPG
that corresponds to the nth analysis window, denoted as pn.
The final vector xn = [sn−1, sn, sn+1,pn] is used as a 280-
dimensional input to the auto-encoder based anonymization
system (Section III-C).

C. Anonymization System
Our proposed system uses an auto-encoder architecture

that aims to reconstruct the speech at the output (Figure 1).
Bottleneck features from the auto-encoder are used as inputs
to two auxiliary classifiers, one that aims to predict depression,
and another that aims to predict speaker identity.

The auto-encoder consists of a 5-layer feed forward neural
network (FFN), which serves as the encoder, fw, followed
another 5-layer FFN, which acts as the decoder, f ′

w. The auto-
encoder implements an identity function, whose parameters
w are learned from data. The auto-encoder takes in a 280-
dimensional input that results from the Mel-spectrograms and
the PPG, xn = [sn−1, sn, sn+1,pn] (Section III-B). The
encoder part of the auto-encoder has 5 fully-connected layers
with 220, 160, 100, 70, and 40 nodes, respectively, which
implement non-linear transformations of the input signal.
Finally, this last 40-dimensional vector is further transformed
into a 10-dimensional bottleneck layer yn = fw(xn) for
each analysis window n, that serves as the latent space of
the auto-encoder. Similarly, the decoder part of the auto-
encoder comprises of 5 fully-connected layers with 40, 70,
100, 160, and 220 nodes, respectively. A total of 331, 890
parameters are being learned while training the auto-encoder.
The auto-encoder loss Lerror is used to preserve the acoustic
and phonetic information of the original speech signal and is
defined as the mean-square error between the actual input xn

and reconstructed signal, x′
n = f ′

w (fw (xn)), summed over
all analysis windows (n = 1, . . . , N ):

Lerror(w) =α ∗ 1

N

N∑
n=0

(
c1 ·

(
sn−1 − s′n−1

)2
+ c2 · (sn − s′n)

2
+ c3 ·

(
sn+1 − s′n+1

)2
+c4 · (pn − p′

n)
2
)
) (1)

where sn−1 and s′n−1 represent the original and reconstructed
vector of the Mel-spectrogram at the n− 1 analysis window,
s′n and sn are the original and reconstructed vector of the Mel-
spectrogram at the n analysis window, sn+1 and s′n+1 are the
original and reconstructed vector of the Mel-spectrogram at
the n + 1 analysis window, and pn and p′

n are the PPG of
the n analysis window (Section III-B). The weights c1 = 0.7,
c2 = 0.7, c3 = 0.7, and c4 = 10 were empirically selected to
assign different importance in the reconstruction error of the
Mel-spectrogram and PPG vectors.

The 10-dimensional latent space yn of the auto-encoder
serves as an input to the depression-estimation module gv,
where v are the parameters of a 2-layer FFN with 5 nodes
at the inner layer and 1 node that the output layer, such
that the model outputs the degree depression severity, as
obtained by the PHQ (Section III-A), i.e., dn = gv(yn). A
total of 61 parameters are being learned while training the
depression model. The loss for the depression model is defined
as the mean-square error between the actual dn and estimated
depression label d′n, summed over all the analysis windows
(i.e., n = 1, . . . , N ):

Ldepression(v) =
1

N

N∑
n=0

(dn − d′n)
2 (2)

The 10-dimensional latent space yn also comprises the input
of another 2-layer FFN that serves as the speaker-classification
module. The speaker classifier has 50 nodes at the internal
layer and 107 nodes at the outer layer, the latter being the same
as the number of speakers, and is implemented by function
hu i.e., i′n = hu(y), where u is the vector that contains the
parameters of the 2-layer FNN and is the estimated i′n speaker
identity at every analysis window n, represented via a 1-hot
encoding vector. A total of 6, 007 parameters are being learned
while training the speaker classification model. The loss for
the speaker classification model is defined as the cross-entropy
error (CCE) between the actual in and estimated i′n speaker
identity at every analysis window n:

Lspeaker(u) =
N∑

n=1

CCE(in, i
′
n) (3)

The three models are trained and their parameters w, v, and
u are updated according to their respective losses (i.e., Lerror

for the auto-encoder, Ldepression for the depression-estimation
module, Lspeaker for the speaker-classification module). The
training is conducted in an adversarial manner such that the
loss of the auto-encoder and depression estimation model
is minimized, while the corresponding loss of the speaker
classification model is maximized:

L(w,v,u) =α · Lerror(w)

+ Ldepression(v)− β · Lspeaker(u)

(4)

where variables α and β weight the importance of the depres-
sion severity error compared to the signal reconstruction error
and speaker cross-entropy loss, and were empirically set to
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Fig. 1. The proposed mental health (MH) preserving speech anonymization system. The auto-encoder performs an identify mapping between the original and
anonymized Mel-spectrograms and posteriograms (PPGs) so that depression information is preserved and speaker information is reduced.

