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Abstract—Understanding how macronutrients (e.g., 
carbohydrates, protein, fat) affect blood glucose is of broad 
interest in health and dietary research.  The general effects are 
well known, e.g., adding protein and fat to a carbohydrate-based 
meal tend to reduce blood glucose.  However, there are large 
individual differences in food metabolism, to where the same 
meal can lead to different glucose responses across individuals. 
To address this problem, we present a technique that can be 
used to simultaneously (1) model macronutrients’ effects on 
glucose levels over time and (2) capture inter-individual 
differences in macronutrient metabolism.  The technique 
performs a linear decomposition of glucose responses, 
alternating between estimating the macronutrients’ effect over 
time and capturing an individual’s sensitivity to 
macronutrients.  On an experimental dataset containing glucose 
responses to a variety of mixed meals, the technique is able to 
extract basis functions for the macronutrients that are 
consistent with their hypothesized effects on PPGRs, and also 
characterize how macronutrients affect individuals differently.  

I. INTRODUCTION 
Consuming a meal generally leads to an increase in blood 

glucose, followed by a recovery to the original level.  This 
characteristic response is known as the postprandial glucose 
response (PPGR). The main determinants of PPGRs are 
carbohydrates, but other macronutrients can also influence 
PPGRs.  For example, adding protein, fat, or fiber to a meal 
generally yields smaller spikes and lengthier responses [1, 2]. 
Understanding the specific role that various macronutrients 
play in PPGRs is of great interest for health applications [3, 
4]. As an example, metabolic models can be used to develop 
personalized nutrition programs [5], and may also be used to 
monitor diet automatically with the use of continuous glucose 
monitors (CGMs)1 [6, 7].  However, developing these models 
is challenging since there exist large inter-individual 
differences in food metabolism: two individuals consuming 
the same meal can have very different PPGRs [5]. 

To address this issue, this article presents an approach that 
can be used to jointly (1) learn how each macronutrient 
contributes to the glucose response and (2) capture individual 
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differences in sensitivity to macronutrients. The model 
assumes that each macronutrient adds a basis function to the 

                                                           
1 A CGM is a wearable sensor consisting of a small electrode 

inserted in the skin that measures glucose in the interstitial fluid, and 
a transmitter that sends the measurements to an external device. 

PPGR, and that individual differences can be modeled as a 
scaling term for these basis functions.  Then, the approach 
uses an optimization technique based on alternating least 
squares, where basis functions and individual differences are 
estimated iteratively until the model converges.  We evaluate 
the approach on an experimental dataset where participants 
consumed a variety of predesigned meals with known 
amounts of carbohydrates, protein and fat, while their glucose 
responses to those meals was measured with a CGM. 

II. RELATED WORK 
Given that adding protein and fat to a meal can alter the 

PPGR [1, 2], we recently conducted a study to test the 
hypothesis that the shape of the PPGR could be used to predict 
the meal macronutrients’ amounts.  In the study, 15 subjects 
consumed nine different mixed meals over the course of 2-3 
weeks while wearing a CGM. Each meal had a known but 
varying amount of carbohydrates, protein and fat. Then, we 
built machine-learning models to predict the amount of 
macronutrients in a meal from features extracted from the 
shape of the corresponding PPGR [6, 7].  Using a leave-one- 
subject-out cross-validation procedure, e.g., using data from 
14 subjects for training and the remaining subject for testing, 
we were able to predict the amount of macronutrients with a 
normalized root mean squared error of 22% for carbohydrates, 
50% for protein and 40% for fat.  This is a promising result 
given the large inter-individual differences in food 
metabolism and the fact that the models were not customized 
for each participant.  

