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Abstract— Diet monitoring is an essential intervention
component for a number of diseases, from type 2 diabetes
to cardiovascular diseases. However, current methods for
diet monitoring are burdensome and often inaccurate. In
prior work, we showed that continuous glucose monitors
(CGMs) may be used to predict the macronutrients in a
meal (e.g., carbohydrates, protein, and fat) by analyzing the
shape of the post-prandial glucose response. The objective
of this new study was to examine a number of additional
dietary biomarkers in blood by their ability to improve
the prediction of meal macronutrients, compared to using
CGMs alone. As our experimental method, we conducted a
nutritional study where (n=10) participants consumed nine
different mixed meals with varied but known macronutrient
amounts, and we analyzed the concentration of 33 dietary
biomarkers (including amino acids and their combinations,
insulin, triglycerides, and 3 independent measures of glu-
cose) at various times post-prandially. As our computa-
tional method, we built machine learning models to predict
the macronutrient amounts from (1) individual biomarkers
and (2) their combinations. The major result from this work
is that the additional blood biomarkers provide comple-
mentary information, and more importantly, achieve higher
prediction performance for the three macronutrients in
terms of normalized root mean squared error (carbohy-
drates: 22.9%; protein: 23.4%; fat: 32.3%) than CGMs alone
(carbohydrates: 28.9%, t(18)=1.64,p=0.060; protein: 46.4%,
t(18)=5.38,p<0.001; fat: 40.0%, t(18)=2.09, p=0.025). Our
main conclusion is that augmenting CGMs to measure
these additional dietary biomarkers improves macronutri-
ent prediction performance, and may ultimately lead to the
development of automated methods to monitor monitor
nutritional intake. This work is significant to biomedical
research as it provides a potential solution to the long-
standing problem of diet monitoring, facilitating new inter-
ventions for a number of diseases.
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I. INTRODUCTION

POOR diet is a major contributor to the development of
chronic diseases, from type 2 diabetes to heart disease [1].

Thus, monitoring and modifying food intake is an essential
component of many clinical interventions. However, conven-
tional methods for diet monitoring rely on self-report tools
(e.g., food diaries, 24-hour recall), which are problematic.
For example, food diaries require manual input, which is
burdensome [2] and often leads to low adherence rates [3].
Further, 24-hour records suffer from memory recall, which
can lead to severe over and under-reporting [4]. To address this
issue, various wearable sensing techniques (e.g., microphones,
accelerometers) are being explored to detect eating behaviors
such as hand-to-mouth movements and chewing/swallowing
[5]–[7]. These approaches can be used to detect moments of
food intake, but have limited ability to estimate the nutri-
tional content of foods. The latter requires measuring dietary
biomarkers associated with consumption of various nutrients.

As a first step in this direction, in recent work [8], [9]
we proposed using continuous glucose monitors (CGMs) to
monitor food intake. CGMs generally consist of a small
electrode inserted under the skin to measure glucose in the
interstitial fluid, and a transmitter that sends the information
to a monitoring device. Our rationale for using CGMs for
diet monitoring was based on the observation that changes
in blood glucose levels after a meal, also known as the
post-prandial glucose response (PPGR), depend on the meal
macronutrients (e.g., carbohydrates, protein, fat). Though the
major determinant of post-prandial glucose is the amount of
carbohydrates (CHO), adding protein or fat to a meal generally
yields smaller spikes and lengthier responses [10], [11]. To
test this rationale, we conducted a study in which 15 healthy
participants consumed nine different meals over the course of
2-3 weeks while wearing a CGM. Each meal had a different
but known amount of CHO, protein, and fat. Then, we trained
several machine learning models to predict the macronutrient
amounts (i.e., grams of CHO and protein, and milliliters of
fat) from the PPGRs. The best performing models were able
to predict the macronutrient amounts with a normalized root
mean squared error (NRMSE) of 22% for CHO, 47% for
protein and 40% for fat, a promising result given the large
inter-individual differences in food metabolism [12].

As a logical next step, the aim of this work was to ex-
amine whether measuring additional blood biomarkers would
improve prediction performance for the three macronutrients,
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when compared to using only glucose measurements from
CGMs. To answer this question, for 10 of the participants in
the abovementioned study, we also analyzed blood samples at
various times during the post-prandial period to measure the
plasma concentration of three additional types of biomarkers:
insulin, triglycerides, and amino acids. Further, since CGMs
measure glucose in interstitial fluid, we collected two ad-
ditional glucose measures in venous blood for comparison,
via liquid chromatography (LC) and fingerstick blood glucose
measurement. Our working hypothesis was that the addition
of amino acids and triglycerides would primarily improve the
prediction performance for protein and fat, respectively. Using
extreme gradient boosted decision trees (XGBoost) [13] as the
underlying prediction model, we performed a series of compu-
tational analyses to predict meal macronutrients. These analy-
ses consistently indicate that the additional blood biomarkers
provide complementary information to each other and, more
importantly, achieve higher prediction accuracy for the three
macronutrients (CHO: 22.9%; protein: 23.4%; fat: 32.3%)
than CGMs alone (CHO: 28.9%, t(18)=1.64,p=0.060; protein:
46.4%, t(18)=5.38,p<0.001; fat: 40.0%, t(18)=2.09,p=0.025;
one-tailed t-test).

