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Abstract
Previous approaches for foreign accent conversion (FAC) ei-
ther need a reference utterance from a native speaker (L1) dur-
ing synthesis, or are dedicated one-to-one systems that must
be trained separately for each non-native (L2) speaker. To
address both issues, we propose a new FAC system that can
transform L2 speech directly from previously unseen speakers.
The system consists of two independent modules: a transla-
tor and a synthesizer, which operate on bottleneck features de-
rived from phonetic posteriorgrams. The translator is trained
to map bottleneck features in L2 utterances into those from a
parallel L1 utterance. The synthesizer is a many-to-many sys-
tem that maps input bottleneck features into the corresponding
Mel-spectrograms, conditioned on an embedding from the L2
speaker. During inference, both modules operate in sequence
to take an unseen L2 utterance and generate a native-accented
Mel-spectrogram. Perceptual experiments show that our system
achieves a large reduction (67%) in non-native accentedness
compared to a state-of-the-art reference-free system (28.9%)
that builds a dedicated model for each L2 speaker. Moreover,
80% of the listeners rated the synthesized utterances to have the
same voice identity as the L2 speaker.
Index Terms: Foreign accent conversion, zero-shot learning,
many-to-many voice conversion

1. Introduction
Foreign accent conversion (FAC) [1] aims to transform non-
native speech to have the accent (or pronunciation patterns) of
a native speaker while retaining the speaker identity. The trans-
formed synthetic voice is referred to as a “golden speaker”,
and finds application in computer assisted pronunciation train-
ing [1, 2] for second-language (L2) learners. Since the golden-
speaker speech has the same timbre (voice identity) as the L2
learner, it is an ideal target for L2 learners to practice pronunci-
ation, instead of using speech from a native (L1) speaker. Apart
from pronunciation training, other applications of FAC include
personalized text-to-speech (TTS) synthesis [3, 4], movie dub-
bing [5], and improving automatic speech recognition (ASR)
performance [6].

Previous approaches to FAC have two major limitations.
First, most methods need a reference utterance from an L1
speaker during synthesis, which limits the system to sentences
that have been pre-recorded by the L1 speaker. As a result, this
can lead to poor transfer of speaker identity between source and
target speakers due to information entanglement [7]. Recently,
Zhao et al. [8] proposed a ”reference-free” method that trans-
forms L2 utterances directly, but the approach requires build-
ing a dedicated one-to-one model for each pair of L1 and L2
speakers, which requires considerable amounts of data for each
L2 speaker. To address both issues, we propose a new FAC
system that is both reference-free and zero-shot [9]. In other

words, the proposed system does not require a reference L1 ut-
terance at inference time, and can be directly used to generate
accent-conversions for unseen L2 speakers from a single utter-
ance (zero-shot). Further, the system does not need re-training
or fine-tuning for any of its models.

We split the task of reference-free FAC into two subtasks,
pronunciation correction and voice conversion, which are han-
dled respectively by a translator module and a synthesizer mod-
ule. Both modules use a sequence-to-sequence (seq2seq) model
as their backbone, and are trained independently. Utterances
from L1 and L2 speakers are first transformed into bottleneck
features (BNFs), a linguistic representation derived from pho-
netic posteriorgrams that captures the pronunciation pattern of
the utterance [7, 10]. The translator converts BNFs from a L2
speaker’s utterance into the BNFs that would have been pro-
duced by an L1 speaker. This is achieved by training the transla-
tor using a parallel corpus of utterances from L1 and L2 speak-
ers. The synthesizer module [11] is a many-to-many voice con-
version system, trained in a non-parallel fashion on a corpus of
multiple speakers, which produces a Mel-spectrogram from the
BNFs and a speaker embedding. During inference, a L2 utter-
ance is fed to the translator, and its output is passed to the syn-
thesizer, conditioned on the speaker embedding of the same L2
speaker. The result is a Mel-spectrogram that captures the voice
quality of the L2 speaker and the accent of an L1 speaker. Fi-
nally, to generate audio, we pass the obtained Mel-spectrogram
through a WaveRNN neural vocoder [12].

