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Abstract
Managing diabetes mellitus (DM) requires monitoring the glucose response to meals, also known as
the postprandial glucose response (PPGR). The PPGR to a meal is significantly affected by the amount
of carbohydrates, but other macronutrients (e.g., protein, fat, fiber) are also known to affect the PPGR.
This suggests that the type of meal consumed can be automatically identified by analyzing the shape
of the PPGR, as measured by a continuous glucose monitor (CGM). As a step towards this goal, this
study proposes a metric-learning approach to learn personalized PPGR embeddings to account for the
inherently large inter-individual variability in PPGRs. Metric learning is implemented with a Siamese
neural network (SNN) that models the relative distance between meals consumed by a participant. Em-
beddings learned with the SNN outperform features directly extracted from PPGRs, yielding 50% and
77% accuracy on the considered tertiary and binary meal classification tasks, respectively. Findings from
this work would ultimately help in designing intelligent user interfaces for assisting patients with DM
in dietary monitoring.
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1. Introduction
Diabetes mellitus (DM) is a chronic progres-
sive metabolic disorder that requires signif-
icant self-management, including nutrition,
exercise, and medication [1]. An impor-
tant aspect of daily DM management lies in
controlling patients’ postprandial glucose re-
sponses (PPGR), mostly by monitoring diet.
Current forms of dietary monitoring rely
largely on manual input and memory recall,

Joint Proceedings of the ACM IUI 2021 Workshops, April
13–17, 2021, College Station, USA
" projna.paromita@tamu.edu (P. Paromita);
chaspari@tamu.edu (T. Chaspari);
hooman130@tamu.edu (S. Sajjadi); adas@tamu.edu (A.
Das); bobakm@tamu.edu (B.J. Mortazavi);
rgutier@tamu.edu (R. Gutierrez-Osuna)
�

© 2021 Copyright for this paper by its authors. Use permit-
ted under Creative Commons License Attribution 4.0 Inter-
national (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

CEUR Workshop Proceedings
(CEUR-WS.org)

though new technologies based on food pho-
tography and wearable sensors are also be-
ing investigated, each with their own pros
and cons in terms of accuracy and obtru-
siveness [2, 3, 4, 5, 6, 7]. For instance, di-
etary monitoring through memory recall can
be burdensome and is confounded by pa-
tients’ bias [8]. Food photography can be
less burdensome, therefore promoting user
adherence [8, 9]. However, food photogra-
phy methods still require manual patient in-
put, which can be noisy and potentially re-
sult in missing values, especially in the case
of smaller meals or snacks [9, 10]. The pho-
tos collected via food photography also need
to be analyzed by an expert or an automated
machine learning algorithm to obtain food
intake estimates [11].

Continuous glucose monitors (CGMs) use
is common in type I diabetes, and is rapidly
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increasing in type II diabetes, the most com-
mon form of the disease [12]. CGMs can be
a valuable source of information to monitor
diet accurately and in a relatively unobtru-
sive manner by measuring PPGRs, therefore
they have the potential to accurately capture
even small meals [13, 14]. CGMs can also
help researchers gain valuable insights into
the complex interplay between PPGRs and
the macronutrient composition of a given
meal, due to the fact that the shape of PP-
GRs depends on the macronutrient compo-
sition of a meal [15, 16, 17, 18, 19]. For ex-
ample, carbohydrate-rich meals generally re-
sult in PPGRs with high and narrow peaks,
whereas meals rich in fat cause wider peaks,
and meals rich in protein depict lower and
moderately broader peaks [20]. However,
the anthropometric and metabolic character-
istics of a person also significantly affect PP-
GRs, leading to large inter-individual vari-
ability to identical meals [20, 21]. This paper
proposes an algorithm to automatically iden-
tify meals by analyzing PPGRs collected by
CGM devices. Such way of meal back track-
ing, along with the popularly used methods
of meal tracking would help us to build a
fool-proof application for proper diet moni-
toring.