This work is novel in several respects. First, to our knowl-
edge, the problem of predicting meal macronutrients from
blood biomarkers has never been examined, with the exception
of our recent prior work [8], [9]. However, our prior work
focused on glucose responses from CGMs, whereas the present
work evaluates 32 additional biomarkers by their ability to
predict macronutrients. Second, through a series of comple-
mentary analyses, we identify (1) the most relevant individual
biomarkers, (2) the most relevant combinations of biomarkers,
and (3) the most relevant regions in the postprandial response
of these biomarkers. Third, our work is related to (but distinct
from) research on the artificial pancreas (AP) [14]. In both
cases, the goal is to infer food intake. In the artificial pancreas,
this information is used to control an insulin pump, which
administers doses of insulin according to a pre-established
insulin-to-carb ratio. Thus, the artificial pancreas is concerned
with estimating the amount of CHO. In contrast, our work
aims to estimate not only CHO, but also fat and protein. In
addition, being a control problem, the artificial pancreas is very
sensitive to delays and lags: to prevent large glucose responses
after a meal, an AP must make a decision based on the early
part of the glucose response. In contrast, our work can afford
to exploit information in the entire glucose response curve to
predict the full macronutrient composition of a meal. Finally,
our work is related to (but also distinct from) the personalized-
nutrition project of Zeevi et al. [12], which used machine-
learning models to predict the post-prandial glucose response
of different meals; see section II-A. In contrast, we aim to
solve the inverse problem: predicting meal macronutrients
from post-prandial responses.

Results from this work suggest that expanding the sensing
capabilities of existing indwelling or implantable CGMs [15]
to measure these additional dietary biomarkers would make
it possible to monitor nutritional intake in an automated
fashion, removing burden from participants while providing
a wealth of nutritional and behavioral information to them

and their healthcare providers. Towards this end, our group
has proposed an implantable barcode-like sensor the size of
a grain of rice that, once inserted, could be probed optically
with a watch-type device and used to noninvasively monitor
not only glucose but other dietary biomarkers such as the ones
presented here in free living conditions [16]. These data could
then be analyzed on the watch, or transmitted to a mobile
device or to the cloud, to detect moments of meal intake and
predict macronutrient composition of those meals.

Note that measuring these biomarkers using current standard
methods is complicated as it requires extraction of the fluid,
such as either a blood draw and centrifugation to get plasma, or
dialysis membrane extraction for interstitial fluid, followed by
the use of well-established but relatively sophisticated bench-
top analytical instruments. Though the future barcode sensor
would facilitate the measurement of these biomarkers, devel-
opment of the sensor itself is nontrivial as both the recognition
elements (e.g. aptamers, antibodies) and transduction methods
through tissue (e.g. fluorescence, phosphorescence lifetime)
need to be determined and optimized for each biomarker.

II. RELATED WORK

A. Effect of macronutrients on postprandial glucose

A number of studies have examined the effect of meal
macronutrient amount and composition on PPGRs. The main
determinant of postprandial glucose is the amount and type of
CHO. However, other macronutrients that are present in mixed
meals also contribute to the glucose response. Specifically,
adding protein, fat or dietary fiber to a meal reduces and/or
slows down the glucose response [10], [11], typically due to
gastric emptying or endogenous secretion of insulin [17]–[19].
More recent work has focused on understanding individual
differences in food metabolism. In a landmark study, Zeevi
et al. [12] used CGMs to track the glucose response of
800 participants while participants kept detailed records of
their diet. The authors found high inter-personal variability
in the glucose response to identical meals, which puts into
question the utility of universal dietary recommendations. To
address this issue, the authors developed a machine-learning
model that could predict the glucose response of a meal for
each participant by accounting for individual factors (e.g.,
anthropometric variables, blood panels, gut microbiota). When
tested on an independent cohort of 100 participants, the model
was able to generate personalized diets that led to reduced
postprandial hyper-glycemia.

B. Diet monitoring technology

Technology may enable automatic monitoring of food in-
take, reducing participant burden and avoiding errors due to
manual food tracking. Three broad types of technologies have
been used for monitoring food intake: wearable sensors, smart
utensils and computer vision. As an example, food intake can
be captured by recording chewing sounds with a microphone
and then performing acoustic analysis [5], [20]. Piezoelectric
sensors have also been used for detecting food intake from
chewing [6]. After chewing, swallowing is the next step of
food consumption, and a number of wearable sensors have
been used for detecting swallowing sounds based on acoustic
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analysis [21]. Finally, a few studies have attempted to detect
food intake from both chewing and swallowing sounds [22],
[23]. A number of smart devices, such as smart watches and
smart utensils, have also been used to detect food types and
the amount of food consumed [7], [24]. The advantage to
using smart watches with inertial sensing is that they do not
interfere with user privacy, compared to other approaches such
as microphones embedded in earbuds [25]. Smart utensils
(e.g., smart forks) have also been used for identifying foods
consumed [26], and commercial products also exist (e.g.,
HAPIfork). Finally, computer vision techniques have been
developed to classify foods, predict food constituents and
estimate food portions from images [27]–[29]. Further, a
growing number of commercial apps are using computer vision
techniques to estimate nutrition from food photographs, e.g.,
Lose It!, CalorieMama, Snaq, Undermyfork, gocarb, and sev-
eral software libraries for food image recognition are available
for integration with mobile apps, e.g., bite.ai, FoodAI.

