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Abstract

We present an algorithm for selecting exemplars for native-
to-nonnative voice conversion (VC) using a Sparse, Anchor-
Based Representation of speech (SABR). The algorithm uses
phoneme labels and clustering to learn optimal exemplars when
source and target speakers are affected by poor time alignment,
as is common in in native-to-nonnative voice conversion. We
evaluate the method on speech from the ARCTIC and L2-
ARCTIC corpora and compare it to a baseline exemplar-based
VC algorithm. The proposed algorithm significantly improves
synthesis quality and more than doubles that of a baseline
exemplar-based VC system while using two orders of
magnitude fewer atoms. Additionally, the proposed algorithm
significantly reduces the VC error and improves the synthesis
quality as compared to unoptimized SABR models. We discuss
the implications of both optimization algorithms for SABR and
broader exemplar-based VC systems.Index terms should be
included as shown below.

Index Terms: sparse coding, voice conversion, dictionary
learning, exemplar-based

1. Introduction

Accent Conversion (AC) is the task of converting the speech of
a nonnative speaker (L2) to have the pronunciation pattern (e.g.
prosodic and segmental content) of a native speaker (L1) while
retaining the voice quality of the L2 [1]. AC methods have
application to pronunciation training, where prior research has
shown that it can be made more effective by matching the
learner to model voices that resemble the learner’s voice [2-5].
A number of studies have applied voice conversion (VC)
techniques to the problem of AC, by transforming utterances
from a native speaker to match the voice quality of the L2
learner [1, 6]. However, these techniques can have onerous
training requirements, making them impractical for
instructional settings. Low-resource VC methods such as
exemplar-based VC require significantly fewer amounts of
training data, but also require time-aligned source and target
utterances [7-9], which is challenge when pronunciation errors
(e.g., phoneme substitutions, additions, and deletions) are
present, as is common in L2 speech, which ultimately reduces
synthesis quality [6, 10, 11].

To address this issue, we recently developed a low-
resource, exemplar-based VC technique which used phoneme-
based “anchors” (i.e. exemplars) to model a speaker’s voice.
Termed a sparse, anchor-based representation of speech
(SABR) [12-14], the technique decomposes a source speaker’s
spectrum into “weights,” (i.e., sparse codes) that separate
linguistic content from speaker identity. SABR performs VC by
taking the source speaker’s weights (i.e., linguistic content) and
combines them with anchors from the L2 learner. SABR
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anchors are learned from phoneme labels gathered via forced
alignment, so issues arising from time-aligning source and
target speakers (e.g., in the case of native-to-nonnative voice
conversion) are largely avoided. However, SABR anchors
cannot represent phonemes with multiple acoustic states (i.e.
diphthongs or stops), or instances where a nonnative speaker
mispronounced the phoneme. Optimizing anchor selection, as
well as allowing for multiple anchors per phoneme, would
improve synthesis quality and reduce the VC error.

In this paper, we propose a clustering-based exemplar
selection algorithm called Anchor Removal and Splitting
(ARS) to address the issue of phoneme selection in the SABR
model. ARS builds a hierarchical cluster for each phoneme in a
training dataset and greedily removes or splits anchors to reduce
the VC error, allowing multiple anchors to represent a phoneme
or the anchor to be removed entirely. We evaluate the algorithm
using a dataset of speech recordings from native and non-native
speakers in the ARCTIC [15] and L2-ARCTIC [16] corpora,
respectively, and compared them against an exemplar-based
VC baseline that relied on time-aligned source and target
dictionaries [8]. ARS had significantly higher acoustic quality
than the baseline system in native-to-nonnative conversions
while needing two orders of magnitude fewer anchors. These
improvements in acoustic quality came at no loss in VC
performance, measured by the ability of the algorithms to
capture the voice quality of the target speaker. Finally, a
detailed analysis of ARS shows that it preferentially chooses to
split phonemes that have multiple sub-phoneme units, and
phonemes that are frequently substituted (i.e., mispronounced)
by L2 speakers. These results show that ARS can be used as a
tool to select appropriate exemplars, especially in low-resource
settings.