We propose a metric learning approach
to achieve personalized meal classification
based on PPGRs. The objective is to learn
a transformation that embeds a glucose re-
sponse while considering within-person dis-
tances of consumed meals. For this reason,
we design a metric learning approach, im-
plemented with a Siamese neural network
(SNN) architectures, that 1) learns a trans-
formation that projects PPGRs for a partic-
ipant that belong to similar meals to the
same region in the new feature space, while 2
also projecting samples from different meals
to non-proximal regions of the new fea-
ture space. Our approach models pairwise
distances between different types of meals

within each participant, rather than absolute
patterns, therefore taking into account indi-
vidual differences. Metric learning is imple-
mented with a SNN that learns a PPGR trans-
formation to minimize the distance between
samples of the same meal consumed by an in-
dividual and maximize the distance between
different meals. The proposed pairwise simi-
larity measure does not require us to estimate
the distribution of PPGRs for each type of
meal, so it can it is suitable for small-sample-
size applications [22]. As an additional step
toward personalization, we combine partici-
pants’ anthropometric and metabolic infor-
mation with the learned personalized em-
beddings of the SNN. We evaluate our ap-
proach on a publicly-available dataset with
three types of meals. Results indicate that
PPGR transformations learned from the pro-
posed metric-learning approach outperform
the conventionally used PPGR statistics for
the task of meal classification. Namely, in-
tegrating participants’ anthropometric and
metabolic characteristics into classifier fur-
ther increases its accuracy in certain cases.

2. Prior work
Computational models for CGM signals have
primarily focused on predicting hyper- or
hypo-glycemic episodes [13, 23]. Prior work
has further examined the prediction of the
PPGR given a specific meal [20, 24, 25, 26, 27].
Zeevi et. al. showed that personal informa-
tion related to dietary habits, physical activ-
ity, and gut microbiota can improve the pre-
diction of PPGRs for specific meals, which
has implications to personalized diet educa-
tion interventions [20]. However, the inverse
problem of predicting macronutrients from
PPGRs has not been thoroughly examined,
except for our own work [18, 19]. Anurag et
al. proposed a sparse decomposition model
for representing PPGRs, while Sajjadi et al.
explored the use of machine learning mod-



els for predicting the amount of macronutri-
ents in meals. Both works were evaluated in
a set of 15 participants who consumed 9 pre-
designed meals with promising results.

Current methods for dietary monitoring
primarily rely on computer vision algorithms
that seek to detect the components of a meal
by analyzing its photographs [4, 5, 6, 28].
However, food photography presents chal-
lenges for vulnerable populations, such as el-
derly adults, who may face challenges related
to dexterity, coordination, and vision when
using mobile devices [29]. In addition to food
photography, other works have proposed
wearable food monitoring technologies that
rely on smart utensils and wearable sen-
sors [7, 30]. These approaches tend to pro-
vide reliable measurements of the food quan-
tity, but they cannot estimate the macronu-
trient composition. In addition, smart uten-
sils might not always be readily available to
the user, therefore potentially resulting in
missing data.

Given the expanding use of CGMs in dia-
betic populations, our method can contribute
to providing a feasible alternative to current
food monitoring methods. Overall, our con-
tribution to the existing literature is as fol-
lows: (1) While most studies have focused on
predicting one’s PPGR based on a given meal,
the inverse problem of estimating the con-
stituents of a meal based on the PPGR is rela-
tively unexplored. Limited prior work from
our group has investigated the problem of
estimating macronutrient composition from
PPGRs [31, 18, 19], but meal classification
from PPGRs has not been yet examined; and
(2) in contrast with the majority of work,
which relies on modeling class-wise distri-
butions of PPGRs [20, 24, 25], our work pro-
poses a metric learning approach that mod-
els the pairwise distance between different
meals consumed by each participant. The
proposed metric learning approach does not
require a large number of labelled samples,

Figure 1: Average PPGR per meal averaged
across participants for 140-minute analysis win-
dow (𝐴𝑊 ).

which is a significant benefit compared to
other algorithms that tend to be more “data-
hungry." In addition, the resulting model con-
tains a small number of parameters, therefore
it does not have large memory requirements
or computational cost, and could be imple-
mented as part of edge computing technolo-
gies, thus also promoting aspects of privacy
preservation.