C. Dietary biomarkers
Various dietary biomarkers have been associated with

macronutrients, foods and dietary components. Sugars such as
glucose or fructose are associated with CHO and contribute to
energy intake. Unfortunately, sugar can be introduced through
a number of processed foods and hidden sources, which makes
accounting for the amount of sugar consumed challenging.
Instead, a biomarker that could estimate the amount of sugar
in food would be more useful. To this end, urinary sucrose and
fructose have been identified as dietary biomarkers for sugar
intake [30]. For the consumption of saturated fats, blood lipids
such as low density cholesterol (LDL) and high density choles-
terol (HDL) have been identified as predictive biomarkers [31].
Plasma cholesterol and triglyceride (TG) levels may also be
associated with dietary fiber intake; however, some studies
reveal conflicting results. Specific fatty acids such as mono-
unsaturated (MUFA), poly-unsaturated (PUFA) and saturated
fatty acids (SFA) are hard to capture and current methods of
estimation are costly and time-consuming [32]. To measure
dietary protein intake, urinary nitrogen has been identified as a
potential biomarker [33]. Other potential biomarkers of protein
intake include creatinine, taurine, 1-methlyhistidine and 3-
methylhistidine [34]. These biomarkers are specific to meat
intake and are excreted via urine.

III. METHODS

This section describes the experimental dataset used for
the study, and the data preprocessing techniques to extract
information from postprandial responses and reduce individual
differences. Further, we describe the prediction model (XG-
Boost) that was used throughout all subsequent analyses, to
answer this study’s overarching question: to what extent do
additional biomarkers (i.e., beyond interstitial glucose from
CGMs) improve prediction of meal macronutrients?

A. Dietary study dataset
To assess the influence of meal macronutrients on postpran-

dial responses for glucose and other biomarkers, we recruited
15 healthy participants (not diagnosed with pre-diabetes or

TABLE I: Macronutrient amounts of the 9 meals in the study

Meal CHO
(g)

Protein
(g)

Fat
(ml)

C1P1F1 52 15 13
C1P2F2 52 30 26
C2P2F1 95 30 13
C2P1F2 95 15 26
C2P2F2 95 30 26
C2P2F3 95 30 52
C2P3F2 95 60 26
C3P2F2 180 30 26
C3P3F3 180 60 52

type 2 diabetes) between the ages of 60-85 and Body Mass
Index (BMI) in the range of 25-35. Each participant took part
in nine study days where they consumed a predefined meal
on each day based on a randomized design. The participant
was asked to follow the same protocol on each day and the
only difference between any two days was the macronutrients
of the meal consumed. The meal was prepared as a liquid
drink mixed with a pudding base (Jell-O Vanilla, Kraft Food,
IL, USA) containing 0.75 g CHO and with different levels of
protein, CHO and fat; see Table I . In what follows, we use
the notation CxPxFx to denote the amount of macronutrients
in a meal, where x can take values 1 (low), 2 (medium) and 3
(high). Whey protein (BiPro, Agropur, MN, USA) was used as
the protein nutrient, maltodextrin (Polycose, Abbott Nutrition,
IL, USA) as the CHO nutrient, and sunflower oil (Great
Value, Wal-mart, AZ, USA) as the fat nutrient. Meals were
prepared early on each study day. The protein hydrolysates and
maltodextrin were dissolved in 250 ml water, mixed with the
pudding base, and then thoroughly mixed with sunflower oil
within 30 minutes of ingestion. Each participant was asked to
fast for eight hours before consuming the meal, so that the first
reading captured would be their fasting biomarker levels. After
consuming the meal, the participant remained in a sedentary
state for the next eight hours, so that there was no effect of
physical activity on postprandial responses. Informed consent
was obtained from all participants involved in the study. This
study was approved by the Texas A&M Institutional Review
Board (IRB #2017-0886F; approval date 12/06/2017).

On the first day of the study, an Abbott Freestyle Libre
Pro CGM was placed on the participant’s upper arm, and was
replaced as needed. This CGM device takes glucose readings
every 15 minutes for up to 14 days. The concentration of
the remaining biomarkers was measured by first extracting
blood samples via venipuncture at intervals of 15 minutes
for the first hour, 30 minutes for the second hour and 60
minutes for the remainder of the study day. However, due
to budgetary constraints, blood samples were analyzed for
only 10 subjects. Additionally, the response of three meals
were missing due to experimental errors or CGM malfunction,
leading to a total of data from 87 meals for analysis across the
10 subjects. Table II provides a list of all biomarkers measured
in the study. The first 24 biomarkers are individual amino
acids. Biomarkers 25-27 represent different combinations of
amino acids commonly used in nutritional studies. Biomarkers
31-33 represent three independent measures of glucose from
venipuncture (LC-glucose), fingerstick (Stick-glucose) and in-
terstitial fluid (CGM-glucose).
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TABLE II: List of biomarkers measured in the study

# Name Abbreviation
1 Aspartate ASP
2 Glutamate GLU
3 HydroxyProline hPRO
4 Asparagine ASN
5 Glutamine GLN
6 Citrulline CIT
7 Serine SER
8 Glycine GLY
9 Arginine ARG

10 Threonine THR
11 tauMethylHistidine tauMEH
12 Alanine ALA
13 Taurine TAU
14 Proline PRO
15 Valine VAL
16 Methionine MET
17 Isoleucine ILE
18 Leucine LEU
19 Tryptophan TRP
20 Phenylalanine PHE
21 Ornithine ORN
22 Histidine HIS
23 Lysine LYS
24 Tyrosine TYR
25 Branched Chain Amino Acids1 BCAA
26 Essential Amino Acids2 EAA
27 Non-Essential Amino Acids3 NEAA
28 Sum Amino Acids4 SUMAA
29 Liquid Chromatography (LC) insulin LC-insulin
30 LC triglycerides LC-TG
31 LC glucose (venous blood) LC-glucose
32 Finger stick glucose (venous blood) Stick-glucose
33 CGM glucose (interstitial fluid) CGM-glucose