To this end, recent studies have examined how to model 
individual differences in food metabolism.  In a seminal study, 
Zeevi et al. [5] tracked the glucose levels of 800 subjects for 
one week while they kept detailed records of their diet and 
wore a CGM.  A main finding was that there exists high inter-
individual variability in the glucose response to identical 
meals. To address this issue, the authors developed a machine-
learning model that could predict the glucose response to a 
meal for individual subjects by using a variety of “phenotype” 
variables, such as anthropometric features, blood panels and 
gut microbiota. To validate the model, the investigators used 
an independent group of 100 subjects, for whom they 
developed personalized diet.  On this new cohort, the model 
was able to predict which meals would led to lower 
postprandial glucose responses.  More recently, Tily et al. [8] 
used CGMs to monitor over 500 adults for 2 weeks, while they 
consumed a variety of standardized meals with different 
proportions of carbohydrates, proteins, fats and fiber.  Then, 
the authors built a multi-level mixed effects regression model 
that predicted postprandial glucose from the composition of 
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the meals and “phenotype” variables such as anthropometric 
features, gut microbiome and lifestyle variables.  

III. METHODS 
Figure 1 depicts the characteristic PPGRs to a meal.  

Depending on the meal’s contents, blood glucose rises 15-30 
minutes after the meal, reaches a peak within the first 1-2 
hours, and returns to baseline within 3-4 hours [9].  The figure 
also illustrates the effect of adding protein (P) and fat (F) to a 
meal with carbohydrates (C), which lead to lower peaks and 
delayed return to baseline.    

Let us denote by 𝑥𝑥𝑚𝑚𝑚𝑚(𝑡𝑡) the post-prandial glucose level of 
subject 𝑠𝑠 at time 𝑡𝑡 = [1,2, … ,𝑇𝑇] after consuming meal 𝑚𝑚, and 
by 𝑧𝑧𝑚𝑚𝑚𝑚,𝑖𝑖 the amount of the 𝑖𝑖-th macronutrient in the meal, 
where 𝑖𝑖 ∈ {𝐶𝐶,𝑃𝑃,𝐹𝐹}.  To model the PPGR, we assume that 
each macronutrient adds a characteristic basis function to the 
glucose response: 

𝑥𝑥𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝑎𝑎0(𝑡𝑡) + 𝑧𝑧𝑚𝑚𝑚𝑚,𝐶𝐶 ∙ 𝑎𝑎𝐶𝐶(𝑡𝑡) + 𝑧𝑧𝑚𝑚𝑚𝑚,𝑃𝑃 ∙ 𝑎𝑎𝑃𝑃(𝑡𝑡)
+ 𝑧𝑧𝑚𝑚𝑚𝑚,𝐹𝐹 ∙ 𝑎𝑎𝐹𝐹(𝑡𝑡) (1) 

where 𝑎𝑎𝐶𝐶(𝑡𝑡), 𝑎𝑎𝑃𝑃(𝑡𝑡) and 𝑎𝑎𝐹𝐹(𝑡𝑡) are the basis function of each 
macronutrient, and 𝑎𝑎0(𝑡𝑡) is an intercept term.  More complex 
functions may be used (see discussion section), but for ease of 
interpretation we assume that the macronutrient effects are 
additive and linear. The hypothesized basis functions are 
illustrated in Figure 2.  The marginal effect of carbohydrates 
is an immediate increase in blood glucose, followed by a slow 
decay.  In contrast, the marginal effect of protein and fat is an 
immediate decrease in glucose, and a subsequent increase. 
When used in eq. (1), these basis functions would lead to the 
prototypical PPGRs depicted in Figure 1. 

A. Least squares solution (average model) 
Consider a dataset 𝑿𝑿 containing the PPGRs of 𝑆𝑆 subjects 

after consuming 𝑀𝑀 different meals (for a total of 𝑆𝑆 ∙ 𝑀𝑀 
response curves), each meal with its corresponding 
macronutrient stored in 𝒁𝒁.   Then, eq. (1) can be expressed in 
compact form as: 

𝑋𝑋 = 𝐴𝐴 𝑍𝑍 (2) 

where 𝑋𝑋 ∈ ℛ𝑇𝑇×𝑆𝑆∙𝑀𝑀 (i.e., each column represents a PPGR), 𝑍𝑍 ∈
ℛ4×𝑆𝑆∙𝑀𝑀 (i.e., each column represents the macronutrients in the 
meal, plus a constant term for the intercept), and 𝐴𝐴 ∈ ℛ𝑇𝑇×4 
(i.e., each column represents a basis function, plus the 
intercept.) Since 𝒁𝒁 is known and 𝑿𝑿 is measured, the matrix of 

basis function 𝐴𝐴 can be obtained using the pseudo-inverse 
solution as: 

𝐴𝐴 = 𝑋𝑋𝑍𝑍𝑇𝑇(𝑍𝑍𝑍𝑍𝑇𝑇)−1 (3) 

B. Accounting for individual differences 
Unfortunately, the linear model in eq. (2) does not account 

for individual differences in food metabolism. For example, a 
given patient may be more sensitive to protein (or fat) being 
added to a carbohydrate-based meal than other participants.  
As a result, the “average” model in eq. (2) will not be able to 
model PPGRs accurately.    