α = 300 and 10−14 in our experiments to avoid an exploding
loss.

We used the WaveGlow vocoder [38] to synthesize the audio
using the reconstructed 80-dimensional Mel-spectrogram vec-
tor s′n for every analysis window n. The WaveGlow vocoder
was pre-trained on the LJ speech dataset [39] that consists of
13, 100 short audio clips of a single female speaker reading
passages from 7 non-fiction books. The speech output of
WaveGlow is converted into a PCM-16 format wav file.

D. Evaluation
We evaluate the proposed system in terms of its ability

to preserve MH information, eliminate speaker-dependent in-
formation, and generate intelligible anonymized speech. The
proposed anonymization model (Section III-C) was trained
and tested using 7-fold cross-validation. Similar to the feature
extraction process (Section III-B), the original dataset was split
into analysis windows of 2048 points length with a hop length
of 256. The analysis windows were randomly assigned to one
of the 7 folds. While the same analysis window was not part of
more than one fold, analysis windows from the same speaker
could be present at multiple folds, which allowed us to evaluate
the speaker classification performance.

The 2-FNN depression estimation model gv (Section III-C)
was used to evaluate the ability of the anonymization system
to preserve MH information on the test data of each fold.
Evaluation was conducted at each analysis window belonging
to the current test set by taking as an input the entire 280-
dimensional vector xn consisting of the Mel-spectrogram
coefficient of the previous, current, and next window, as well
as the current PPG. The input was first passed through the
encoder part of the auto-encoder function fw, followed by
the depression model gv, thus rendering the estimated degree
of depression severity, i.e., d′n = gv (fw (xn)). We note
that the parameters v of the depression model were learned

based on the train data, thus no leakage occurs between the
train and the test sets. The Pearson’s correlation between the
predicted and actual depression severity scores is computed
over all windows of the current fold, and is then averaged
across all folds, to yield a final evaluation metric of depression
(Cdepression ∈ [−1, 1]). A metric Cdepression closer to 1
indicates a good ability of an input speech signal to preserve
depression-related information.

In a similar manner, the 2-FNN speaker classification model
hu (Section III-C) was used to evaluate the extent to which
speaker-dependent information is preserved in the audio signal.
According to this, a sample xn belonging to the test set
serves as the input to the speaker classification model, which
provides a speaker decision in the form of a 1-hot encoding,
, i.e., s′n = hu (fw (xn)). The speaker classification accuracy,
computed as the number of correctly estimated speaker IDs
divided by the total of samples, was estimated for each fold,
and then averaged across all folds, serving as an evaluation
metric for speaker classification (i.e., Aspeaker ∈ [0, 100]). The
metric Aspeaker would be low for a high-performing speech
anonymization system.

The intelligibility of the reconstructed speech signals was
further assessed in a quantitative and qualitative manner.
Quantitative assessment involved the use of the Google Speech
to Text API, which is a cloud-based ASR system implemented
via the SpeechRecognition 3.8.1 toolbox. The ASR system
takes as an input the speech signal and outputs the corre-
sponding speech transcript, which is then compared against
the original one to yield the word error rate (WER) that com-
putes the Levenshtein distance between the two transcripts.
Qualitative evaluation was performed via perceptual listening
tests administered via the MTurk. To increase the reliability
of the experiments, MTurkers were restricted to people who
resided in the U.S., are Turk masters, and have an approval rate
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higher than 98%. The MTurkers were asked to rate the audio
signals according to three dimensions: naturalness, compre-
hension, and pleasantness, similar to the original evaluation
from WaveGlow [38] and Tacotron’s [40]. MTurkers were
asked the following questions for each file: “The voice was
easy to comprehend”, “The voice sounded natural,” and ”The
voice was pleasant” and provided their answer on a 5-point
Likert scale (i.e., 1: Strongly Disagree, 5: Strongly Agree).
Each MTurker was given a batch of 10 speech files either from
the original signals or generated with the same anonymization
method, and did not have access to audio files from other
conditions. Each audio file was rated by 5 MTurkers.

The above evaluation metrics were employed based on the
original speech signal, as well as the generated speech signals
that were synthesized based on the following methods: (1)
WaveGlow Baseline: The Mel-spectrogram was extracted from
the original speech signal and served as an input to the Wave-
Glow synthesizer. This baseline was used to better understand
the potential amount of noise that the Waevglow synthesizer
introduces on the original non-anonymized speech signal; (2)
Speech Anonymization 1: An auto-encoder that contains only
the speaker classification module and does not contain the
depression estimation module, trained to minimize the follow-
ing loss function L(w,u) = α · Lerror(w)− β · Lspeaker(u);
(3) Speech anonymization 2: A voice anonymization method
that suppresses speaker information while maintaining speech
intelligibility relying on a cascade of signal processing meth-
ods [41], that include vocal tract length normalization [42],
McAdams transformation [43] that modifies the resonance
frequencies, smoothing of the modulation spectrum, signal
resampling to stretch the speech signal, and signal distortion
via waveform clipping; and (4) Proposed: The MH-preserving
speech anonymization method based on (4).