Venipuncture blood samples were collected in pre-chilled,
EDTA or li-heparinized tubes (Becton Dickinson Vacutainer
system, Franklin Lakes, NJ, USA) and kept on ice. Plasma
was obtained by centrifugation of whole blood at 4°C for 10
min at 3120 g, and was aliquoted with vortexing to tubes
containing either 0.1 vol of 33% (w/w) trichloroacetic acid
or the residue after evaporation of 0.17 vol of 33% (w/w)
5-sulfosalicylic dihydrate to denature proteins. All samples
were frozen in liquid nitrogen and stored at -80°C until
analysis. All venipuncture biomarker analyses were performed
in plasma. Insulin was measured with an electrochemilu-
minescent immunoassay, and glucose and triglycerides with
standardized enzymatic assays, all assessed by LabCORP. The
fingerstick glucose readings were analysed using using reagent
test strips and a point of care testing glucometer (Accu-Chek®

Aviva, Roche). Plasma amino acids were analyzed batchwise
with liquid chromatography with tandem mass spectrometry
(LC/MS/MS), as previously described [35].

B. Feature extraction
A prototypical biomarker response is shown in Figure 1; it

features an initial rise, reaches a peak and then finally returns

1Branched chain amino acids are the sum of LEU, ILE and VAL.
2Essential amino acids are defined as the sum of HIS, ILE, LEU, LYS,

MET, PHE, THR, TRP and VAL.
3Non-essential amino acids are defined as ASP, GLU, hPRO, ASN, GLN,

CIT, SER, GLY, ARG, t-MHIS, ALA, TAU, PRO, ORN and TYR.
4Sum amino acids (SUMAA) is the sum of all amino acids in Table II
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Fig. 1: gAUC features extracted using 5 Gaussian kernels. The
red curve represents the post-prandial response of a biomarker,
and the shaded curves represent a family of Gaussian kernels.
Each gAUC feature is the weighted average of the biomarker
concentration at a given time period, weighted by the kernel.

to baseline. Actual biomarker responses are illustrated later
–see Figure 3. To capture the shape of the response, we place
a family of Gaussian kernels uniformly over time, as shown
in Figure 1. Using these kernels, we then calculate the area
under the curve (AUC) of the biomarker response, which we
refer to as Gaussian area-under-the-curve (gAUC) as:

x(k) =

∫ T

0

[b(t)− b(0)]
1√
2πσk

exp
(t− Tk)

2

2σ2
k

(1)

where b(t) is the biomarker response over time, x(k) is the
k-th gAUC feature computed from b(t), T is the duration of
postprandial period (8 hours in our study), and Tk represents
the time at which the Gaussian kernel is centered with a spread
of σ2

k. These gAUC features capture information related to the
initial time to peak, duration of elevated glucose level and time
of return to baseline level. For consistency with our prior work
[9], we use a combination of 3 and 5 kernels to extract features
from the biomarker responses, as we found this combination
led to the best performance5. As a final pre-processing step,
and following our prior work [9], we normalize the gAUC
features of each participant using z-score normalization, i.e.,
we subtract the mean from each gAUC feature and divide
by its standard deviation. Note that we also subtract the
biomarker reading prior to consuming a meal b(t = 0) from
the postprandial biomarker response of the meal. The rationale
behind using a baseline correction step is that two individuals
may have different responses to the same meal owing to their
different fasting levels. A baseline correction step ensures that
there is no effect of fasting level on the overall response. The
biomarker response is therefore represented as relative to the
fasting level instead of an absolute value.

C. Macronutrient prediction model

Once the gAUC features are generated, we predict the
amount of each macronutrient by means of eXtreme Gradient
Boosting (XGBoost) [13], a machine learning algorithm that
has achieved state-of-the-art results on a number of domains,
such as web text classification, customer behavior prediction

5Gaussian centers are placed evenly across the 8-hour period following
meal intake, i.e., Tk = {0h, 4h, 8h} for the 3-Gaussian family, and Tk =
{0h, 2h, 4h, 6h, 8h} for the 5-Gaussian family. To ensure that the 95%
confidence interval of the Gaussian kernel aligns with these time intervals,
we set the standard deviation of the Gaussian to σk = σ = 8/n/1.96, where
n is the number of kernels. This results in σ = 82min for the 3-Gaussian
family and σ = 49min for the 5-Gaussian family.
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and product categorization. XGBoost uses an ensemble of
weak learners (regression trees) to obtain a strong learner using
an iterative process. Starting with one regression tree trained
to model the entire data, XGBoost iteratively adds one more
regression tree to the ensemble in order to reduce the residual
obtained from the previous set of trees using gradient descent.
Following [13], XGBoost generates a prediction by adding the
outputs from all the trees in the ensemble:

ŷi =

K∑
k=1

fk(xi) (2)

where ŷi is the prediction for input xi, and fk is the k−th
regression tree in the ensemble. The model is trained to
optimize the objective function:

L =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk) (3)

where l is the loss function between the ground truth yi
and the prediction ŷi, and Ω is a regularization term that
penalizes the weights of the model from becoming very large,
and therefore prevents overfitting:

Ω(fk) = γT +
1

2
λ||w||2 (4)

where T is the number of leaves in the tree, ||w|| represents
the scores of the leaves, and γ and λ are regularization
parameters. At each iteration t, a new regression tree ft is
added to reduce the loss:

L(t) =
∑
i

l(yi, (ŷi
(t−1) + ft(xi))) + Ω(ft) (5)

We use XGBoost for all the experiments in the manuscript.
Because XGBoost is based upon decision trees, the impact
of the features provided have easy-to-interpret relationships
with the predicted regression values. We train a separate model
to predict each of the macronutrients (CHO, protein, fat). To
further avoid overfitting and assess the generalization capabil-
ities of the model, we use a leave-one-subject-out procedure
to evaluate the model, i.e. we train on data from 9 subjects,
then test on the 10th subject. To report the performance of the
model, we use normalized root mean squared error (NRMSE)
between the predicted and ground truth macronutrients:

NRMSE = (
1

N

∑
(y − ŷ)2/y2)

1
2 (6)

For hyperparameter tuning6, we use the following cross-
validation procedure: given a total of 10 subjects, we use 8
subjects for training, the 9th subject for validation and the
10th subject for testing. A model is trained on 8 subjects and
then tested on the validation subject using all combinations of
hyperparameters. Keeping the test subject fixed, we repeat this
process for all combinations of train and validation subjects
and all hyperparameter combinations. The set of hyperparame-
ters that have the lowest NRMSE across all validation subjects
is then chosen for testing. In our experiments, we optimize

6We used the XGBoost (https://xgboost.readthedocs.io) package imple-
mented in Python. For hyperparameter tuning, we wrote our own code using
nested for loops instead of using existing packages

two hyperparameters, the maximum depth of tree (n = 2, 3)
and the maximum number of trees (m = 20, 30), and set the
learning rate to η = 0.1. We limited the depth of the trees and
number of trees to prevent overfitting, relative to the number
of features extracted for each meal and number of meals.

IV. RESULTS

A. Impact of macronutrients’ amounts on biomarker
concentrations

In a first analysis, we examine how increasing amounts
of macronutrients affect the postprandial response for the
different biomarkers. Results are summarized in Figure 2.
The first row shows the average AUC for venipuncture blood
glucose (LC-glucose) as we increase the amount of CHO,
protein, and fat. We observe a marked increase in the AUC
as the amount of CHO increases (a correlation coefficient r =
0.65), and a smaller increase for proteins and fats (r = 0.24
and r = 0.03, respectively), a result that is consistent with our
earlier studies showing predicting macronutrients from CGMs
is easier for CHO than for fat and protein, in that order [8], [9].
This result also confirms that LC-glucose responds maximally
to increases in consumption of CHO, as one might expect. The
second row in Figure 2 illustrates the corresponding effect for
amino acids, in this case using Leucine (LEU) as an example.
The greatest increase in AUC arises from consuming meals
with increasing amounts of protein (a correlation coefficient r
= 0.68), which suggests that the postprandial levels of LEU are
mostly affected by intake of protein, as we had hypothesized,
and only minimally by intake of CHO and fats (r = 0.21 and
r = 0.24, respectively). The third row of Figure 2 illustrates
the average AUC of triglycerides after consuming meals with
different amounts of macronutrients. In this case, we note that
the postprandial levels of triglycerides are associated mainly
with fat intake (r = 0.55), but also with the amount of CHO (r
= 0.28) and protein (r = 0.35). However, the largest increase
is seen for fats, which suggests that fat content in a meal is
the most important determinant of post-prandial triglycerides,
as we had also hypothesized. Finally, the fourth row in Figure
2 shows the average AUC for insulin as a function of the
macronutrients. The three macronutrients have a marked effect,
with CHO showing the strongest influence (as one might
also expect). Altogether, these results suggest that the four
biomarkers provide information that is complementary about
the amount of macronutrients in the meal, which provides
support for the main objective of this work.

Next, we analyze the shape of the post-prandial biomarker
response for different amounts of macronutrients. Figure 3(a)
shows the LC-glucose response (averaged across subjects) for
meals with low, medium and high amount of CHO. We observe
that the corresponding increases in the AUC are largely due to
an increase in the time to return to baseline, but that the peak of
the response does not change significantly. Figure 3(b) shows
the average response for Leucine as the amount of protein
is increased. In contrast with LC-glucose, the corresponding
increases in the AUC are due to the combined effect of
increases in the peak of the response and in the time to return
to baseline. Similar results are obtained for triglycerides with
respect to increases in fat –see Figure 3(c), and for insulin with
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Fig. 2: Area under the curve of three biomarker re-
sponses (blood glucose, Leucine, and triglycerides) for meals
with different amounts of macronutrients. Error bars indi-
cate standard deviation, measured by aggregating individ-
ual AUCs from all subjects for the corresponding meals.
***: p < 0.001, **: 0.001 ≤ p ≤ 0.01, *: 0.01 ≤ p < 0.05.

respect to increases in CHO –see Figure 3(d). Notice that the
shape of the response is markedly different for LC-glucose,
Leucine and insulin, the three of which show rapid increases
in concentration shortly after consumption of the meal, as
compared to triglycerides, for which the response is much
slower. Thus, the shape of these postprandial responses appears
to provide critical information that may help the prediction
model (XGBoost) estimate the amounts of macronutrients in
the meal, which further justifies our use of the gAUC features.