To address this issue, we define a set of sensitivity 
variables {𝛼𝛼𝑚𝑚𝐶𝐶 ,𝛼𝛼𝑚𝑚𝑃𝑃 ,𝛼𝛼𝑚𝑚𝐹𝐹  } for each participant 𝑠𝑠, which capture 
the extent to which each macronutrient’s basis function 𝑎𝑎𝑖𝑖(𝑡𝑡) 
contributes to the overall glucose response, leading to:  

𝑥𝑥𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝑎𝑎0(𝑡𝑡) + 𝑧𝑧𝑚𝑚𝑚𝑚,𝐶𝐶 ∙ 𝛼𝛼𝑚𝑚𝐶𝐶 ∙ 𝑎𝑎𝐶𝐶(𝑡𝑡) 
+𝑧𝑧𝑚𝑚𝑚𝑚,𝑃𝑃 ∙ 𝛼𝛼𝑚𝑚𝑃𝑃 ∙ 𝑎𝑎𝑃𝑃(𝑡𝑡) + 𝑧𝑧𝑚𝑚𝑚𝑚,𝐹𝐹 ∙ 𝛼𝛼𝑚𝑚𝐹𝐹 ∙ 𝑎𝑎𝐹𝐹(𝑡𝑡) (4) 

or, in compact form,  

𝑋𝑋 = 𝐴𝐴𝜶𝜶𝑍𝑍 (5) 

This equation now presents two sets of dependent 
variables, the basis function matrix 𝐴𝐴 and the sensitivity 
matrix 𝜶𝜶. To solve for both, we use an algorithm based on 
alternating least squares (ALS) [10].  ALS is a matrix 
factorization technique commonly used in collaborative 
filtering [11] to decompose a user-item rating matrix 𝑅𝑅 into 
the product of two lower dimensional matrices 𝑅𝑅 = 𝑈𝑈𝑃𝑃, one 
representing users (𝑈𝑈) and the other representing items (𝑃𝑃).  
ALS is a two-step iterative optimization process, in which it 
first fixes 𝑃𝑃 and solves for 𝑈𝑈,  then fixes 𝑈𝑈 and solves for 𝑃𝑃.  
Alternating between these two steps is shown to reduce the 
reconstruction error until convergence to a (local) minimum.   

In our case, we use a similar procedure to solve for 𝐴𝐴 and 
𝜶𝜶 iteratively. The algorithm starts with an initial value for 𝜶𝜶 =
1, i.e., it assumes that all subjects have the same macronutrient 
sensitivity.  Then, it solves for 𝐴𝐴 through the least squares 
solution in eq. (3) using data from all the subjects in the 
dataset, i.e., the model assumes that the basis function of each 
macronutrient is common to all subjects. Given the new 
estimate for 𝐴𝐴, the algorithm computes the sensitivity 
variables 𝜶𝜶 for each subject 𝑠𝑠 separately.  This leads to a new 
set of estimates 𝜶𝜶, which the algorithm uses to recalculate 𝐴𝐴 
using eq. (3), and the process repeats until 𝐴𝐴 and 𝜶𝜶 converge.  

 
Figure 1.  Effect of meal macronutrients on PPGRs 

 
Figure 2.  Hypothesized basis functions of the three macronutrients 
(adapted from Tily et al. [8]) 
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In our experience, convergence occurs rapidly, typically 
within the first 5 iterations.   

