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Abstract 

We present an algorithm for selecting exemplars for native-

to-nonnative voice conversion (VC) using a Sparse, Anchor-

Based Representation of speech (SABR). The algorithm uses 

phoneme labels and clustering to learn optimal exemplars when 

source and target speakers are affected by poor time alignment, 

as is common in in native-to-nonnative voice conversion. We 

evaluate the method on speech from the ARCTIC and L2-

ARCTIC corpora and compare it to a baseline exemplar-based 

VC algorithm. The proposed algorithm significantly improves 

synthesis quality and more than doubles that of a baseline 

exemplar-based VC system while using two orders of 

magnitude fewer atoms. Additionally, the proposed algorithm 

significantly reduces the VC error and improves the synthesis 

quality as compared to unoptimized SABR models. We discuss 

the implications of both optimization algorithms for SABR and 

broader exemplar-based VC systems.Index terms should be 

included as shown below. 

Index Terms: sparse coding, voice conversion, dictionary 

learning, exemplar-based 

1. Introduction 

Accent Conversion (AC) is the task of converting the speech of 

a nonnative speaker (L2) to have the pronunciation pattern (e.g. 

prosodic and segmental content) of a native speaker (L1) while 

retaining the voice quality of the L2 [1]. AC methods have 

application to pronunciation training, where prior research has 

shown that it can be made more effective by matching the 

learner to model voices that resemble the learner’s voice [2-5]. 

A number of studies have applied voice conversion (VC) 

techniques to the problem of AC, by transforming utterances 

from a native speaker to match the voice quality of the L2 

learner [1, 6]. However, these techniques can have onerous 

training requirements, making them impractical for 

instructional settings. Low-resource VC methods such as 

exemplar-based VC require significantly fewer amounts of 

training data, but also require time-aligned source and target 

utterances [7-9], which is challenge when pronunciation errors 

(e.g., phoneme substitutions, additions, and deletions) are 

present, as is common in L2 speech, which ultimately reduces 

synthesis quality [6, 10, 11]. 

To address this issue, we recently developed a low-

resource, exemplar-based VC technique which used phoneme-

based “anchors” (i.e. exemplars) to model a speaker’s voice. 

Termed a sparse, anchor-based representation of speech 

(SABR) [12-14], the technique decomposes a source speaker’s 

spectrum into “weights,” (i.e., sparse codes) that separate 

linguistic content from speaker identity. SABR performs VC by 

taking the source speaker’s weights (i.e., linguistic content) and 

combines them with anchors from the L2 learner. SABR 

anchors are learned from phoneme labels gathered via forced 

alignment, so issues arising from time-aligning source and 

target speakers (e.g., in the case of native-to-nonnative voice 

conversion) are largely avoided. However, SABR anchors 

cannot represent phonemes with multiple acoustic states (i.e. 

diphthongs or stops), or instances where a nonnative speaker 

mispronounced the phoneme. Optimizing anchor selection, as 

well as allowing for multiple anchors per phoneme, would 

improve synthesis quality and reduce the VC error. 

In this paper, we propose a clustering-based exemplar 

selection algorithm called Anchor Removal and Splitting 

(ARS) to address the issue of phoneme selection in the SABR 

model. ARS builds a hierarchical cluster for each phoneme in a 

training dataset and greedily removes or splits anchors to reduce 

the VC error, allowing multiple anchors to represent a phoneme 

or the anchor to be removed entirely. We evaluate the algorithm 

using a dataset of speech recordings from native and non-native 

speakers in the ARCTIC [15] and L2-ARCTIC [16] corpora, 

respectively, and compared them against an exemplar-based 

VC baseline that relied on time-aligned source and target 

dictionaries [8]. ARS had significantly higher acoustic quality 

than the baseline system in native-to-nonnative conversions 

while needing two orders of magnitude fewer anchors. These 

improvements in acoustic quality came at no loss in VC 

performance, measured by the ability of the algorithms to 

capture the voice quality of the target speaker. Finally, a 

detailed analysis of ARS shows that it preferentially chooses to 

split phonemes that have multiple sub-phoneme units, and 

phonemes that are frequently substituted (i.e., mispronounced) 

by L2 speakers. These results show that ARS can be used as a 

tool to select appropriate exemplars, especially in low-resource 

settings. 