B. Quantifying the performance of individual biomarkers

In the next experiment, we evaluate the ability of individual
biomarkers to predict each one of the three macronutrients.
For this purpose, we built a separate XGBoost model using
gAUC features from each individual biomarker as the only
inputs, and then examined the NRMSE of the predictions.
Results for CHO are shown in Figure 4(a), where biomarkers
have been arranged by increasing order of NRMSE. The
most predictive biomarker is insulin, with an NRMSE of
23.5%. This is an expected result, since insulin is released
by the pancreas in response to glucose levels increasing in the
bloodstream for normal subjects. The next three biomarkers
in the list are the three independent measures of glucose in
the study (LC-glucose, CGM and finger stick). Of interest, we
observe a sharp increase in NRMSE between insulin and the
three glucose measures, one of which (CGM-glucose) was the
biomarker used in our original studies [8], [9], but the differ-
ence is not statistically significant (t(18) = 1.49, p = 0.076).
Additional increases in NRMSE as we move towards the
least informative biomarkers appear marginal, but overall there
is a significant difference in performance between the most
predictive biomarker (insulin; 23.5%) and the least predictive
one (GLY; 47.3%; t(18) = 7.15, p < 0.001).
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Fig. 3: Average shape of the postprandial biomarker response
for different amount of macronutrients. For each biomarker,
only the most influential macronutrient is shown (e.g., CHO
for LC-glucose and insulin, protein for Leucine, and fat for
triglycerides)

Results for the prediction of protein are shown in Figure
4(b). The most predictive biomarker is LYS, with an NRMSE
of 23.6%. We observe a significant increase in NRMSE for
the amino acids PRO and ASN. Inspection of the amino
acid content of the whey protein used in the study (data
not shown) indicates that the majority of the amino acids
before these sharp increases are those that appear at higher
concentrations in whey protein (e.g., LYS, LEU, TYR), or
are combinations of multiple amino acids (e.g., EAA, BCAA,
SUMAA), which explains the result. Comparison between the
best biomarker for protein (LYS; 23.6%) and CGM-glucose
(46.4%) –the biomarker used in our previous studies [8], [9],
shows a statistically significant improvement in the prediction
of protein (t(18) = 4.29, p < 0.001).

Results for the prediction of fat are shown in Figure4(c).
As one might expect, the most predictive biomarker is triglyc-
erides, with an NRMSE of 35.2%. In contrast with CHO and
protein, however, we do not observe an elbow in the distribu-
tion of NRMSEs across biomarkers, but a graded response.
Further, unlike in the case of protein, the most predictive
biomarker (triglycerides) is only slightly more predictive of fat
content in the meal than the biomarker in our original study
(CGM-glucose, 40.0%, t(18) = 0.94, p = 0.177).

Finally, we performed one-tailed t-tests between the best
performing biomarker and each of the remaining ones.The
first biomarkers for which there is a statistically significant
difference (p < 0.05) with respect to the best performing
biomarker are LYS for CHO, PRO for protein, and ASN for
fat.

C. Identifying the optimal combination of biomarkers
Next, we perform a study to identify which combinations of

individual biomarkers is most predictive of the macronutrients
in the meal. Given the relatively large number of biomarkers (a
total of 33 in Table II), exhaustive evaluation of each possible
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(a)

(b)

(c)

Fig. 4: Prediction performance of an XGBoost model trained
to predict the amount of (a) CHO, (b) protein, and (c) fat in
the meal from each individual biomarker. Highlighted in black
and white stripes is CGM-glucose, the biomarker used in our
original studies [8], [9], as a reference. Error bars represent
standard deviations.

combination is impractical (over 8 billion combinations). Fur-
ther, the limited dataset in our nutritional study also precludes
us from building models with a high number of input features.
For this reason, we decide to pre-select the most important
biomarkers identified in the previous section: (1) insulin and
(2) LC-glucose for CHO, (3) Lysine for protein, and (4) LC-
triglycerides for fat. This allows us to perform exhaustive
search (15 possible combinations of biomarkers, or 24 − 1)
on this reduced feature set, which is computationally feasible
and also avoids issues associated with data sparsity.

Results for CHO are shown in Figure 5(a), ranked from
the most predictive feature subset to the least predictive.
The feature subsets cluster into three distinct areas. The first
eight subsets correspond to all combinations that contain
insulin as a feature. The feature subset that only includes
insulin is ranked in position #5, but its performance is not
statistically different from the other seven subsets, indicating
that insulin is the only necessary biomarker for prediction
of CHO. The next four combinations consist of all subsets

No Insulin No Glucose

No Amino Acids

No Triglycerides

No Amino Acids

(a)

(b)

(c)

(d)

Fig. 5: Ranking all feature combinations of four biomarkers:
glucose (G), insulin (I), triglycerides (T) and amino acids (A)
for the prediction of (a) CHO, (b) protein, (c) fat, and (d) the
combined prediction of the three macronutrients.

that include glucose (but not insulin), and we find that the
difference in NRMSE between subset ( I A) and (G TA) is
not statistically significant (t(18) = 1.19, p = 0.124). The
last three combinations are feature subsets that do not include
insulin or glucose. Notice that for these last 3 feature subsets
there is a high degree of individual variability, as indicated by
the error bars.