2. Related work
Early approaches in FAC involved building an articulatory syn-
thesizer for the L2 speaker to map the speaker’s articulatory
trajectories (e.g., lips and tongue movements) into their acous-
tic features (e.g., Mel Cepstra) using several techniques includ-
ing GMMs [13], unit-selection [14], and DNNs [15]. Then,
the synthesizer was driven by articulatory trajectories from a
L1 speaker to generate native-accented speech. To avoid the
need to collect articulatory data, Aryal and Gutierrez-Osuna
[16] proposed a FAC system that only used acoustic informa-
tion. This model adapted the conventional voice-conversion
approach, which pairs source and target frames via dynamic
time wrapping (DTW), by replacing DTW with a technique
that matched source-target frames based on their MFCC sim-
ilarity after vocal tract length normalization. Later, Zhao et
al. [7] refined the approach by using phonetic posteriorgrams
(PPGs) to compute the similarity between pairs of source and
target acoustic frames. These early approaches generated ac-
cent conversions on a frame-by-frame basis. More recent stud-
ies on voice [17, 18] and accent conversion [19, 20] have used
seq2seq models, which can model segmental and prosody fea-
tures simultaneously, resulting in better performance. A partic-
ular seq2seq architecture of interest is Tacotron [21], which was



proposed for text-to-speech synthesis and led to significant im-
provement in the acoustic quality of synthesized speech. There-
after, Tacotron2 [11] further improved acoustic quality through
a novel architecture and a WaveNet vocoder. Jia et al. [22] ex-
tended Tacotron2 for voice cloning by conditioning a speaker
embedding on the decoder.

Zero-shot learning has also been used for voice conversion
[23, 24] and voice cloning [22, 25], leading to systems that can
synthesize speech for arbitrary speakers unseen during training.
Recently, Ding et al. [26] adopted this zero-shot learning ap-
proach for accent conversion. However, their system required a
reference native speaker at synthesis time, which can be limit-
ing. To our knowledge, only two prior studies have examined
the problem of generating accent conversion directly from an
L2 utterance, also known as “reference-free” accent conversion.
Liu et al. [19] proposed a system that first extracts linguis-
tic and speaker representations through independently trained
ASR model and speaker encoder, respectively. Then, they use
these representations to condition a multi-speaker TTS model,
which finally generates native-accented speech. Their system
suffers from two drawbacks. First, their ASR model needs to
be fine-tuned on the target non-native speaker; second, as they
suggest in their evaluation, their system does not faithfully cap-
ture the voice identity of the target speaker. Zhao et al. [8]
also proposed a reference-free system. Their system is trained
in two steps. First, they train a conventional accent-conversion
model that uses reference L1 utterances as an input to generate
golden-speaker utterances for a target L2 speaker. After this,
the reference L1 utterances can be discarded. In a second step,
they train a “pronunciation correction” model to map the L2
utterances into the golden-speaker utterances obtained in the
first step. In this fashion, during inference the pronunciation-
correction model directly converts L2 speech into the corre-
sponding golden-speaker speech. In perceptual evaluations,
their system outperformed that of Liu et al. [19]. However, the
system had a major drawback in that it needed to build a dedi-
cated model for each L1-L2 speaker pair, which in turn requires
large amount (∼ 100s utterances) of data from each L2 speaker,
making it impractical for pronunciation-training at scale.

3. Methods
In this work, we proposed a reference-free zero-shot accent con-
version system that can synthesize native-accented speech for
an L2 speaker without the need of a parallel L1 utterance. The
system is composed of five independently trained models: (1)
an acoustic model that generates bottleneck features (BNFs), a
speaker-independent linguistic representation from speech, (2)
a speaker encoder designed to capture the voice identity of a
speaker, (3) an accent encoder that captures the accent of a
speaker, (4) a translator module, containing a seq2seq model
that consumes the BNFs of an L2 utterance and the accent em-
beddings from an accent encoder, and generates the BNFs that
would have been produced by an L1 speaker, and (5) a synthe-
sizer seq2seq model, that takes BNFs and speaker embeddings
as inputs and synthesizes a Mel-spectrogram for an arbitrary
speaker.

The workflow of our proposed approach is illustrated in
Figure 1. As described above, we train two independent seq2seq
models. The translator seq2seq model draws inspiration from
the task of machine translation, which in our scenario is trans-
lating a fine-grained linguistic representation (i.e., the BNFs)
from a L2 utterance into that of an L1 utterance. We train the
translator in a parallel fashion using a corpus of L2 speakers
having various accents and a reference L1 speaker, whose ac-
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Figure 1: Training workflow for (a) the translator and (b) the
synthesizer. (c) Overall inference workflow of the system.