The remainder of this paper is organized as follows. Section 2 

reviews prior work on Accent Conversion exemplar-based VC. 

Section 3 describes the VC algorithm used in this paper (SABR) 

and ARS. Section 4 describes the experimental design and 

speech corpora used in our study. Section 5 presents objective 

and subjective experimental results. The article concludes with 

a summary of our findings and directions for future work. 

2. Prior work 

Accents are characterized by prosodic and segmental 

differences with respect to a norm, so AC methods must 

account for these to capture the target speaker’s voice quality. 

Aryal et al. [6] proposed an alternative “acoustic similarity” 

alignment for use in a GMM-based VC algorithm.  The authors 

used Vocal Tract Length Normalization (VTLN) to account for 

coarse physiological differences between the L1 and L2 

speakers. Then, they paired each L2 frame to the closest L1 

frame (according to Mel-Cepstral Distortion) and, likewise, 

paired each L1 frame to the closest L2 frame, forming a lookup 

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-1740841



table from which a GMM was trained.  More recently, Zhao et 

al. [11] presented another alignment method to account for 

pronunciation differences between the L1 and L2 speakers. 

Instead of VTLN, the authors computed a Phonetic 

Posteriorgram (PPG) for each L1 and L2 frame, then paired L1 

and L2 frames to minimize the KL-divergence of their 

respective PPGs. However, both of these methods require 

significant amounts of training data, making them infeasible for 

pronunciation training contexts. 

Exemplar-based voice conversion was originally developed 

as a method to account for over-smoothing of parametric 

statistical voice conversion methods [7, 9, 17]. These methods 

are well-suited for low-resource scenarios, as they typically 

require only a few dozen training utterances. Aihara et al. [7] 

proposed a method for building a phoneme-categorized 

dictionary, which added a penalty to the objective function so 

that the conversion algorithm was forced to select target 

exemplars from the same phonetic class as the source. Sisman 

et al. [18] demonstrated an exemplar-based VC system that 

appended PPG to the selected exemplar dictionaries to encode 

additional phonetic information. These results suggest that 

selecting exemplars to retain similar phonetic content will 

significantly improve synthesis quality.  

Phoneme labels derived from ASR are also often used in 

neural voice conversion [19-22]. In [23], the authors used a 

latent phoneme embedding in a vector quantized VAE system. 

They found that including the embedding significantly 

improved the synthesis quality of VQ-VAE VC. In [24], Zhou 

et al. used PPGs learned from two speech recognition systems 

to perform voice conversion on speakers of two different 

languages, allowing the conversion system to identify linguistic 

content from the source speaker that did not resemble the target 

speaker’s language. The inclusion of both PPGs significantly 

improved the synthesis quality and speaker identity. 

3. Methods 

3.1. SABR: Spares, Anchor-Based Representation of 

Speech 

The voice conversion algorithm that underlies this work 

(SABR) represents an utterance as a sparse linear combination 

of speaker-dependent phonemic anchors [13]. The intuition 

behind the method is that the sparse code of an utterance 

relative to these anchors encodes the linguistic content.  

Given a speech spectrum 𝑋𝑆, SABR decomposes it as: 

𝑋𝑆 = 𝐴𝑆𝑊𝑆, (1) 

where 𝑊𝑠 is a sparse set of weights, and 𝐴𝑆 is a set of speaker-

dependent phoneme “anchors.”  For an utterance with 𝑇 frames, 

𝑁  acoustic spectral features (e.g., MFCCs), and 𝐾  anchors, 

𝑋𝑆  ∈ ℝ𝑁×𝑇, 𝐴𝑆 ∈ ℝ𝑁×𝐾, and 𝑊𝑆 ∈ ℝ𝐾×𝑇. SABR uses a single 

anchor per phoneme, which is computed by selecting the 

centroid of all frames that have the corresponding phoneme 

label in the speaker’s training corpus. 