Results for protein are shown in Figure 5(b), again ranked
from most to least informative. We find two distinct clusters.
The first eight combinations represent subsets that include
amino acids as a feature. As shown in the figure, they all
perform similarly, suggesting that amino acids are the only
biomarkers needed in order to predict protein. Removing the
amino acid from the feature subset results in a statistically
significant degradation in prediction performance (t(18) =
2.77, p = 0.006).

Results for fat are shown in Figure 5(c). In this case, we
still find an intuitive ordering of the feature subsets, but the
clustering is less prominent than in the case of CHO and
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Fig. 6: Importance profile of the post-prandial response of
each biomarker for predicting macronutrients
protein. The first eight combinations represent all subsets that
contain triglycerides, and the first four combinations contain
triglycerides and glucose. In contrast with the previous two
cases, where a single biomarker was sufficient (e.g., insulin
for CHO, amino acids for protein), in the case of fat, two
biomarkers appear to be critical: triglycerides and glucose.

In a final analysis, we evaluate the 15 feature subsets in
terms of the average NRMSE across the three macronutrients.
Results are shown in Figure 5(d). As with fats, there is no clus-
tering of feature subsets, though the subsets are ordered such
that the first eight combinations are those containing amino
acids. We also find that the optimal subset is the one containing
the four types of biomarkers: glucose, insulin, amino acids
and triglycerides, with an average NRMSE of 26.7% across
the three macronutrients. It is interesting to note that removing
insulin from the subset (#2 combination) does not result in a
statistically significant increase in NRMSE (t(18) = 0.63, p =
0.267). This finding can have practical implications since
insulin is a relatively large molecule that may be more difficult
to detect in interstitial fluid –a likely target of implantable or
indwelling biosensors for nutrition monitoring [16]. Finally,
we find that the optimum subset (GITA; 26.7%) is significantly
more predictive than the biomarker in our original study
(CGM-glucose; 38.5%; t(18) = 5.45, p < 0.001).

D. Understanding the prediction models
Next, we examine whether it is possible to identify partic-

ular regions in the biomarker postprandial response that are
used preferentially by the prediction model. To answer this
question, we use one measure of feature importance returned
by XGBoost that represents the average gain (in information)
of splits in the decision trees that use each feature. Namely,
we trained XGBoost models for each macronutrient that used
the four types of biomarkers as inputs (glucose, insulin, amino
acid, triglycerides), and then generated an importance profile
for each biomarker as:

i(t) =

K∑
k=1

Gk
1√
2πσk

exp
(t− Tk)

2

2σ2
k

(7)

where Tk and σk are the mean (i.e., time location) and
variance (i.e., spread) of the k-th Gaussian kernel (see Figure

Fig. 7: Distribution of prediction errors across meals for all
participants. For each macronutrient, meals (top to bottom) and
participants (left to right) were ordered by increasing order of
NRMSE. Colorbar on top shows NRMSE scale.

1), K is the number of Gaussian kernels used (8 for each
biomarker, 32 in total), and Gk is the gain returned by
XGBoost for the k-th input feature. Results are shown in
Figure 6. The first row shows that the carbohydrate model
relies primarily on a narrow time window (centered at 6 hours
after meal intake) in the insulin postprandial response, with
only a minor contribution from a broader region (centered on
4 hours after meal intake) in the glucose postprandial response.
This result agrees with those reported in section IV-C, which
showed that the best feature subsets are those that contain
insulin, and that the combination of glucose and insulin was
optimal, though only by a narrow margin (see Figure 5(a)).
The second row in Figure 6 indicates that the protein model
relies primarily on the amino acid postprandial response, but
in this case on a broad time window between 3-7 hours after
meal intake. Again, this overall result is consistent with section
IV-C, which showed that the best feature combinations were
those that contained amino acids. Finally, the third row in
Figure 6 shows that the fat model mainly uses information
from the triglyceride postprandial response, in this case around
4 hours after meal intake. As before, this result is consistent
with those in section IV-C, which showed that the best feature
combinations are those that contain triglycerides. It is also
interesting to note that the peak in the importance profile is
closely aligned with the peak of the triglyceride postprandial
response in Figure 3, something that does not occur for the
other three biomarkers.
E. prediction errors

In a final step, we analyzed the distribution of prediction
errors for each meal across participants. Results are shown in
Figure 7. For each macronutrient, and for ease of interpre-
tation, meals (top to bottom) and subjects (left to right) have
been sorted by increasing order of the corresponding NRMSE.
Thus, the bottom right corner of each heatmap tends to have
higher errors. To analyze these results, we performed 2-way
ANOVA on the carbohydrate NRMSE, with meal and gender
as independent factors. We find a marginally significant effect
for meal type (F (8, 72) = 2.06, p = 0.051), indicating that the
prediction errors vary across meals, and a significant interac-
tion between the two factors (F (8, 72) = 2.96, p = 0.006),
indicating that the errors are not uniformly distributed across
participants. Repeating the analysis on protein NRMSE yields
a significant effect for gender (F (1, 72) = 4.71, p = 0.033),),
indicating that the average error was higher for females (0.24)
than for males (0.16), and meal type (F (8, 72) = 3.19, p =
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0.004), but no interaction. Finally, the same analysis on fat
NRMSE yields a significant effect for meal type (F (8, 72) =
2.66, p = 0.013) and a significant interaction (F (8, 72) =
2.72, p = 0.011).

