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Abstract—Methods to measure work stress generally rely on subjective measures from questionnaires or require dedicated 

sensors that are cumbersome to wear and interfere with the task. To address this problem, we propose a method to detect 

stress unobtrusively using commodity devices (keyboards, mice) instrumented with pressure sensors. We propose a minimalist 

design that can be easily replicated by other researchers using off-the-shelf and low-cost hardware. We validate the design in a 

laboratory experiment that simulates office tasks and mild stressors while avoiding methodological limitations of previous 

studies. We compare stress-detection performance when using conventional features reported in the literature (keystroke 

dynamics, mouse trajectories) augmented with information from pressure sensors. Our results indicate that pressure provides 

additional information for stress discrimination; adding pressure information to keystroke dynamics and mouse trajectories 

improves classification performance by 6% and 3%, respectively. These results show how devices that are already part of the 

modern workplace may be used and enhanced to automatically and unobtrusively detect stress. 

Index Terms— Stress detection; pressure-sensitive keyboard; pressure-sensitive mouse; keystroke dynamics; mouse 

dynamics; affective computing 

——————————   ◆   —————————— 

1 INTRODUCTION

ork stress is dramatically increasing as a result of 
rising competitiveness, more intense workloads, and 

longer and harder working hours [1, 2]. Although stress 
can help people stay focused and motivated, excessive 
physical and psychological demands can lead to severe 
stress episodes, putting employees at a higher risk for 
health problems [3]. For example, acute stress exacerbates 
negative coping behaviors, such as smoking [4] and 
substance abuse [5], and can also lead to depression [6].  

Monitoring stress levels throughout the day may allow 
employees to identify stress triggers and stressful episodes 
early on and develop healthier coping strategies [7]. The 
gold standard for monitoring stress objectively is by 
measuring stress hormones (e.g., cortisol, alpha-amylase) 
from saliva samples [8]. However, this method is 
impractical to be deployed in the workplace setting and 
only provides a single-point measurement rather than a 
continuous measure. Another approach for measuring 
stress levels consists of using self-report instruments [9, 
10]. Unfortunately, these instruments are sensitive to 
subjective biases and also only provide single point 
measurements. More recently, wearable sensors are being 
used to measure physiological markers such as heart rate 
variability and skin conductance, which correlate with 
stress [11, 12]. However, the most common among these 
measures (wrist-based heart rate and skin conductivity) 
are sensitive to motion artifacts, which can be caused by 

physical activity (e.g., walking) or even typing. Contactless 
measures, such as facial expression analysis from webcams 
[13], can also be used but are subject to changes in 
illumination, differences in skin tones, among others.  

Several studies have explored the possibility of 
monitoring stress indirectly by analyzing keyboard and 
mouse use patterns [14-16]. Keystroke and mouse 
dynamics have long been used for user authentication [17, 
18] and recently to infer emotional state [15, 19, 20]. Most 
of these studies use timing and latency information, which 
can be easily obtained from off-the-shelf devices. Studies 
have also explored the use of experimental keyboards and 
mice to predict stress. For example, Hernandez et al. [21] 
found greater typing pressure and mouse grip pressure 
when subjectively-rated stress and electrodermal activity 
levels were higher. This suggests that additional stress-
related information may be obtained by instrumenting 
keyboards and mice with sensors. Another benefit of using 
peripherals is their ubiquity, with around 90 million new 
desktops shipped in 2018 alone [22]. 

This study presents two low-cost designs to measure 
typing pressure and mouse-grip pressure from off-the-
shelf devices. Our designs use force-sensitive resistors 
placed on keyboards and mice to record changes in 
pressure. To evaluate our design, we conducted a user 
study aimed at detecting stress while participants 
completed two conventional tasks in knowledge work: 
typing texts and filling out multiple-choice questionnaires. 
Then, we trained binary classifiers to discriminate stress 
vs. neutral states using features derived from keystroke 
and mouse dynamics, and from our pressure 
measurements. We obtained higher classification accuracy 
when combining keystroke and mouse dynamics with 
their corresponding pressure features. 
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The rest of the paper is organized as follows. First, we 
discuss related work on using keystroke and mouse 
information to recognize emotion. Next, we present our 
keyboard and mouse designs, as well as the experimental 
protocol. Finally, we present results from the user studies, 
followed by a discussion of findings and conclusions. 