C. Experimental dataset  
To test the proposed model, we used a dataset in which 15 

healthy subjects consumed 9 mixed meals on 9 different study 
days. The order of the meals was randomized for each 
participant. Subjects were asked to fast for at least 8 hours 
prior to the meal intake on each study day, so the first blood 
glucose reading was their fasting glucose level. After taking a 
baseline blood sample the morning of a study visit, each 
subject consumed a predefined meal. Subjects remained in a 
sedentary state and were not allowed to consume any other 
food for the next 8 hours. Each meal had a known but varying 
amount of carbohydrates (low: 52 g, medium: 95 g, high: 180 
g), protein (low: 15 g, medium: 30 g, high: 60 g), and fat (low: 
13 g, medium: 26 g, high: 52 g), which we denote as CxPxFx, 
where x represents the amount of each macronutrient (1: low; 
2: medium; 3: high).  To measure PPGRs, participants wore a 
CGM (Abbott Freestyle Libre Pro), which recorded glucose 
every 15 minutes. The study was approved by the Texas A&M 
Institutional Review Board (IRB #2017-0886). 

We perform our analysis using the first 32 PPGR readings 
(8 hours) from the time the meal was consumed. To account 
for individual differences in fasting glucose, we subtracted the 
baseline glucose of each PPGR prior to performing the 
decomposition.  

IV. RESULTS 
To illustrate the characteristic effect of carbohydrates, 

Figure 3(a) shows the average PPGR across subjects for meals 
with low (C1), medium (C2) and high (C3) carbohydrates, 
when the other two macronutrients are at a medium level (P2, 
F2).  As carbohydrates increase, the PPGR reaches a higher 
peak and becomes prolonged.  In contrast, increasing protein 
and fat –see Figure 3(b-c) has a mixed effect: it makes PPGRs 
more sustained but at the same time reduces the PPGR peak.  
These results provide support to our overall strategy, as they 
show that meal macronutrients have a characteristic effect on 
postprandial glucose, as depicted in Figure 1.  

In a second step, we analyze the convergence properties of 
the algorithm. Figure 4 shows the evolution of the sensitivity 
parameter 𝜶𝜶 over iterations.  The sensitivity parameter for 
carbohydrates converges rapidly, within 1-2 iterations, 
whereas those for protein and fat sometimes require 5 or more 
iterations.  Of interest, the final values reflect a wide range of 

sensitivities towards macronutrients. As an example, the 
sensitivity parameters for carbohydrates range from 0.1 to 
2.24, indicating that for those two subjects there is a 20-fold 
difference in the impact that increasing carbohydrates has on 
postprandial glucose.  The range of sensitivities is even larger 
for protein and fat, where for some subjects the sensitivity 
parameter becomes negative. This indicates that, for these 
subjects, the basis function of the corresponding 
macronutrient on PPGRs should be reversed. Altogether, 
these results reflect the large difference in carbohydrate, 
protein and fat metabolism that exist in our subject pool, 
which would make models based on averages rather limited.  

How effective is the proposed model in capturing 
postprandial responses? Figure 5 shows the raw PPGR for 
one of the meals in the study, the reconstruction from the least 
squares solution in eq. (3), which assumes 𝛼𝛼 = 1 for all 
subjects, and the reconstruction of the proposed model in eq. 
(5), which allows participants to have their own sensitivity 
parameters.  As shown, the latter model provides a closer 
reconstruction of the raw PPGR, especially during the early 
part of the transient.  In fact, across meals and participants, the 
proposed model reduces the reconstruction error by 27%, 
from 17.7 mg/dl (for the least squares solution) to 12.9 mg/dl. 

Next, we analyze the shape of the basis function for the 
three macronutrients. Results are shown in Figure 6 for the 
initial estimate and the one after the algorithm has converged.  
As shown, these basis functions reflect two distinct behaviors.  
First, the basis function for carbohydrates indicates that they 
induce high glucose right after consumption of the meal, as we 
observed earlier in Figure 3(a).  Second, the basis functions 
for protein and fat indicate that both provide a compensatory 
effect for carbohydrates, reducing glucose levels during the 
first part of the postprandial period.  This effect is then 

 
Figure 3. Average glucose response (across 15 subjects) at increasing 
levels of (a) carbs, (b) protein and (c) fat, while keeping the other two 
macronutrients at fixed levels 

 
Figure 4.  Convergence of the sensitivity variables 𝜶𝜶 as a function of the 
number of iterations. (a) carbohydrates (CHO), (b) protein, (c) fat. 