SABR uses the Lasso [25] to estimate the weights (sparse 

codes) 𝑊𝑆 ∈ ℝ𝐾×𝑇: 

min
𝑊𝑆

‖𝑋 − 𝐴𝑆𝑊𝑆‖2
2 + ‖𝑊𝑆‖1 , 𝑠. 𝑡. ‖𝑊𝑆‖1 ≤ 𝜆 (2) 

where ‖∙‖1 is the L1 norm and 𝜆 is the maximum sum allowed 

for each 𝑊𝑠, which acts as a regularization term.  

To obtain an estimate of the target speaker’s spectrum, a 

target anchor set 𝐴𝑇  is built in the same manner as 𝐴𝑆 : one 

spectral anchor per phoneme label, corresponding to the 

centroid of all target speaker training data with that label. An 

estimate of the target speaker’s spectral envelope �̂�𝑇  is 

obtained as the product of the source weights and target 

anchors: 

�̂�𝑇 = 𝐴𝑇𝑊𝑆. (3) 

This estimated spectrum lacks spectral detail, as the 

residual from eq. (2) has been discarded. In prior work [14], we 

proposed a method for transforming the source residual to the 

target speaker’s space using frequency warps learned from the 

source and target anchor sets 𝐴𝑆 and 𝐴𝑇 , represented here as 

𝐹𝑅: 

�̂�𝑇 = 𝐴𝑇𝑊𝑆 + 𝐹𝑅(𝑋𝑆 − 𝐴𝑆𝑊𝑆; 𝐴𝑆, 𝐴𝑇 ,𝑊𝑆) (4) 

For brevity, we refer the reader to [14] for details on the 

residual warping method. The overall approach is illustrated in 

Figure 1 (a). 

3.2. Anchor Removal and Splitting (ARS) algorithm 

The proposed optimization method, Anchor Removal and 

Splitting (ARS), addresses two issues. First, using single 

anchors per phoneme may not be enough to represent some 

phonemes classes, such as stops or affricates, which contain 

several sub-states. Second, the phoneme inventory of the L2 

speaker may be different from that of the L1 speaker and will 

likely include mispronunciations of a phoneme. As a result, the 

source-target anchors may be mismatched, introducing 

distortions in the VC synthesis. To address these issues, at each 

iteration ARS either removes an anchor or “splits” it into sub-

anchors, depending on which action most reduces the VC error 

against a set of validation utterances.  

Initially, we compute a binary tree of cluster centroids for 

each phoneme using Ward’s method [26]. These clusters are 

learned by concatenating time-aligned source and target 

training data: [𝑋𝑠
𝑇 , 𝑋𝑇

𝑇]𝑇. The root node of the binary cluster tree 

corresponds to the centroids of each phoneme. We then 

optimize the anchor sets iteratively by either splitting an anchor 

into the two child subtrees, or removing an anchor entirely. 

During the split operation, a given anchor is replaced with its 

two child nodes from the phoneme’s cluster tree, representing 

the two higher-detail clusters in that phoneme. The removal 

operation simply removes the given anchor from the anchor set 

 

 
(a)    (b) 

Figure 1: Illustration of the overall SABR algorithm and the 

proposed optimization algorithm. (a) An overview of the SABR 
VC method. (b) A block diagram of the proposed Anchor 

Removal and Splitting (ARS) algorithm. 
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and all child nodes of that anchor from the phoneme tree. These 

two operations address the two potential issues described 

previously. The split operation allows for multiple anchors per 

phoneme, aiding in the representation of certain phoneme 

classes. In the case that one pair of source-target anchors 

contains a mispronunciation and is mismatched, the removal 

operation allows for that anchor to be discarded.   