cent and pronunciation patterns the translator seeks to model.
To train the translator, we pair utterances for each L2 speaker
with parallel utterances from an L1 speaker. Then, for each
pair of utterances, we pass the L2 utterance through the acous-
tic model to extract BNFs, which we assume only contain lin-
guistic information and are speaker independent; see Figure 1a.
Next, we feed the L1 utterance through the accent encoder to
obtain an accent embedding. Then, the L2 BNFs and L1 accent
embedding are feed to the translator, which is trained to gener-
ate the L1 BNFs at the output. In contrast, the synthesizer is
trained in a self-supervised manner to reconstruct the inputs at
the outputs, so it does not require a parallel corpus of speech.
As shown in Figure 1b, we generate BNFs for an utterance and
feed then to the synthesizer, conditioned on the corresponding
speaker embedding, which is obtained by passing this utterance
through the speaker encoder. The synthesizer is then trained
to reconstruct the corresponding Mel-spectrogram of the utter-
ance. During inference, we extract BNFs from an L2 speaker
and feed them to the translator; see Figure 1c. Next, we pass
the output of the translator with the speaker embedding gener-
ated for the L2 speaker used in previous step to the synthesizer
to obtain a native-accented Mel-spectrogram. Finally, this Mel-
spectrogram is fed to a WaveRNN neural vocoder [12] to gener-
ate a time-domain waveform. Below, we describe in detail each
component of our system.

3.1. Acoustic Model
Given an input utterance (L1 or L2), the acoustic model pro-
duces a phonetic-posteriorgram (PPG), which represents the
posterior probability of each frame belonging to a predefined
set of phonetic units (phonemes or triphones/senones). PPGs
capture the linguistic content of an utterance and are assumed
to be speaker independent. Following Zhao et al. [8], we use
the output from the last hidden layer of the acoustic model (i.e.,
the layer prior to the final softmax layer) as bottleneck features
(BNFs), instead of the PPGs. BNFs contain similar linguistic
information as PPGs, but have much lower dimensionality (256
vs 6,024 for Senone-PPGs). We used the acoustic model de-
scribed in [20].

3.2. Accent and Speaker Encoders
We use accent and speaker encoders to capture a speaker’s ac-
cent and voice identity, respectively. The speaker encoder is
trained as a speaker-verification model following the frame-



Table 1: Parameters for our proposed accent conversion model.

Component Synthesizer Params Translator Params

BNF 256 D 256 D
Speaker Emb. 256 D -
Accent Emb. - 256 D

3×Conv 512 5×1 kernels 512 5×1 kernels
2×pBiLSTM 256 cells/direction 256 cells/direction

Location Sensitive
Attention

128-dim context; 32
31×1 conv kernels

512-dim context; 32
31×1 conv kernels

PreNet 2×FC; 256 units 2×FC; 512 units
2×LSTM 1024 cells 2048 cells
Linear (Mel/BNF) 1×FC; 80 units 1×FC; 256 units
Linear (stop-token) 1×FC; 1 unit 1×FC; 1 unit
PostNet 5×Conv; 512 5×1

kernel
5×Conv; 1024 5×1
kernel

Mel /BNF 80 D 256 D
Stop token 2 D 2 D

work in [27]. Given an utterance, the speaker encoder gener-
ates a fixed-dimension embedding vector, which represents the
speaker identity. The speaker encoder model is composed of
a 3-layer LSTM with 256 hidden nodes per layer. The hidden
state of the last LSTM layer is fed to a projection layer with
256 units. We use the generalized end-to-end (GE2E) loss [27]
for training, which maximizes the cosine similarity between ut-
terances from the same speaker. The accent encoder follows
the same architecture and paradigm as the speaker encoder but
instead is trained to recognize various accents of English (see
Section 4.)

3.3. Translator and synthesizer
The translator and synthesizer modules contains seq2seq mod-
els inspired by Tacotron2 [11]. During training, the inputs to
the synthesizer are pairs of BNF sequences (x ∈ ℜT×D) and
the corresponding speaker embeddings (s ∈ ℜM ). Here, T is
the length of the BNF sequence, D is the BNF dimensionality
(256 in this study), and M is the dimensionality of the speaker
embedding (256 in this study). The encoder first takes in a se-
quence of BNFs x and generates a latent representation z as:

z = Encoder(x) (1)

Then, we concatenate the latent representation z with the corre-
sponding speaker embedding s to generate a concatenated rep-
resentation:

zconcat = [z, s] (2)
The concatenated latent representation zconcat is then fed to an
attention mechanism to generate an attention context, which is
then combined with zconcat and passed to the decoder to pre-
dict the Mel-spectrogram (omel) of the input speech in an au-
toregressive manner. This way the decoder is conditioned on
identity of the target (L2) speaker.

omel = Decoder(zconcat) (3)

We also pass the decoder output to a post-net which predicts
the residual Mel-spectrogram, following [22]. We use the Eu-
clidean distance between the target Mel-spectrogram and the
model prediction before/after the post-net as the loss function.
Simultaneously, we also minimize an additional cross-entropy
loss to predict the stop-token, so that the generation process can
be stopped during inference. The final loss function can be writ-
ten as:

L = α||omel − ymel||22 + βCE(ostop, ystop) (4)

where, ymel is the ground-truth Mel-spectrogram; ystop is the
ground truth stop token; CE(.) is the cross-entropy loss and
α, β are the weight terms.