 
Figure 5. Original PPGR, as modeled with least squares (𝜶𝜶 = 𝟏𝟏) and 
with the proposed algorithm. 
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reversed during the latter part of the postprandial period.  This 
combined effect reflects the fact that adding protein and fat to 
carbohydrate-based meals results in lower and more sustained 
postprandial glucose responses, as we saw in Figure 3(b-c). 
Notice also how the shape of the basis functions is consistent 
with the hypothesized marginal effect of macronutrients in 
Figure 2. 

In a final analysis, we provide an interpretation for the 
sensitivity parameters. Assume a subject has high sensitivity 
to fat, 𝛼𝛼𝐹𝐹. This implies that the effect of adding fat to a meal 
will be very significant for that subject.  Thus, we expect that 
the difference in PPGRs between a meal high in fat (e.g., 
C2P2F3) and one low in fat (e.g., C2P2F1), weighted by the 
basis function for fat:  

Δ𝑥𝑥𝐹𝐹 = (𝑥𝑥𝐶𝐶2𝑃𝑃2𝐹𝐹3 − 𝑥𝑥𝐶𝐶2𝑃𝑃2𝐹𝐹1) × 𝑎𝑎𝐹𝐹(𝑡𝑡) (6) 

will be high for this subject. To verify this point, Figure 7 
shows the relationship between the sensitivity parameter and 
the measure Δ𝑥𝑥𝑖𝑖 for each of the three macronutrients.  We find 
a strong correlation between the two variables for 
carbohydrates and fat, and a modest correlation for protein2.  
Thus, the sensitivity parameters can be interpreted as being 
related to the expected change in PPGRs when the 
corresponding macronutrient is added to the meal or increased 
in quantity.   

V.  DISCUSSION 
We have presented an approach that can simultaneously 

extract the temporal effect on postprandial glucose of adding 
different macronutrient to a meal, and capture individual 
differences in macronutrient sensitivity.  When tested on an 
experimental dataset of PPGRs from subjects consuming a 
variety of foods, we find that the basis functions of the 
macronutrients are consistent with their hypothesized 
marginal effect on glucose, and that the sensitivity parameters 
can be interpreted in terms of differences in PPGRs between 
meals high and low in the corresponding macronutrients. 

In this work, we have assumed that the macronutrients’ 
effects are linear and additive, but other relationships may be 
explored, such as product terms and other nonlinearities. Of 

                                                           
2 This result is consistent with our earlier work [6, 7], which show 

that predicting the amount of protein in a meal from the PPGR is 
more challenging than predicting carbs or fat.   

interest here, Rytz, et al. [12] have recently proposed a model 
to estimate the glycemic index of mixed meals, where the 
contributions of protein and fat appear in the denominator of 
an expression. Thus, an alternative to our additive model in 
eq. (7) would rearrange the terms as: 

𝑥𝑥𝑚𝑚𝑚𝑚(𝑡𝑡) =
𝑎𝑎0(𝑡𝑡) + 𝑧𝑧𝑚𝑚𝑚𝑚,𝐶𝐶𝛼𝛼𝑚𝑚𝐶𝐶𝑎𝑎𝐶𝐶(𝑡𝑡)

𝑧𝑧𝑚𝑚𝑚𝑚,𝑃𝑃𝛼𝛼𝑚𝑚𝑃𝑃𝑎𝑎𝑃𝑃(𝑡𝑡) + 𝑧𝑧𝑚𝑚𝑚𝑚,𝐹𝐹𝛼𝛼𝑚𝑚𝐹𝐹𝑎𝑎𝐹𝐹(𝑡𝑡)
 (7) 

so that the effect of non-glycemic macronutrients (protein and 
fat) is divisive rather than subtractive, as in our model.   

An additional direction for future work is to use the 
distribution of sensitivity parameters in the dataset to generate 
“synthetic patients” with different macronutrient sensitivities.  
This may be used a data-augmentation procedure to build 
models that predict macronutrients from PPGRs [6, 7].  
Finally, the sensitivity parameters may also be used to develop 
personalized diet recommendations that reduce high glucose 
excursions after a meal [5].  
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