On each iteration 𝑡, the split and removal operations are 

performed on the current anchor sets 𝐴𝑆
𝑡  and 𝐴𝑇

𝑡 , resulting in a 

temporary anchor sets 𝐴𝑆
𝑘,𝑓

, 𝐴𝑇
𝑘,𝑓

:  

[𝐴𝑠
𝑘,𝑓

, 𝐴𝑇
𝑘,𝑓

] = 𝑓(𝐴𝑆
𝑡 , 𝐴𝑇

𝑡 ), (5) 

where 𝑓  are the two ARS operations and 𝑘  is the anchor on 

which the operation was performed. 

For each anchor-operation pair, the VC error (computed 

from eq. (3)) is measured against a validation data set 𝑋𝑆
  and 

𝑋𝑇
 : 

[𝐴𝑠
𝑡+1, 𝐴𝑇

𝑡+1] = argmin
𝐴𝑆

𝑘,𝑓
, 𝐴𝑇

𝑘,𝑓
(𝑋𝑇

 − 𝐴𝑇
𝑘,𝑓

𝑊𝑆
𝑘,𝑓

), (6) 

where 𝑊𝑆
𝑘,𝑓

 are the weights computed from eq. (2) using 

anchors 𝐴𝑆
𝑘,𝑓

 and the validation data 𝑋𝑆
 . The temporary anchor 

set with the minimum VC error is used as the input to the next 

iteration, and the split and removal operation are tested again 

against the new anchor set. This iterates until the VC error does 

not decrease, or a maximum number of iterations is reached. A 

block diagram of the ARS algorithm is shown in  Figure 1 (b). 

4. Experiments 

4.1. Data and implementation details 

We evaluated the ARS proposed algorithm using the CMU 

ARCTIC speech corpus [15] and the L2-ARCTIC speech 

corpus (v 1.0) [16]. L2-ARCTIC is a corpus based on the 

prompts of the ARCTIC database, but with L2 speakers of 

English from six first languages: Mandarin, Hindi, Arabic, 

Spanish, Korean, and Vietnamese 1 . We conducted both 

subjective and objective evaluations in both native-to-native 

(ARCTIC to ARCTIC, or A2A for short) and native-to-

nonnative (ARCTIC to L2-ARCTIC, A2L2) contexts. For 

objective experiments, we evaluated all possible speaker pairs 

in A2A and A2L2 conditions; but for perceptual experiments 

(synthesis quality and speaker identity tests), we only evaluated 

the speaker pairs in Table 1 (A2A) and Table 2 (A2L2). In a 

prior study [12], we observed that using SABR for Accent 

Conversion was very effective in reducing accentedness when 

converting from a native speaker to a nonnative speaker; 

because of this, we did not perform such tests in this study.  

To illustrate the time-alignment difference between native 

and nonnative speaker pairs, we computed the average 

difference between DTW trajectories for A2A and A2L2 

speaker pairs (see Table 3). As shown, alignment of A2L2 

speaker pairs incurs nearly twice the error of alignment of A2A 

pairs, which highlights the challenges of using conventional 

exemplar-based VC methods when the target speakers are non-

native. 

                                                                  
1 At the time of our experiments, the Vietnamese speakers were not 

available and were not included in the objective experiments. 

We performed time alignment using the MFCC features and 

dynamic time warping (DTW) [27]. We used STRAIGHT [28] 

with 1 ms frame steps and 80 ms window size to extract 

aperiodicity, fundamental frequency, and spectral envelope 

from each utterance. We then computed a 25-dimension MFCC 

vector. SABR models ignored 𝑀𝐹𝐶𝐶0, as it contains energy. 

For synthesis, the energy from the source speaker was 

copied to the estimated target speaker’s spectrum. We 

converted the pitch of the source utterance to match the pitch 

range of the target speaker using log mean-variance scaling 

[29]. To solve for the Lasso, we used the LARS  solver from 

the SPAMS sparse coding toolbox [30]. 

4.2. Comparison systems 

We evaluated the proposed algorithm against the original 

SABR system and a VC baseline system2: 

• ARS: source and target anchor sets optimized by the ARS 

algorithm (Section 3.2). Twenty training utterances were 

split up into two sets of 10 utterances: one to train the 

anchors, and the other 10 to use as a validation set at the end 

of each ARS iteration. 