2 RELATED WORK 

Various sensing modalities have been used for emotion 
recognition, including facial expression and speech [23], 
physiological sensors [24], and thermal and visual imaging 
[11, 25]. Alternatively, some approaches have relied on 
changes in behavior (e.g., keyboard and mouse usage [26], 
linguistics [15], posture [27]) that may be affected by the 
user’s emotional state. In an early study, Zimmerman et al. 
[28] provided a rationale for assessing user affect using 
keyboard and mouse. Following this seminal work, dozens 
of publications have investigated how these commodity 
devices can be used to infer user affect. 

2.1 Emotion Detection Using Keystroke and Mouse 
Dynamics 

A number of features from keystroke dynamics have been 
explored, including typing speed, latency, and pause 
frequency, to mention a few. Banerjee et al. [29] found that 
individual keystroke patterns vary over time and are also 
affected by the user’s emotional and cognitive states (e.g., 
reduced typing speed when in a negative emotional state). 
Motivated by these findings, Tsihrintzis et al. [30] used 
keystroke features to improve visual-facial emotion 
recognition. They showed that recognition of anger and 
sadness was greatly improved by adding keystroke 
features.  

Several studies have used keystroke dynamics to 
differentiate among a wider number of emotions. In most 
cases, the studies were conducted in a laboratory setting, 
but a few studies sought to capture natural behaviors 
while participants performed daily tasks in the wild [19, 
31]. As an example of an in-situ experiment, Epp et al. [19] 
used keystroke dynamics features to model data collected 
from 15 different emotional states. In their user studies, 26 
participants had keystroke information logged for an 
average of four weeks. For each sample logged, 
participants also reported their emotion using self-reports. 
Their best models achieved accuracies of 77-88% when 
classifying confidence, hesitance, nervousness, relaxation, 
sadness, and tiredness. 

While in-situ studies can capture more realistic 
interactions, they are subject to uncontrolled external 
factors. For this reason, the majority of emotion-detection 
literature has relied on lab studies. Khanna and Sasikumar 
[32] used keystroke features to differentiate between 
positive, negative, and neutral emotional states. According 
to their findings, most people tend to type more slowly 
when in a negative emotional state and faster while in a 
positive emotional state. In a related study on typing 
patterns, Bixler and D’Mello [33] used task appraisals and 
stable traits to differentiate bored, engaged, and neutral 
emotional states. Their model achieved 56% accuracy.  

Several studies have focused on differentiating between 
low and high cognitive load conditions based on keystroke 
and mouse dynamics [34-40]. As an example, Lim et al. [26] 
used both keystroke and mouse features to detect cognitive 
load induced by time pressure and mental-arithmetic 
problems. They found that when problem difficulty 
increases, task error, task duration, stress perception, and 
mouse idle duration also increase, whereas mouse speed, 
left mouse click rate, and typing speed decrease. Brizan et 
al. [36] have explored the use of keystroke dynamics 
combined with linguistics to predict cognitive load levels. 
In their experiments, participants were asked to type freely 
when asked to answer questions that elicited six different 
levels of cognitive load. Their models were able to 
differentiate the six cognitive load levels with above-
chance accuracy, and their best performing models 
achieved 72% classification accuracy when differentiating 
behavior elicited by the more extreme cognitive load 
inducing prompts (level one vs. level six). 

A good number of studies that use peripherals to detect 
cognitive load have focused on the sole use of mouse 
dynamics [35, 37-39]. For example, Chen et al. [35] studied 
the effects of cognitive load while participants performed 
the primary task of screening participants for a fictitious 
human resource department. Cognitive load was elicited 
by a secondary task, which popped-up on the user’s screen 
and required a classification action. They reported that 
when under high cognitive load, participants presented 
more frequent contemplation (i.e., from 1 to 5 seconds) and 
hesitation (i.e., from 0.5 to 1 second) pauses in mouse 
activity, which was attributed to hesitant/cautious 
behavior. Grimes and Valacich [38] have used mouse 
dynamics to detect low, medium, and high levels of 
cognitive load. The authors elicited medium and high 
cognitive load using lag-1 and lag-2 number recall tasks, 
respectively. They observed higher mouse distance 
traveled, more frequent direction changes, and lower 
mouse speed during tasks performed under higher 
cognitive loads.  

In contrast with laboratory experiments that rely on 
emotion-elicitation procedures, Gunawardhane et al. [14] 
collected non-stress behaviors when participants (college 
students) had no exam pressure, and during exam week. 
In their study, keystroke features were extracted while 
participants solved arithmetic problems. The authors 
found significant differences in several features, such as 
the duration of certain bigraphs and trigraphs, when 
comparing stressed and non-stressed emotional states. In 
a recent work, Lau [20] compared the efficacy of 
personalized and generic models to predict stress from 
keystroke dynamics. The author used a baseline-stressor-
recovery design, where stress was elicited using multi-
tasking and social evaluative threats. The personalized 
models obtained accuracies in the range of 83-92%, while 
the generic models achieved chance-level accuracy. 