The encoder in the original Tacotron2 architecture uses a
bidirectional LSTM (Bi-LSTM) layer to process the input text
embeddings. The input in our case are BNFs, which are signifi-
cantly longer than text embeddings. Therefore, following Zhao
et al. [8], we replace the Bi-LSTM layer in the encoder with
two pyramidal Bi-LSTMs (p-Bi-LSTM) so that the high-level
contextual and phonetic information can be captured from the
input BNF sequence. With each p-Bi-LSTM, there is a two-
factor reduction in the time resolution and hence our encoder
generates four times shorter sequence as compared to the input.
The Translator has the same architecture as the synthesizer, but
the decoder is conditioned on the accent embedding instead of
the speaker embedding and produces L1 equivalent BNF repre-
sentations. The hyperparameters of each component are sum-
marized in Table 1.

4. Experimental setup
We trained the acoustic model on the Librispeech [28] corpus,
which contains utterances from 2,484 native English speakers.
The acoustic model was implemented using Kaldi [29] and the
trained model achieved a word error rate (WER) of 3.76% on
Librispeech’s test-clean subset. We used VoxCeleb1 [30], Vox-
Celeb2 [31], and Librispeech to train the speaker encoder, for a
total of around 3,000 hours of speech from 9,847 speakers. Fol-
lowing [26], we trained the accent encoder using data from the
Speech Accent Archive [32]. We extracted a 257-dimensional
Mel-spectrogram with 25ms window and 10 ms shift. Both
speaker and accent encoders were implemented in PyTorch and
trained using the Adam optimizer with a learning rate of 10−2

and batch size of 128. For the FAC task, we trained both the
seq2seq models and conducted experiments using the ARC-
TIC [33] and the L2-ARCTIC [34] corpora. For each speaker,
we divided their utterances into three subsets: a training set of
1,032 utterances, a validation set of 50 utterances and a test set
of 50 utterances. To replicate the experiments by Zhao et al.
[8], four speakers (NJS, YKWK, TXHC, and ZHAA) from L2-
ARCTIC were left out of the training set to run experiments as
unseen speakers to the system. We use BDL as the reference
native speaker to train the translator model and pair it with all
24 speakers from ARCTIC and L2-ARCTIC datasets (exclud-
ing the four test speakers and including BDL). The synthesizer
model was also trained using these 24 speakers. We imple-
ment both seq2seq models using TensorFlow. All models were
trained using two NVIDIA Tesla V100 GPUs. For both seq2seq
models, we set the batch size as 32 and used Adam as the opti-
mizer with a learning rate of 10−3 which was annealed down to
10−5 by exponential scheduling. The synthesizer and the trans-
lator converged after 200,000 and 300,000 steps, respectively,
and in total took about 140 hours to train.

5. Results
To evaluate our proposed system, we conducted three per-
ceptual experiments to rate three attributes of the synthesized
speech: accentedness, acoustic quality, and voice similarity. We
compare our proposed architecture to the reference-free system
of Zhao et al. [8], which served as the baseline. For each
perceptual experiment, we instructed participants to focus on
the target speech attribute. Test utterances were randomly se-
lected from the test set, and presentation order was randomized
and counter balanced. We recruited 20 separate participants for
each listening test. All participants were residents of the United



Table 2: Mean Opinion Score rating scale.

Rating Speech Quality Level of distortion

5 Excellent Imperceptible
4 Good Just perceptible but not annoying
3 Fair Perceptible but slightly annoying
2 Poor Annoying but not objectionable
1 Bad Very annoying and objectionable

Table 3: Accentedness rating (the lower, the better) and MOS
(the higher, the better) for the two accent conversion systems
and the original speech.

Baseline Proposed Original L2 Original L1

Accentedness 4.82 2.23 6.78 1.10
MOS 3.03 3.03 4.44 4.63

States at the time of the recruitment, and were required to pass
a qualification test where they were asked to identify various
regional dialects of the United States. The study was approved
by the Institutional Review Board of Texas A&M, and was con-
ducted on Amazon Mechanical Turk.