• SABR: the default SABR anchors—one anchor per phoneme, 

selected by computing the centroid of all frames with that 

phoneme label (Section 3.1). 

• Baseline: Exemplar-Based VC with Residual Compensation 

[8], a time-aligned exemplar-based VC approach. The 

dictionaries in this model were substantially larger than that 

of the SABR and ARS models (4720 atoms on average for 

the baseline models). 

We used 20 parallel utterances to train the three systems. The 

training utterances were selected in such a way as to maximize 

phoneme variability. For all systems, we measured the VC error 

using Mel-Cepstral Distortion (MCD) [29] on a test set of 200 

utterances selected from the ARCTIC “A” set of utterances.  

5. Results 

5.1. Objective evaluation 

To characterize the performance of ARS, we evaluated it from 

two perspectives: the per-iteration performance and the 

2  Synthesis samples from the above systems can be found at 

https://cliberatore.github.io/samples/sabr-ars.html 

Table 1: A2A speaker pairs for perceptual experiments.  

Source speaker Target speaker 

BDL (M) RMS (M) 

SLT (F) CLB (F) 

RMS (M) SLT (F) 

CLB (F) BDL (M) 

 

Table 2: A2L2 speaker pairs for perceptual experiments. 

Source speaker Target speaker First language 

BDL (M) HKK (M) Korean 

SLT (F) SKA (F) Arabic 

RMS (M) YDCK (F) Mandarin 

CLB (F) EVBS (M) Spanish 

 

Table 3: Average time alignment differences. 

Corpus Average alignment error 

L2-ARCTIC average 221 ms ± 36 ms 

ARCTIC average 124 ms ± 15 ms 
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phonemes the ARS algorithm selected for splitting, as that 

operation contributed most to reducing the VC error. 

Figure 2 shows the per-iteration results. ARS reduces the VC 

error for both speaker pairs, but more for A2L2 pairs because 

of pronunciation differences between the source and target 

speakers. Effects of time-alignment differences are visible in 

the number of anchors selected (see Figure 2 (b)). Because A2A 

pairs are generally less affected by accent and time-alignment 

issues, the source and target clusters are more likely to contain 

similar phonetic information, so ARS favors the splitting 

operation. The A2L2 pairs reach an average of 60 anchors, 

whereas A2A pairs had an average of 69.8 anchors. 

As the split operation had a stronger impact on the reduction 

in VC error, we examined which phonemes selected in that 

operation contributed to the greatest reduction in VC error. We 

computed the total amount the VC error decreased when 

phoneme 𝑘 was split as: 

Δ𝑒𝑘 = ∑ 𝑆𝑘
𝑡(𝑒𝑡−1 − 𝑒𝑡),

60

𝑡=1
 (7) 

where Δ𝑒𝑘 is the change in VC error for phoneme 𝑘, 𝑡 is the 

ARS iteration, 𝑆𝑘
𝑡  is an indicator variable that is 1 when 

phoneme 𝑘  was selected for splitting on iteration 𝑡  and 0 

otherwise. For 𝑒0, we used the VC error of the initial SABR 

models. Figure 3 shows the results of eq. (7) computed for all 

A2A and A2L2 speaker pairs, (a) shows A2A speakers and (b) 

shows A2L2 speakers. First, ARS favored voiced phonemes 

and vowels on A2A pairs more than on A2L2 pairs. Second, on 

A2L2 pairs, ARS often split phonemes with known voicing 

substitution errors (e.g., /s/ and /z/, common in the L2-ARCTIC 

corpus [16]). Finally, on A2L2 pairs, the most-split phonemes 

were those where the phoneme labels contained multiple states 

over the production of the phoneme (e.g., diphthongs and stops) 

or had the same articulation, but different voicing.  