Although most of the studies reported in the literature 
employ a single-day experimental procedure, a few works 
analyzed how keystroke features generalize over multiple 
sessions [15, 41]. Vizer and Sears, for example, compared 
personalized and generic models in discriminating high 
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and low cognitive demand using keystroke and linguistic 
features [41]. In their study, participants were asked to 
write freely about any topic either in the presence of a 
stressor (mental arithmetic tasks) or without it. Their 
generic model achieved 66% accuracy while their 
personalized model reached accuracies in the range of 65-
93%. 

Some studies have focused exclusively on mouse 
dynamics to perform emotion recognition. Yamauchi [42] 
investigated the relation between mouse activity and state 
anxiety. In the study, participants performed a task where 
they had to select and click geometric figures based on 
their similarities. The author extracted mouse features 
such as velocity and directional change, and fed them to a 
support-vector-regression model to predict state anxiety 
scores measured from questionnaires. He found that 
correlation coefficients between predicted and observed 
state anxiety scores were significantly higher than zero. 
Sun et al. [16] modeled the arm-hand dynamics as a mass-
spring-damper system to study muscle stiffness during 
mouse movement. Their participants performed a set of 
abstract mouse tasks that involved pointing and clicking, 
dragging and dropping, and steering the mouse cursor 
through a tunnel. The authors used mental arithmetic to 
induce stress and mindfulness meditation to induce 
relaxation. They found higher damping frequency and 
lower damping ratio when participants were stressed.  

In a recent study, Hibbeln et al. [43] investigated the 
relationship between mouse movement and negative 
emotion. They induced negative emotion by introducing 
delays and errors into time-limited tasks. The authors 
found that mouse movement distance increased and 
mouse speed decreased during the tasks. They explained 
this phenomenon in terms of attentional control theory, 
which suggests that negative emotion decreases attention 
control, shifting cognitive resources from goals to 
distractions. 

Keystroke and mouse dynamics features are easy to 
extract and require no specialized hardware. For this 
reason, they have been used extensively in emotion 
recognition, and show promise as an approach to measure 
stress in the workplace.  

2.2 Emotion Detection Using Instrumented 
Keyboard and Mouse 

Interestingly, researchers have found that the pressure the 
user applies to the keyboard and mouse can provide 
additional emotion-related information. In a study by 
Tsihrintzis et al. [30], 65% of the participants reported 
typing harder when angry, whereas Karunaratne et al. [44] 
found that 15% of participants reported an increase in 
typing pressure when under stress. A few works have also 
observed variations in mouse grip pressure when 
experiencing different emotions. Picard et al. [45], for 
example, observed an increase in mouse grip pressure 
when participants were frustrated. 

Prior studies have found that mental stress increases 
arm muscle activity and muscle tension [46, 47]. As such, 
pressure sensors could capture these changes and provide 
additional features to assist with automatic emotion 

detection. However, to the best of our knowledge, there are 
currently no keyboards or mice embedded with pressure 
sensors available on the market and little research has been 
reported regarding this type of device. 

To our knowledge, the first work on instrumenting a 
computer mouse with pressure sensors dates back to 1993 
[48]. In this work, the authors built a force-sensing mouse 
to investigate injuries related to intensive mouse use. The 
authors used foil strain gauges to measure finger forces 
applied to the mouse sides and buttons. They analyzed the 
applied force to distinguish between different activities, 
such as holding, moving, and dragging. In a later study 
[49], the authors recruited 16 subjects to test their proposed 
force-sensing mouse. They collected mouse data while 
participants performed their daily work in a field setting, 
and standardized tasks (e.g., pointing, dragging) in a lab 
setting. The authors observed that changes in applied force 
were task- and setting-dependent, but not time-dependent. 
In a subsequent study [50], the authors delivered stress by 
using time pressure and verbal provocation during a text 
editing task. They collected finger forces with their mouse, 
and physiological measures and subjective ratings of 
stress. They found higher forces applied to mouse buttons 
and more repetitive wrist movements during stress 
compared to a control condition. 