IV. RESULTS

We first examine the ability of the model to preserve the
linguistic information of the input speech signal via the quan-
titative evaluation using the ASR system (Table I). The WER
of the original speech is 0.32 and increases when using the
Waveglow baseline to 0.44. This indicates that the WaveGlow
speech synthesizer adds noise to the Original signal, rendering
it less intelligible, even when no other transformation has
been conducted. The baseline anonymization methods further
increase the WER to 0.51 and 0.62 for Speech Anonymization
1 and Speech Anonymization 2, respectively. This indicates
that anonymizing the speech renders its content less intelligible
compared to the original speech. Finally, the proposed method
achieves WER equal to 0.51, which is comparable to the best
speech anonymization method (i.e., Speech Anonymization 1).
In terms of the listening experiments conducted via MTurk
(Table II), both the proposed and baseline methods produce
speech that is perceived significantly less natural and pleasant
(i.e., p ≃ 0) than the original speech, a result that has been
found in prior work [44]. However, the perceptual results
achieved between the two anonymization methods were equiv-
alent, since naturalness, comprehensibility, and pleasantness

was not significantly different between Speech anonymization
1 and the Proposed anonymization method (i.e., p = 0.11,
p = 0.11, p = 0.23 for each of the three dimensions,
respectively). We also report these perceptual dimensions in
terms of gender (Table II). Listeners thought that the original
utterances expressed by female speakers were overall more
natural, comprehensible, and pleasant compared to the ones
provided by the male speakers (p ≃ 0), a finding which is
consistent with prior work [45]. This difference was preserved
when transforming the original signals via Speech Anonymiza-
tion 1 (p ≃ 0) and the Proposed method (p ≃ 0). A potential
reason for this might also be the fact that the WaveGlow
vocoder was trained on data from a female speaker.

The speech anonymization baselines have decreased ability
to preserve depression information (Table I), since the depres-
sion estimation model has significantly lower Pearson’s cor-
relation (i.e., r = 0.38 and r ≃ 0 for Speech Anonymization
1 and 2, respectively) compared to the original signal (i.e.,
r = 0.52) (i.e., p ≃ 0 when comparing Speech Anonymization
1 and 2 with the Original speech). However, the proposed MH-
preserving speech anonymization achieves depression estima-
tion performance similar to the original signal (i.e., r = 0.55).
We suspect that the slightly higher Pearson’s correlation of the
proposed method compared to the original speech might be the
result of minimizing the depression loss function, therefore
potentially producing spectrotemporal characteristics of the
signal that preserve the degree of depression severity.

In terms of speaker classification, the speaker classifier
achieves moderate accuracy (i.e., 51.8%) on the original
speech, which is significantly reduced when using the pro-
posed MH-preserving speech anonymization baseline meth-
ods (i.e., 31.2% and 2.2% for Speech Anonymization 1
and 2, respectively) (Table I). The proposed MH-preserving
speech anonymization method achieves similar degradation
in speech classification accuracy (i.e., 35.9%) compared to
Speech Anonymization 1, which is also based on an ad-
versarial learning approach. A potential reason why Speech
Anonymization 2 is so effective in removing speaker-specific
properties from the original speech might be the fact that the
transformations conducted as part of this method completely
distort the spectrotemporal patterns of the original speech
signal, therefore significantly reducing evidence from both the
speaker ID and the degree of depression severity. Overall,
these indicate that the proposed system can degrade speaker-
specific information to some extent, although it is not able to
fully eliminate this information, potentially because MH- and
speaker-specific information are highly interconnected.

V. DISCUSSION

We proposed a model that can be used to increase the
anonymity of speech signals while preserving information
related to the language content and the speaker’s MH in-
formation. Our results indicate that the proposed model is
able to remove information that can be used to recognize
the speaker while pronouncing information that is indicative
of depression severity. We further found that the linguistic
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TABLE I
WORD ERROR RATE (WER), PEARSON’S CORRELATION BETWEEN

ACTUAL AND ESTIMATED DEPRESSION SEVERITY, SPEAKER
CLASSIFICATION ACCURACY OF ORIGINAL AND SYNTHESIZED SPEECH.