5.1. Accentedness test
Participants were asked to rate the degree of foreign accented-
ness of each audio sample on a nine-point Likert scale (1: no
foreign accent, 9: heavy foreign accent). Each participant rated
10 utterances per speaker per system. Participants were also
asked to rate utterances from L1 and L2 speakers, which served
as a reference. Results are shown in Table 3. Both systems
obtained significantly lower ratings (i.e., more native-accented)
than the original L2 utterances (p ≪ 0.001). The baseline sys-
tem reduced accentedness by 28.9%, whereas the proposed sys-
tem achieved a much greater reduction (67.0%); this difference
was statistically significant (p ≪ 0.001).

5.2. Acoustic quality test
Participants were asked to rate the acoustic quality of an utter-
ance using a standard 5-point scale mean opinion score (MOS).
The ratings scale and their corresponding speech quality and
level of distortion labels are listed in Table 2. Listeners were
provided with reference audio samples with different MOS rat-
ings so they could calibrate themselves [35]. These reference
samples were taken from the 2018 Voice Conversion Challenge
dataset [36]. Each listener rated 10 utterances per speaker per
system. Listeners also rated utterances from L1 and L2 speak-
ers, as in the accentedness test. Results are shown in Table 3.
It can be observed that both baseline and proposed systems ob-
tained similar MOS, and the differences were not statistically
significant (p = 0.91). The original L1 and L2 utterances re-
ceived the highest MOS ratings, as expected.

5.3. Voice identity test
To evaluate voice identity, we conducted an ABX test where
participants were presented with two audio samples, one from
the L1 speaker, and the other from the L2 speaker, followed by
the accent-converted sample. Then, participants had to decide
which audio sample (L1 or L2) the synthesized speech was most
similar to, and then rate the confidence in their decision using a
7-point scale (7: extremely confident; 5: quite a bit confident; 3:
somewhat confident; 1: not confident at all). Following Felps et
al. [37], the decision and confidence level were then collapsed
to form a 14-point VSS (Voice Similarity Score) scale: -7 (def-
initely L1) to +7 (definitely L2). To minimize the effect of ac-
cent, all audio samples were played in reverse and had different
linguistic content. Each listener rated 15 of such combinations

Table 4: Voice similarity ratings for the two FAC systems.

Baseline Proposed

Prefer L2 speaker 84.33% 82.00%
Average rater confidence 5.59 5.30

per speaker per system. The order in which L1 and L2 utter-
ances appeared were randomized. Results are shown in Table 4.
Across both systems, more than 80% of participants were “quite
a bit” confident that the accent-converted speech had the same
speaker identity as the original L2 speaker. This indicates that
both systems were able to retain the speaker identity, though the
baseline model performs marginally better (p = 0.03). This re-
sult is remarkable considering that the baseline system builds a
dedicated one-to-one model, whereas the proposed system is a
many-to-many system that is tested on unseen speakers (zero-
shot).

6. Discussion
We have presented an accent-conversion system that can trans-
form utterances from unseen L2 speakers (i.e., zero-shot) to
sound as if they were produced with a native accent, and com-
pared it against a state-of-the-art baseline that requires building
a dedicated system for each L2 speaker. The proposed system1

achieves near-native ratings of accentedness, significantly out-
performing those achieved by the baseline system. This is made
possible by training a model to “translate” L2 bottleneck fea-
tures into equivalent L1 bottleneck features, in this way correct-
ing the pronunciation errors in the L2 utterance. The translator
is trained using multiple speakers from six different accents,
so it learns to handle many more mispronunciation variations
than it would from a one-to-one system. This might explain
why we observe such a significant drop in accentedness ratings
compared to the baseline system. Further, our proposed sys-
tem achieves similar ratings of MOS and speaker identity as the
baseline system, despite the fact that our system was evaluated
on unseen speakers whereas the baseline system only works on
seen L2 speakers.

Synthesized speech for both systems received lower MOS
ratings than the original utterances. This is likely due to the fact
that both systems use an independently-trained vocoder. Thus,
a future direction to improve MOS ratings is to jointly train the
synthesizer and the vocoder. We restricted our experiments to
perform FAC on accents that were already present in the train-
ing set. Future work is necessary to test the system’s ability
to handle unseen accents at the input. Another future research
direction is to make the model robust when synthesizing long
utterances. The current architecture uses a location-sensitive at-
tention mechanism, which is prone to fail with long utterances.
Thus, alternative attention mechanism like the gaussian mixture
attention [38, 39] could be used instead. Finally, transformer
networks [40] can also be used as an alternative for the seq2seq
models. Transformer networks could also help reducing synthe-
sis time through non-autoregressive sequence generation [41]
and perform real-time accent conversion.
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