The remainder of this paper is organized as follows. Section 2
reviews prior work on Accent Conversion exemplar-based VC.
Section 3 describes the VC algorithm used in this paper (SABR)
and ARS. Section 4 describes the experimental design and
speech corpora used in our study. Section 5 presents objective
and subjective experimental results. The article concludes with
a summary of our findings and directions for future work.

2. Prior work

Accents are characterized by prosodic and segmental
differences with respect to a norm, so AC methods must
account for these to capture the target speaker’s voice quality.
Aryal et al. [6] proposed an alternative “acoustic similarity”
alignment for use in a GMM-based VC algorithm. The authors
used Vocal Tract Length Normalization (VTLN) to account for
coarse physiological differences between the L1 and L2
speakers. Then, they paired each L2 frame to the closest L1
frame (according to Mel-Cepstral Distortion) and, likewise,
paired each L1 frame to the closest L2 frame, forming a lookup
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table from which a GMM was trained. More recently, Zhao et
al. [11] presented another alignment method to account for
pronunciation differences between the L1 and L2 speakers.
Instead of VTLN, the authors computed a Phonetic
Posteriorgram (PPG) for each L1 and L2 frame, then paired L1
and L2 frames to minimize the KL-divergence of their
respective PPGs. However, both of these methods require
significant amounts of training data, making them infeasible for
pronunciation training contexts.

Exemplar-based voice conversion was originally developed
as a method to account for over-smoothing of parametric
statistical voice conversion methods [7, 9, 17]. These methods
are well-suited for low-resource scenarios, as they typically
require only a few dozen training utterances. Aihara et al. [7]
proposed a method for building a phoneme-categorized
dictionary, which added a penalty to the objective function so
that the conversion algorithm was forced to select target
exemplars from the same phonetic class as the source. Sisman
et al. [18] demonstrated an exemplar-based VC system that
appended PPG to the selected exemplar dictionaries to encode
additional phonetic information. These results suggest that
selecting exemplars to retain similar phonetic content will
significantly improve synthesis quality.

Phoneme labels derived from ASR are also often used in
neural voice conversion [19-22]. In [23], the authors used a
latent phoneme embedding in a vector quantized VAE system.
They found that including the embedding significantly
improved the synthesis quality of VQ-VAE VC. In [24], Zhou
et al. used PPGs learned from two speech recognition systems
to perform voice conversion on speakers of two different
languages, allowing the conversion system to identify linguistic
content from the source speaker that did not resemble the target
speaker’s language. The inclusion of both PPGs significantly
improved the synthesis quality and speaker identity.

3. Methods

3.1. SABR: Spares,
Speech

Anchor-Based Representation of

The voice conversion algorithm that underlies this work
(SABR) represents an utterance as a sparse linear combination
of speaker-dependent phonemic anchors [13]. The intuition
behind the method is that the sparse code of an utterance
relative to these anchors encodes the linguistic content.

Given a speech spectrum X, SABR decomposes it as:

Xs = AsWs, 1
where W is a sparse set of weights, and Ag is a set of speaker-
dependent phoneme “anchors.” For an utterance with T frames,
N acoustic spectral features (e.g., MFCCs), and K anchors,
Xs € RV*T Ag € RV*K and W € RX*T. SABR uses a single
anchor per phoneme, which is computed by selecting the
centroid of all frames that have the corresponding phoneme
label in the speaker’s training corpus.

SABR uses the Lasso [25] to estimate the weights (sparse
codes) Wy € RKXT:

st Wslly <2

: _ 2
rrVIVISnIIX AsWsliz + IWslly, )

where ||-||; is the L1 norm and A is the maximum sum allowed
for each W, which acts as a regularization term.
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Figure 1: lllustration of the overall SABR algorithm and the

proposed optimization algorithm. (a) An overview of the SABR

VC method. (b) A block diagram of the proposed Anchor
Removal and Splitting (ARS) algorithm.
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To obtain an estimate of the target speaker’s spectrum, a
target anchor set Ar is built in the same manner as Ag: one
spectral anchor per phoneme label, corresponding to the
centroid of all target speaker training data with that label. An
estimate of the target speaker’s spectral envelope X is
obtained as the product of the source weights and target
anchors:

Xr = ApWs. 3)

This estimated spectrum lacks spectral detail, as the
residual from eq. (2) has been discarded. In prior work [14], we
proposed a method for transforming the source residual to the
target speaker’s space using frequency warps learned from the
source and target anchor sets Ag and A, represented here as
FR:

Xp = ArWs + Fr(Xs — AsWs; Ag, Ar, W) 4)

For brevity, we refer the reader to [14] for details on the
residual warping method. The overall approach is illustrated in
Figure 1 (a).

3.2. Anchor Removal and Splitting (ARS) algorithm

The proposed optimization method, Anchor Removal and
Splitting (ARS), addresses two issues. First, using single
anchors per phoneme may not be enough to represent some
phonemes classes, such as stops or affricates, which contain
several sub-states. Second, the phoneme inventory of the L2
speaker may be different from that of the L1 speaker and will
likely include mispronunciations of a phoneme. As a result, the
source-target anchors may be mismatched, introducing
distortions in the VC synthesis. To address these issues, at each
iteration ARS either removes an anchor or “splits” it into sub-
anchors, depending on which action most reduces the VC error
against a set of validation utterances.

Initially, we compute a binary tree of cluster centroids for
each phoneme using Ward’s method [26]. These clusters are
learned by concatenating time-aligned source and target
training data: [XT, XF]7. The root node of the binary cluster tree
corresponds to the centroids of each phoneme. We then
optimize the anchor sets iteratively by either splitting an anchor
into the two child subtrees, or removing an anchor entirely.
During the split operation, a given anchor is replaced with its
two child nodes from the phoneme’s cluster tree, representing
the two higher-detail clusters in that phoneme. The removal
operation simply removes the given anchor from the anchor set



and all child nodes of that anchor from the phoneme tree. These
two operations address the two potential issues described
previously. The split operation allows for multiple anchors per
phoneme, aiding in the representation of certain phoneme
classes. In the case that one pair of source-target anchors
contains a mispronunciation and is mismatched, the removal
operation allows for that anchor to be discarded.

On each iteration t, the split and removal operations are
performed on the current anchor sets A% and A%, resulting in a

temporary anchor sets A’S(’f R Al;'f :

kf Lk,
[A57,477] = f(ab, Af), 3)
where f are the two ARS operations and k is the anchor on
which the operation was performed.

For each anchor-operation pair, the VC error (computed
from eq. (3)) is measured against a validation data set Xg and
X7
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where l/I/Sk"f are the weights computed from eq. (2) using

anchors Aif’f and the validation data X¢. The temporary anchor
set with the minimum VC error is used as the input to the next
iteration, and the split and removal operation are tested again
against the new anchor set. This iterates until the VC error does
not decrease, or a maximum number of iterations is reached. A
block diagram of the ARS algorithm is shown in Figure 1 (b).

4. Experiments

4.1. Data and implementation details

We evaluated the ARS proposed algorithm using the CMU
ARCTIC speech corpus [15] and the L2-ARCTIC speech
corpus (v 1.0) [16]. L2-ARCTIC is a corpus based on the
prompts of the ARCTIC database, but with L2 speakers of
English from six first languages: Mandarin, Hindi, Arabic,
Spanish, Korean, and Vietnamese ' . We conducted both
subjective and objective evaluations in both native-to-native
(ARCTIC to ARCTIC, or 424 for short) and native-to-
nonnative (ARCTIC to L2-ARCTIC, A42L2) contexts. For
objective experiments, we evaluated all possible speaker pairs
in A2A and A2L2 conditions; but for perceptual experiments
(synthesis quality and speaker identity tests), we only evaluated
the speaker pairs in Table 1 (A2A) and Table 2 (A2L2). In a
prior study [12], we observed that using SABR for Accent
Conversion was very effective in reducing accentedness when
converting from a native speaker to a nonnative speaker;
because of this, we did not perform such tests in this study.