Method WER
Depression Speaker Classif.
Correlation Accuracy (%)
Cdepression Aspeaker

Original speech 0.322 0.521 51.8
WaveGlow Baseline 0.446 0.003 1.8
Speech Anonymization 1 0.511 0.382 31.2
Speech Anonymization 2 0.622 -0.007 2.2
Proposed 0.515 0.553 35.9

TABLE II
AVERAGE LISTENER RATINGS OF NATURALNESS, COMPREHENSIBILITY,

AND PLEASANTNESS.

Method
Perceptual Listener’s Rating
Dimension All Female Male

Original
Naturalness 4.36 4.48 4.27
Comprehension 4.31 4.40 4.23
Pleasantness 3.82 4.00 3.66

Speech Anonymization 1
Naturalness 2.822 3.16 2.52
Comprehension 3.40 3.66 3.16
Pleasantness 2.77 3.16 2.41

Proposed
Naturalness 2.76 3.01 2.48
Comprehension 3.34 3.56 3.14
Pleasantness 2.72 3.1 2.38

content of a sentence gets degraded after the conversion, which
is both a result of the vocoder that is being used, and the
transformation that is implemented via the auto-encoder. Based
on the perceptual experiments, the anonymized speech was
still perceived as comprehensible, but its comprehensibility
was reduced in comparison to the original speech.

The results of this work should be considered accounting
for the following limitations. We modeled inherent temporal
dependencies between audio frames by superimposing three
consecutive vectors of the Mel-spectrogram, which served
as an input to the auto-encoder. While this preliminary ap-
proach rendered promising results, we will examine state-
of-the-art speech-to-speech approaches that rely on 1D-CNN
and LSTM networks to explicitly model the spectrotemporal
evolution of speech signals. The small size of DAIC-WoZ
dataset might further prevent the results of this paper to be
generalizable to other speakers and different audio recording
settings. DAIC-WoZ consisted of short utterances from 107
participants, and depicted an uneven split of depressed and
non-depressed participants. Many utterances were short and
did not contain much information. Having a larger dataset
in natural conditions could have potentially yielded different
results. As part of our future work, we will consider a
more broad range of ages to account for different vocal cord
characteristics and additional MH conditions, such as PTSD.
Finally, additional evaluation approaches could be considered.
The model evaluation in terms of the extent to which speaker
identity is preserved is being conducted via a speaker classi-
fication module. Instead, a large part of the current literature

focuses on speaker verification systems that are pre-trained
on large corpora, such as the VoxCeleb dataset, and relies
on audio features known to effectively preserve the speaker
characteristics, such as the x-vector. Qualitative evaluation was
performed only in terms of speech intelligibility. It would
be worthwhile to conduct additional experiments with MH
clinicians in order to understand the extent to which the
proposed anonymization approach preserves clinically-relevant
information at the perceptual level, as well as with users and
patients in order to quantify perceived re-identification risks.

The findings from this study can lay a foundation to-
wards trustworthy speech-based technologies for accessible
MH diagnosis, monitoring, and prevention. MH-preserving
speech anonymization can reduce public resistance towards
ambulatory technologies and can potentially decrease user
skepticism in data sharing, since users can consent in sharing
only the anonymized speech, while the original speech can
be permanently deleted. This can also have positive implica-
tions on people who are bounded by legal constraints, such
as undocumented immigrants, inmates, and military veterans
who might need MH services. An important component for
increasing the feasibility of such technologies would be to
create lightweight edge computing algorithms that can work
closer to the sources of the data (e.g., on the mobile device),
therefore minimizing identity leakage risks that yield from
transferring and storing the speech data to online servers.
While the proposed auto-encoder based algorithm is computa-
tionally lighter compared to large-scale deep learning models,
additional improvement is needed for this algorithm to be truly
ubiquitous and implementable on edge devices.

VI. CONCLUSION

This paper demonstrates the feasibility of designing speech
anonymization algorithms that preserve MH information,
while reducing evidence of speaker identity on the speech
signal. Our proposed algorithm relies on an auto-encoder
architecture that generates the anonymized speech at its output
with two constraints; one constraint is to learn the identity
mapping between original and anonymized signal while re-
ducing the loss of the depression-estimation module, while
the other constraint aims to maximize the loss of the speaker-
classification module. The acoustic and linguistic information
is preserved by conducting the identity mapping with respect
to the Mel-spectrogram coefficients and the PPG for each anal-
ysis window. Quantitative and qualitative results indicate that
the speech signals synthesized by the proposed anonymiza-
tion algorithm are less intelligible compared to the original
speech, but equally intelligible to the considered baseline
speech anonymization algorithms. The proposed anonymiza-
tion algorithm can further effectively suppress information
related to the speaker ID, since the anonymized signals depict
15.9% reduction in speaker classification accuracy compared
to the original speech, and can effectively preserve MH-related
information, since the anonymized speech signals yield similar
performance to the original speech when they are used as an
input for estimating one’s degree of depression severity.
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