3. Data Description and
Pre-Processing

We used a publicly available dataset of PP-
GRs contaning data from 30 participants (25-
65 years) [21]. Individual glucose measure-
ments were collected 5 minutes apart using
a Dexcom G4 device. Each participant con-
sumed three types of standardized meals at
most twice, resulting in at most six meal
samples per participant. The meals were
isocaloric, but varied in the amount of pro-
tein, fat, and fiber [21]. The three meals were:
(1) cornflakes and milk (CF), which were low
in fiber and high in carbohydrates; (2) peanut
butter sandwich (PB), which had a high
amount of fat and protein; and (3) a PRO-
BAR protein bar (Bar), which had moderate
amounts of fat and protein. Fig. 1 illustrates
the average PPGR across individuals for each
of the three meals, which indicates that there
are marked differences in PPGRs across the
three types of meals. The data further include
participants’ anthropometric characteristics,



including age and body mass index (BMI),
as well as metabolic characteristics, such as
insulin, fasting blood glucose (FBG), an oral
glucose tolerance test (OGTT), Hemoglobin
A1c (HbA1C), high sensitive C-reactive pro-
tein (hsCRP), and triglyceride to high-density
lipoprotein (HDL) ratio (tri/HDL). Anthro-
pometric and metabolic characteristics were
combined with the PPGR features and com-
prised the input of the proposed machine
learning models as an additional step to per-
sonalization.

Prior to feeding PPGRs to the SNN, we
performed data-cleaning procedures, includ-
ing linear interpolation of missing samples
and baseline correction. Baseline correction
was done by subtracting the mean of the
first 6 data points prior to meal consumption,
which we assumed served as the fasting glu-
cose level. Following prior work [20, 21, 31],
we also experimented with various analy-
sis windows (𝐴𝑊 ), including 140, 90, and
65 minutes. For the purpose of our experi-
ments, we aim to model pairwise distances
between the same meal and different meals.
For this reason, our analysis included only
those participants who consumed each meal
at least twice. This resulted in 20 participants
we could use to model pairwise distances be-
tween Bar and CF and, and 19 participants
for the Bar vs. PB meal and PB vs. CF meals.
The number of participants reduced to 11
when we considered all three meals for ter-
tiary classification. When considering 𝐴𝑊
of 65 and 90 minutes, the number of partici-
pants became 14 and 16 for the tertiary com-
bination, respectively.

4. Methodology
4.1. Glucose response feature

extraction
We computed the maximum and minimum of
each participant’s baseline-corrected PPGR
(Section 3). Then, we normalized the signal

Figure 2: PPGR signals and family of Gaussian
kernels centered at five-time points and used to
compute the area under the curve (AUC) of the
PPGR.

by subtracting its minimum value and divid-
ing by the difference between the maximum
and minimum value. Finally, we extracted
the area under the curve (AUC) at 3, 5, and 8
distinct time points, following Huo et.al. [31],
resulting in a total of 16 features. We experi-
mented with these features extracted both in
the normalized and non-normalized PPGRs.
AUCs for 5-time points of the analysis win-
dow are illustrated in Fig. 2. These AUC fea-
tures capture fasting glucose levels, as well as
glucose rise and recovery patterns in various
time resolutions.