To illustrate the time-alignment difference between native
and nonnative speaker pairs, we computed the average
difference between DTW trajectories for A2A and A2L2
speaker pairs (see Table 3). As shown, alignment of A2L2
speaker pairs incurs nearly twice the error of alignment of A2A
pairs, which highlights the challenges of using conventional
exemplar-based VC methods when the target speakers are non-
native.

! At the time of our experiments, the Vietnamese speakers were not
available and were not included in the objective experiments.
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Table 1: 424 speaker pairs for perceptual experiments.

Source speaker Target speaker

BDL (M) RMS (M)
SLT (F) CLB (F)
RMS (M) SLT (F)
CLB (F) BDL (M)

Table 2: A2L2 speaker pairs for perceptual experiments.

Source speaker | Target speaker First language

BDL (M) HKK (M) Korean
SLT (F) SKA (F) Arabic
RMS (M) YDCK (F) Mandarin
CLB (F) EVBS (M) Spanish

Table 3: Average time alignment differences.

Corpus
L2-ARCTIC average
ARCTIC average

Average alignment error
221 ms £ 36 ms
124 ms = 15 ms

We performed time alignment using the MFCC features and
dynamic time warping (DTW) [27]. We used STRAIGHT [28]
with 1 ms frame steps and 80 ms window size to extract
aperiodicity, fundamental frequency, and spectral envelope
from each utterance. We then computed a 25-dimension MFCC
vector. SABR models ignored MFCC,, as it contains energy.

For synthesis, the energy from the source speaker was
copied to the estimated target speaker’s spectrum. We
converted the pitch of the source utterance to match the pitch
range of the target speaker using log mean-variance scaling
[29]. To solve for the Lasso, we used the LARS solver from
the SPAMS sparse coding toolbox [30].

4.2. Comparison systems

We evaluated the proposed algorithm against the original
SABR system and a VC baseline system’:

e ARS: source and target anchor sets optimized by the ARS
algorithm (Section 3.2). Twenty training utterances were
split up into two sets of 10 utterances: one to train the
anchors, and the other 10 to use as a validation set at the end
of each ARS iteration.

o SABR: the default SABR anchors—one anchor per phoneme,
selected by computing the centroid of all frames with that
phoneme label (Section 3.1).

o Baseline: Exemplar-Based VC with Residual Compensation
[8], a time-aligned exemplar-based VC approach. The
dictionaries in this model were substantially larger than that
of the SABR and ARS models (4720 atoms on average for
the baseline models).

We used 20 parallel utterances to train the three systems. The
training utterances were selected in such a way as to maximize
phoneme variability. For all systems, we measured the VC error
using Mel-Cepstral Distortion (MCD) [29] on a test set of 200
utterances selected from the ARCTIC “4 ” set of utterances.

5. Results

5.1. Objective evaluation

To characterize the performance of ARS, we evaluated it from
two perspectives: the per-iteration performance and the

2 Synthesis samples from the above systems can be found at
https://cliberatore.github.io/samples/sabr-ars.html
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Figure 3: Reduction in VC error for top ten phonemes "split"
by the ARS algorithm. (a) A2A pairs. (b) A2L2 pairs.

Table 4: Results of the perceptual tests. Average and
standard errors of the ratings are shown.

MOS Identity
Method A2A A2L2 A2A A212
Baseline 2.19+0.10 136+0.08 | 89% +2.1% 89% +3.5%
SABR 3.04+0.10 2.54+0.10 | 88%+1.3% 84%+2.2%
ARS 3.18+0.10 2.7+0.09 [84%+3.0% 84%=+3.8%

phonemes the ARS algorithm selected for splitting, as that
operation contributed most to reducing the VC error.

Figure 2 shows the per-iteration results. ARS reduces the VC
error for both speaker pairs, but more for A2L2 pairs because
of pronunciation differences between the source and target
speakers. Effects of time-alignment differences are visible in
the number of anchors selected (see Figure 2 (b)). Because A2A
pairs are generally less affected by accent and time-alignment
issues, the source and target clusters are more likely to contain
similar phonetic information, so ARS favors the splitting
operation. The A2L2 pairs reach an average of 60 anchors,
whereas A2A pairs had an average of 69.8 anchors.