In 2001, Qi et al. [45] instrumented a computer mouse 
with eight pressure sensors. They asked participants to fill 
out a web form and delivered a fictitious data-loss problem 
at submission time by erasing all the content they had 
filled out, with the goal of inducing frustration. Since 
participants had limited time to complete the task, they 
also experienced time pressure the second time they filled 
out the form. Initial tests on a limited number of 
participants were promising, achieving 88% classification 
accuracy. 

In 2009, Dietz et al. [51] proposed an experimental 
keyboard design capable of sensing the force level at every 
depressed key by means of a pressure-sensitive 
membrane. In subsequent work, Hernandez et al. [21] used 
that experimental keyboard as well as a Microsoft Touch 
Mouse (a mouse with capacitance sensors on its surface) to 
analyze how typing pressure and mouse grip pressure 
change under stress. The authors collected data from 24 
participants performing typing tasks and mouse-clicking 
tasks under relaxed and stressed conditions. They 
observed significantly higher typing pressure when 
comparing the stressful condition to the relaxed condition, 
for around 85% percent of participants. They also found 
increased capacitance value on the mouse for 75% of the 
participants, which indicates an increased hand contact 
area on the mouse surface. However, they did not report 
how these results compare to using traditional keystroke 
analysis for stress detection. 

2.3 Emotion Detection Using Mobile Devices 

It is estimated that currently 3.5 billion people use 
smartphones [52]. While first-generation smartphones and 
tablets were only equipped with simple applications (e.g., 
email, limited web browsers), current mobile computing 
power and capability are comparable to personal 
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computers. As a result, mobile devices have become an 
integral part of modern life [53]. For this reason, 
researchers have also investigated how to recognize 
emotion and mood disorders from mobile device usage 
data [54-61]. 

A number of studies have investigated how typing 
behavior on mobile devices can be used to recognize 
emotions [54, 60]. For example, Ghosh et al. [54] conducted 
a field study where they recorded participants’ keystrokes 
on their smartphones during daily activities. In this work, 
participants used typing-intensive apps (e.g., instant 
messaging, email) and self-reported their affect right after 
the typing session. The authors obtained an average 
classification accuracy of 73% when differentiating 
between stressed, happy, sad, and relaxed states. Lee et al. 
[60] developed a Twitter-like application that logged 
participants’ keystrokes and some additional contextual 
information such as illuminance, location, and weather. 
Their models obtained 67.5% average classification 
accuracy when differentiating happiness, surprise, anger, 
disgust, sadness, fear, and neutral emotions. In 2019, 
Sarsenbayeva et al. [57] investigated the effects of stress on 
several daily life-like tasks, including a text entry task in 
which participants were asked to type both easy and 
difficult texts, under neutral and stressed states. Mental 
stress was elicited utilizing the Trier Social Stress Test 
(TSST) [62] and mental arithmetic tasks. In their analysis, 
the authors reported that participants had a tendency to 
make more errors when under stress, but the effect was not 
significant. However, the authors observed a significant 
effect between the text difficulty and number of errors. 

Other studies have taken advantage of additional built-
in sensing capabilities (e.g., accelerometer, pressure-
sensing screen) when recognizing emotion on mobile 
devices. As an example, Carneiro et al. [61] collected a 
multimodal dataset while participants performed tasks 
under neutral and stressed mental states, elicited by means 
of time pressure, sounds, and vibration. The dataset 
included accelerometer data, touch intensity and duration, 
video recordings, and others. The authors performed 
participant-specific statistical analysis and observed 
significant differences in at least one feature group when 
comparing stressed and unstressed behavior. They 
reported that acceleration, and mean and maximum touch 
intensity were the most successful features for recognizing 
stressed behavior. In recent work, Exposito et al. [55] 
investigated how stress is manifested in touch intensity. In 
their user studies, participants performed expressive 
writing, where they were asked to write about neutral and 
stressful memories. The authors observed a significant 
positive correlation between the increase in touch intensity 
and self-reported stress across the two conditions. 

2.4 Limitations of Previous Work 

A number of the above studies have reported high 
accuracies, even when performing multi-emotion 
classification. We believe that some of these results are 
optimistic, owing to their experimental design and data 

 

 
1https://www.sensitronics.com 

analysis, which we discuss below. 
One of most common type of stressor in the above 

studies is time pressure (e.g., [21, 34, 46, 49, 63]). Time 
pressure is an effective stressor, but its use is problematic 
when combined with keystroke and mouse timing 
features. Since time pressure is confounded with stress, it 
is not clear whether an algorithm is predicting stress or 
simply detecting the natural changes in behavior caused 
by the time pressure, since the analyses rely on timing and 
latency features. 