4.2. Personalized metric learning
of PPGR embeddings

We designed a metric learning algorithm
that models the pairwise distance between
meals consumed by a participant (Fig. 3).
The problem was formulated as both binary
(i.e., CF/PB, PB/Bar, Bar/CF) and tertiary (i.e.,
CF/PB/Bar) classification tasks (Section 3).
Inputs to the model consisted of the 16 AUC
features of PPGRs (Section 4.1). Let 𝑔𝐖 be
a function parameterized by 𝐖, which per-
forms a transform of the original AUC space
𝐱 and transformed embedding 𝑔𝐖(𝐱). Also,
let 𝑐𝑛 be the set of samples belonging to
class 𝑐 from participant 𝑛. The parameters 𝐖
are learned to minimize the distance of sam-
ples from the same meal-type and maximize
the distance of samples from different meals



Figure 3: Schematic representation of the proposed personalized meal classification based on PPGRs.
Metric learning learns PPGR embeddings based on pairwise meal distances within a participant. An-
thropometric and metabolic characteristics are combined with the learned PPGR embeddings for the
final meal classification.

within a participant:
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(1)

where 𝑑(⋅, ⋅) was the 𝑙2−norm. Pairwise
metric learning was performed via a SNN
(Fig. 3). The SNN included 3 layers with 16
neurons each (i.e., siamese network; Fig. 3).
The third layer of the SNN comprised of
a 16-dimensional output, which represented
the transformed PPGR input samples 𝑔𝐖(𝐱)
and 𝑔𝐖(𝐱′) in each branch. Following that,
the 𝑙2−norm between 𝑔𝐖(𝐱) and 𝑔𝐖(𝐱′) was
computed. The learned glycemic embedding
𝑔𝐖(𝐱) was fed into a set of fully-connected
layers comprised of 16 neurons (i.e., feedfor-
ward neural network; Fig. 3), which learned
a feature transformation between the PPGR
embedding and the type of meal. Glycemic
embeddings were learned based on the orig-
inal PPGR, as well as the normalized PPGR
using min-max normalization. Bayesian hy-
perparameter optimization [32] was used to
optimize the dropout between layers (i.e.,
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}) and the 𝑙2−kernel
regularization of each layer of the network
(i.e., {10−1, 10−2, 10−3, 10−4}).

We compare the proposed personalized
glycemic embeddings learned by the SNN
architecture to the raw AUC features that
comprised the input to two baseline mod-
els: a 1-layer feed-forward neural network
(FNN) with 16 nodes and a logistic regres-
sion model. The architecture of the FNN
was selected to be equivalent to the 16-node
fully-connected layer following the output of
the SNN architecture. We anticipate that the
proposed model performs well in all scenar-
ios where learning the original distribution is
difficult due to the inherent inter- and intra-
subject variability. However, because we do
not have this data, comparing against deeper
networks with larger numbers of tunable pa-
rameters would either underfit or overfit.

All classification experiments were per-
formed using a leave-one-subject-out cross-
validation. Simple classification accuracy
was averaged over 40 iterations to remove
random effects from parameter initialization
and dropout. The classes considered here
are balanced, therefore the chance accuracy
is approximately 33.33% for the tertiary and
50% for the binary task. A paired t-test with
the assumption of unequal variance among
the two groups was used to calculate signifi-



Table 1
Accuracy (%) of tertiary meal classification, us-
ing the area under the curve (AUC) of PPGRs as
an input to a feedforward neural network (FNN)
and a logistic regression (LR) model, as well as the
AUC embeddings learned by the proposed metric
learning approach.

Normalized PPGR

Analysis window Metric learning FNN LR

140 minutes 50.00 47.84 50.00
90 minutes 46.14*** 42.71 42.85
65 minutes 45.89 45.2 45.83
*: 𝑝 <0.05 ; **: 𝑝 <0.01; ***:𝑝 <0.001

Non-normalized PPGR

Analysis window Metric learning FNN LR

140 minutes 44.86 47.84 50
90 minutes 45.59* 42.7 44.04
65 minutes 45.63 45.21 45.63
*: 𝑝 <0.05 ; **: 𝑝 <0.01; ***:𝑝 <0.001

Table 2
Accuracy (%) of binary meal classification be-
tween pairwise combinations of peanut butter
(PB), cornflakes (CF), and protein bar (Bar), us-
ing the area under the curve (AUC) of PPGRs in
a feedforward neural network (FNN) and a logis-
tic regression (LR) model, as well as the AUC em-
beddings learned by the proposed metric learning
approach. The analysis window is 140 minutes.