V. DISCUSSION

In prior work [8], [9], we had shown that CGMs can be used
to monitor diet by analyzing the shape of the postprandial
glucose response, which depends not only on the amount
of CHO in a meal but also on the protein and fat content.
In the present study, we sought to determine if other blood
biomarkers, namely amino acids, insulin and triglycerides,
could provide additional information to the prediction model.
Results from four types of analysis consistently show that they
do, and that the information provided by the four biomarkers
is largely complementary.

In a first analysis (section IV-A), we showed that in-
creasing the macronutrients in a meal leads to measurable
changes in the concentration of the four types of biomarkers
post-prandially: adding CHO increases glucose and insulin
concentration rapidly, adding protein increases amino acids
(also rapidly), and adding fat increases triglycerides, though
at a slower rate. In a second analysis (section IV-B), we
compared biomarkers individually by their ability to predict
the three macronutrients. For CHO, we find that insulin is the
most predictive biomarker, followed by the three independent
measures of glucose in our study. In the case of protein,
we find that the most informative amino acids are those that
appear at higher concentration in the protein source used in
our dietary study. This could be viewed as problematic, since
different protein sources have different amino acid content.
Fortunately, we find that overall measures of amino acid
content that are likely to generalize across a variety of protein
sources, such as Branched Chain Amino Acids (BCAA) and
Essential Amino Acids (EAA) also perform well, as shown
in Figure 4(b). Finally, in the case of fat, we find that the
most informative biomarker is triglyceride. In a third analysis
(IV-C), we preselected the four key biomarkers identified in
the previous analysis, and performed an exhaustive search for
the optimal combination of biomarkers for each macronutrient.
Results reinforce with the earlier two analyses, showing that
insulin (and glucose to a lesser extent) is the most criti-
cal biomarker for CHO prediction, amino acid for protein
prediction, and triglycerides for fat prediction. In a fourth
analysis (section IV-D), we sought to determine if there are
specific regions in the postprandial response of each biomarker
that are important for prediction. We find that the prediction
models use a relatively narrow time window in the latter
part of the postprandial glucose response to predict CHO, a
very broad analysis window in the postprandial amino acid
response to predict protein, and also a broad region halfway
through the postprandial triglyceride response to predict fat.
While it could be argued that these four sets of analysis are
somewhat redundant, we view the overwhelming agreement
between them as evidence of the robustness of our results.

We performed three types of statistical analyses to derive
these conclusions. First, we used pairwise t-tests to compare
the performance of models that employed different biomarkers

as inputs. Second, we used Pearson’s correlation to test the
relationship between macronutrients amounts and the area-
under-the-curve for various biomarkers. Finally, we used 2-
way ANOVA to analyze the distribution of prediction errors
across participants and meals.

While our results are promising, it is important to highlight
the limitations of this work. First, participants were asked
to consume liquid meals with single-source macronutrients
(maltodextrin, whey protein and sunflower oil), so our findings
must be validated when participants consume solid meals with
a more complex mixture of macronutrients that may lead to
different digestion patterns and thus postprandial responses.
Second, participants were asked to rest for 8 hours following
consumption of the meal, whereas in practical settings par-
ticipants will likely engage in some form of physical activity
following meal intake (e.g., walking), which is known to affect
postprandial glucose [36]. A further limitation in the study
is that the machine-learning model uses an 8-hour prediction
window during which it is assumed that no other meal is
consumed. To address these issues, in a forthcoming study
we will have participants (n=100) consume not only liquid
meals (as in the study reported here) but also complex meals
in free-living conditions. This will allow us to examine the
extent to which models trained on liquid meals generalize
to solid meals, and also account for post-prandial physical
activity. Further, while the forthcoming study will still impose
an eating restriction following each meal, this restriction will
be limited to a more realistic 3 hours rather than the 8 hours
used here. This will allow us to examine the compounding
effects of multiple meals taken within a short period.

A. Future work
Additional features may be extracted from postprandial

responses, including features derived from the time derivative,
time to peak concentration, number of local peaks, and other
local variations. This would likely require using a smoothing
filter prior to feature extraction, since postprandial responses
tend to be rather noisy, particularly for CGMs. Future analyses
will also examine whether limiting feature extraction to the
early part of the postprandial response (e.g., 2-3 hours after
food intake) would affect prediction performance. The average
postprandial responses in Figure 3 suggest that sufficient
discriminatory information is contained in the first 2-3 hours,
so predicting macronutrients based on this information seems
plausible. Additional machine-learning models could also be
used for macronutrient prediction. As an example, recurrent
neural networks such as Long Short-Term Memories (LSTMs)
may be used to process the raw postprandial responses directly,
avoiding the need to perform feature extraction and any
potential loss of information in the process. Finally, data
augmentation techniques could be used to generate synthetic
data to train the macronutrient prediction models. As an
example, a recent study [37] used Generative Adversarial
Networks (GANs) to synthesize realistic CGM daily patterns
conditioned on HbA1c levels. A similar GAN approach could
be used to synthesize postprandial responses conditioned on
the amount of macronutrients, and other information such as
participants’ gender, age, body mass index or gut microbiota.
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VI. CONCLUSION

In this paper, we evaluated a number of dietary biomarkers
(amino acids, triglycerides, insulin) by their ability to improve
the prediction of meal macronutrients, when compared to
using glucose measurements from CGMs. Our results show
that adding measurements of amino acid and triglyceride con-
centrations lead to significant improvements in the prediction
of protein and fat, respectively. This support the idea of
augmenting current CGM systems to measure these additional
dietary biomarkers, as a step towards the development of
automated methods for monitoring food intake.
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