As the split operation had a stronger impact on the reduction
in VC error, we examined which phonemes selected in that
operation contributed to the greatest reduction in VC error. We
computed the total amount the VC error decreased when
phoneme k was split as:

60

5;&(&—1 —e),
t=1

0

where Aey, is the change in VC error for phoneme k, t is the
ARS iteration, Sf is an indicator variable that is 1 when
phoneme k was selected for splitting on iteration t and 0
otherwise. For ey, we used the VC error of the initial SABR
models. Figure 3 shows the results of eq. (7) computed for all
A2A and A2L2 speaker pairs, (a) shows A2A speakers and (b)
shows A2L2 speakers. First, ARS favored voiced phonemes
and vowels on A2A pairs more than on A2L2 pairs. Second, on
A2L2 pairs, ARS often split phonemes with known voicing
substitution errors (e.g., /s/ and /z/, common in the L2-ARCTIC
corpus [16]). Finally, on A2L2 pairs, the most-split phonemes
were those where the phoneme labels contained multiple states
over the production of the phoneme (e.g., diphthongs and stops)
or had the same articulation, but different voicing.

Aek =

The average MCD of the three methods, evaluated on the
test set, as well as the final dictionary sizes are shown in Figure
2. For both A2A and A2L2 pairs, ARS had significantly lower
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VC error than the original SABR model (A2A and A2L2,
p < 0.001, paired t-test). Notably, there was no significant
difference in the VC error of the proposed optimization method
and the baseline model (A2A, p = 0.05, A2L2, p = 0.35,
paired t-test), a positive result given that the dictionaries on the
baseline model were more than two orders of magnitude larger.

5.2. Subjective evaluation

5.2.1. Mean Opinion Score

We performed a Mean Opinion Score (MOS) test to measure
the synthesis quality of the three VC systems. We recruited
participants (n = 20) on Amazon Mechanical Turk to rate the
quality of an utterance on a 5-point scale (1 = “low quality”; 5
= “high quality”). For each synthesis method, we asked
participants to rate 40 utterances (5 per speaker pair). Following
[31], we included unmodified references to ensure participants
were not randomly guessing. Results are shown in Table 4.

MOS ratings for ARS were approximately twice as high as
those of the baseline system (p « 0.01, single-tailed t-test), a
remarkable result given that they include far fewer anchors in
their dictionaries. This MOS rating is significantly lower than
those reported by the authors of the baseline system. We believe
this is due to the difficulty in time-aligning native to non-native
utterances, which is critical for the baseline system.

Notably, the baseline method had a significantly larger
difference in MOS between A2A and A2L2 versus the SABR
and ARS methods (p < 0.01, both methods, single-tailed t-
test). However, ARS did not significantly improve on the
baseline SABR synthesis quality in either A2A or A2L2 cases
(p > 0.13, single-tailed t-test), suggesting that the additional
anchors, while reducing VC error, do not impact synthesis
quality as significantly.

5.2.2.  Speaker identity test

We performed an XAB speaker identity test to evaluate the
effect of ARS on the speaker identity of VC utterances.
Participants (n = 20) were presented with three utterances: a
VC utterance (X), and utterances from the source or target
speaker (A, B), counterbalancing A and B. Following [32],
utterances were played in reverse to mask the effects of accent.
For each VC method, we performed 32 evaluations (4 per
speaker pair). Results are shown in Table 4. There was no
statistically significant difference between the three systems
(p > 0.12, two-tailed t-test).

6. Conclusion and future work

In this paper, we proposed an optimization algorithm for
selecting exemplars in exemplar-based VC. The proposed
method reduced voice VC over the original SABR method and
modestly improved synthesis quality of VC utterances. The
phonemes selected by the algorithm reflected nonstationary
phonemes (e.g., diphthongs and stops) as well as phonemes
nonnative speakers were known to mispronounce or having
difficulty producing. This would be useful in VC methods that
use clustering to build models, e.g., the PPG-based clustering
method proposed by [21]. Future work will examine extending
SABR anchors to include multiple anchors for these phonemes.
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