Normalized PPGR

Task Metric learning FNN LR

PB-CF 74.79*** 72.29 72.22
PB-Bar 69.68*** 65.19 68.42
Bar-CF 52.49 53.59 56.25
*: 𝑝 <0.05 ; **: 𝑝 <0.01; ***:𝑝 <0.001

Non-normalized PPGR

Task Metric learning FNN LR

PB-CF 66.36 66.54 69.73
PB-Bar 61.92 60.39 64.47
Bar-CF 51.33 52.96 52.5
*: 𝑝 <0.05 ; **: 𝑝 <0.01; ***:𝑝 <0.001

cant differences between the proposed metric
learning and the two baselines.

4.3. Integrating anthropometric
and metabolic
characteristics to the PPGR
embedding

We incorporated the anthropometric and
metabolic measurements of each participant
to (1) the glycemic embedding 𝑔𝐖(𝐱) learned
by the SNN (Section 4.2), followed by a fully-
connected layer (Fig. 3); and (2) the raw
AUC features followed by the FNN and logis-
tic regression models. We report the corre-
sponding classification results in order to see
whether the inclusion of these features fur-
ther improves the meal classification perfor-
mance. Anthropometric and metabolic fea-
tures were included in five unique combina-
tions according to their individual and group
characteristics. Combinations 1 and 2 con-
sisted of only anthropometric features (i.e.,
age, BMI) and only metabolic measurements
(i.e., insulin, FBG, OGTT, HbA1C, hsCRP,
Tri/HDL), respectively. Meanwhile, combi-
nation 3 included all features from both com-
binations 1 and 2. In combination 4, we
only considered features that were signifi-
cantly correlated with the AUCs extracted
from PPGR (i.e., age, insulin, OGTT, HbA1C,
Tri/HDL). The final combination 5 consisted
of three metabolic measurements (i.e., FBG,
OGTT, HbA1C), which were directly related
to the participant’s glucose level.

5. Results
We report the accuracy of the proposed met-
ric learning and baseline models (Section 4.2).
Table 1 presents the tertiary classification
results over various analysis window (𝐴𝑊 )
lengths, while Table 2 presents the binary
classification results for 𝐴𝑊 = 140 minutes
for all meal combinations. We observe that
the metric learning approach performs sig-
nificantly better than the 1-FNN and logistic
regression baseline in the majority of cases
for the tertiary task (Table 1) and in many



Table 3
Accuracy (%) of binary meal classification between pairwise combinations of peanut butter (PB), corn-
flakes (CF), and protein bar (Bar), combining the PPGR embeddings learned by the proposed metric
learning approach with anthropometric and metabolic characteristics. The analysis window is 140
minutes. The normalized PPGR was used.

Task
Only PPGR & Anthropometric/Metabolic Combination
PPGR 1 2 3 4 5

PB-CF 74.79 77.41*** 71.4 72.56 72.11 72.11
PB-Bar 69.68 68.1 61.6 61.44 60.85 65.54
Bar-CF 52.49 53.93 54.75* 55.01** 53.42 53.79

*: 𝑝 <0.05 ; **: 𝑝 <0.01; ***:𝑝 <0.001
Combination 1: [Age, BMI]; Combination 2: [Insulin, FBG, OGTT, HbA1C, hsCRP, Tri/HDL];