The average MCD of the three methods, evaluated on the 

test set, as well as the final dictionary sizes are shown in Figure 

2. For both A2A and A2L2 pairs, ARS had significantly lower 

VC error than the original SABR model (A2A and A2L2,  

𝑝 ≪ 0.001, paired t-test). Notably, there was no significant 

difference in the VC error of the proposed optimization method 

and the baseline model (A2A, 𝑝 ≥ 0.05 , A2L2, 𝑝 ≥ 0.35 , 

paired t-test), a positive result given that the dictionaries on the 

baseline model were more than two orders of magnitude larger.  

5.2. Subjective evaluation 

5.2.1. Mean Opinion Score 

We performed a Mean Opinion Score (MOS) test to measure 

the synthesis quality of the three VC systems. We recruited 

participants (𝑛 = 20) on Amazon Mechanical Turk to rate the 

quality of an utterance on a 5-point scale (1 = “low quality”; 5 

= “high quality”). For each synthesis method, we asked 

participants to rate 40 utterances (5 per speaker pair). Following 

[31], we included unmodified references to ensure participants 

were not randomly guessing. Results are shown in Table 4. 

MOS ratings for ARS were approximately twice as high as 

those of the baseline system (𝑝 ≪ 0.01, single-tailed t-test), a 

remarkable result given that they include far fewer anchors in 

their dictionaries. This MOS rating is significantly lower than 

those reported by the authors of the baseline system. We believe 

this is due to the difficulty in time-aligning native to non-native 

utterances, which is critical for the baseline system. 

Notably, the baseline method had a significantly larger 

difference in MOS between A2A and A2L2 versus the SABR 

and ARS methods (𝑝 < 0.01, both methods, single-tailed t-

test). However, ARS did not significantly improve on the 

baseline SABR synthesis quality in either A2A or A2L2 cases 

(𝑝 > 0.13, single-tailed t-test), suggesting that the additional 

anchors, while reducing VC error, do not impact synthesis 

quality as significantly. 

5.2.2. Speaker identity test 

We performed an XAB speaker identity test to evaluate the 

effect of ARS on the speaker identity of VC utterances. 

Participants (𝑛 = 20) were presented with three utterances: a 

VC utterance (X), and utterances from the source or target 

speaker (A, B), counterbalancing A and B. Following [32], 

utterances were played in reverse to mask the effects of accent. 

For each VC method, we performed 32 evaluations (4 per 

speaker pair). Results are shown in Table 4. There was no 

statistically significant difference between the three systems 

(𝑝 > 0.12, two-tailed t-test). 

6. Conclusion and future work 

In this paper, we proposed an optimization algorithm for 

selecting exemplars in exemplar-based VC. The proposed 

method reduced voice VC over the original SABR method and 

modestly improved synthesis quality of VC utterances. The 

phonemes selected by the algorithm reflected nonstationary 

phonemes (e.g., diphthongs and stops) as well as phonemes 

nonnative speakers were known to mispronounce or having 

difficulty producing. This would be useful in VC methods that 

use clustering to build models, e.g., the PPG-based clustering 

method proposed by [21]. Future work will examine extending 

SABR anchors to include multiple anchors for these phonemes. 
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            (a) 

 
        (b) 

Figure 2: Performance of the ARS algorithm by iteration in 

terms of (a) change in VC error from initial SABR anchor set 

(b) number of source/target anchors. 
 

 
        (a) 

 
         (b) 

Figure 3: Reduction in VC error for top ten phonemes "split" 

by the ARS algorithm. (a) A2A pairs. (b) A2L2 pairs. 

Table 4: Results of the perceptual tests. Average and 
standard errors of the ratings are shown. 

 MOS Identity 

Method A2A A2L2 A2A A2L2 

Baseline 2.19 ± 0.10 1.36 ± 0.08 89% ± 2.1% 89% ± 3.5% 
SABR 3.04 ± 0.10 2.54 ± 0.10 88% ± 1.3% 84% ± 2.2% 
ARS 3.18 ± 0.10 2.7 ± 0.09 84% ± 3.0% 84% ± 3.8% 
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