Combination 3: [Age, BMI, Insulin, FBG, OGTT, HbA1C, hsCRP, Tri/HDL]; Combination 4: [Age,
Insulin, OGTT, HbA1C, Tri/HDL]; Combination 5: [FBG, OGTT, HbA1C]

cases for the binary task (Table 2). This indi-
cates that learning a personalized embedding
learning through metric learning can bene-
fit meal classification performance, even af-
ter normalizing the corresponding PPGR. We
further compare AUC features from the nor-
malized and non-normalized PPGR through a
paired t-test with the assumption of unequal
variance. For tertiary classification with 140
minutes analysis window, we achieve accu-
racy up to 50% for the normalized signal,
which is significantly higher (𝑝 < 0.001) than
the 44% accuracy from the non-normalized
signal (Table 1). Similarly, for the binary clas-
sification, results demonstrate the effective-
ness of normalizing PPGR (Table 2), reaching
75% accuracy.

The combination of age and BMI with the
PPGR embeddings learned by the proposed
metric learning approach depicted the best
results. Also, combinations 2 and 3, which in-
clude participants’ metabolic characteristics,
improve classification for the Bar-CF meal
pair from 52.49% to 54.75% and 55.01%, re-
spectively. Individual characteristics seem to
benefit classification tasks that are difficult to
learn solely from the PPGR, such as the CF
and Bar which depicted similar PPGR pat-
terns (Fig. 1), while no improvement is wit-

nessed in other cases.

6. Discussion
Our results indicate that personalized PPGR
embeddings through metric learning can ef-
fectively differentiate between meals. While
the scope of our current work is limited due
to the sparsity of datasets that include CGM
signals with concurrent meal intake anno-
tation, we believe that the ability to predict
dietary intake has a broad range of appli-
cations in the context of automated real-life
dietary monitoring and interventions. Par-
ticularly, these can have valuable implica-
tions for improving the accuracy of auto-
matic diet monitoring based on CGM devices
for people with (pre)(diabetes. The model re-
quires small amount of data for personaliza-
tion and also includes a small number of pa-
rameters, therefore making it ideal for a light
user interface (UI). Moreover, the continuous
PPGR collection through CGMs ensures that
no meal–no matter how small–is overlooked,
therefore can potentially accommodate users
with non-routine eating patterns. Overall,
the model could be easily added to the exist-
ing user platforms that are compatible with
CGM signals, therefore allowing patients to
monitor their PPGR patterns and better un-



derstanding the effect of each meal on their
PPGR. These can be also beneficial for de-
veloping new technology-assisted dietary in-
terventions, in which patients can visualize,
understand, and internalize the interplay be-
tween meal intake and PPGR, therefore pro-
moting positive behavior change [33].

Despite the encouraging results, this study
presents various limitations. First, the stan-
dardized meals considered here are similar
in terms of calorie intake and carbohydrate
content, therefore rendering the PPGR sim-
ilar across meals (Fig 1). This might be
a potential reason why the final classifica-
tion accuracies were modest. Second, our
work is limited to binary and tertiary clas-
sification of standardized meals, while sig-
nificantly more meal diversity exists in real-
world settings. We note that the dataset
that we have utilized is the only available
dataset in which a given meal is administered
to each participant twice, a component es-
sential to our analysis. Third, the addition
of anthropometric and metabolic character-
istics marginally improves the classification
performance. Given that the data were col-
lected by healthy individuals, we observed
little variation in their metabolic character-
istics, which may be a potential factor con-
tributing to the marginal increase in the sys-
tem performance when such features were
added. Prior studies also found that the
HbA1C and FBG are the most highly cor-
related metabolic measurements with PPGR
[21, 20], which is also reflected in our results.

7. Conclusion
We have shown that the personalized PPGR
embeddings learned with the proposed met-
ric approach outperform the original PPGR
features for meal classification. PPGR nor-
malization significantly (p<0.05) improves
performance, while adding individual char-

acteristics appears to partially help in certain
cases. As part of our future work, we plan
to explore the feasibility of this system in
classifying diverse real-life meals, which can
eventually contribute to effective dietary in-
terventions. We also plan to collect data from
90 participants, which will provide us with
the opportunity to evaluate our approach at
a broader scale with a wider array of repeated
meals.
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