A second problem is the lack of multi-day protocols. In 
some cases [45, 64], classification results were obtained by 
splitting data from the same session into a training set and 
a testing set. This inevitably overestimates the accuracy of 
the classification models due to the highly correlated 
nature of the time-series data. To demonstrate that the 
models are robust, we feel that they must be tested across 
different sessions.  

As noted by Lau [20], several works lack a vetted 
emotion-induction procedure. For example, some studies 
elicited emotions by asking participants to read a text [64] 
or watch a video clip [28], but these emotion-elicitation 
methods were not validated with physiological measures 
or subjective ratings. Another problem in prior studies is 
the lack of sufficient details about the experimental 
procedures, which can make it difficult to replicate a study 
or compare results across studies [30, 32, 64, 65].  

To the best of our knowledge, two studies by Vizer et al. 
[15, 41] are the only ones to have employed multiday 
protocol with a vetted stress induction procedure (mental 
arithmetic tasks). However, these studies only involved 
keystroke and linguistic feature analysis. Our paper aims 
to address all the limitations discussed here.  

3 DESIGN OF THE PRESSURE-SENSITIVE 
DEVICES  

Since there are no pressure-sensitive keyboards or mice 
readily available on the market, we propose a simple and 
low-cost method that researchers may adopt to measure 
pressure with off-the-shelf keyboards and mice. 

3.1 Keyboard Design 

Our experimental keyboard uses an array of force-
sensitive resistors (FSRs) to measure typing pressure. FSRs 
can be used to detect physical pressure, squeezing, and 
weight. This type of sensor is easy to use and is low cost, 
making it ideal for our design. However, most FSRs suffer 
from signal drift, i.e., a monotonic decrease in resistance 
when they are subject to a static load. Drifting is especially 
problematic in our design because, when a keyboard is 
standing on a surface, its weight naturally applies pressure 
to the sensors, causing drift. To address this issue, our 
design uses ShuntMode FSRs manufactured by 
Sensitronics 1 , shown in Fig. 1.a, which have low-drift 
characteristics. 

The FSRs are arranged in a voltage-divider 
configuration, with one terminal connected to a 5V power  
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source and the other connected to an analog input to a 
microcontroller, as well as to ground by means of a 10kΩ 
pull-down resistor. To stream data, we use an HC-06 
Bluetooth module manufactured by KEDSUM, which is 
also connected to the microcontroller. Wiring is shown in 
Fig. 1.b. The HC-06’s RX pin expects a 3.3V input, so we 
used a voltage divider to reduce the input voltage from the 
microcontroller from 5V to 3.3V. 

Our design uses an off-the-shelf keyboard (Dell model 
KB212-B). We chose this specific keyboard because it has a 
flat underside, most of its feet are close to corners of the 
case, and it has enough room to route the sensors to the 
microcontroller. In addition, the keyboard is comfortable 
and low-cost (note, though, that our design could be easily 
adapted to many other keyboard models, including 
laptops). We placed four FSRs on the underside of the 
keyboard, near the four corners, and connected them to 
analog inputs on the microcontroller, as shown in Fig. 2. 

No changes were made to the upper side of the 
keyboard. In addition, we attached gel bumpers to the 
FSRs to distribute the pressure more efficiently across the 
sensor surface. When the user types, pressure is applied to 
the keyboard, which in turn presses the bumpers that 
apply pressure to the FSRs, generating a response. We 
attached the FSRs to the keyboard using their built-in 
adhesive tape, secured the cables with duct tape, and 
connected them to the microcontroller. Finally, we 
connected the keyboard’s internal ground and 5V pins to 
the microcontroller and Bluetooth module, eliminating the 
need for an external battery. The sensors’ sampled 
pressure data at 100 Hz. 

3.2 Mouse Design 

During the early stages of the mouse design, we compared 
two sensor choices: capacitive sensors and FSRs. 
Capacitive sensors have been used to detect and measure 
position and force because of capacitance coupling [66]. In 
our first prototype (Fig. 3.a), we used copper tape to build 
a conductive surface as a capacitive sensor. We attached 
copper tape to the mouse shell surface and covered it with 
electrical tape to protect the sensor from abrasion and 
prevent signal saturation. The sensors were placed on the 
mouse buttons (one sensor for each button) and on either 
side of the mouse. We used the same microcontrollers as in 
the keyboard design. The entire circuit (except for the 

sensor itself) is invisible to the users since it is small 
enough to fit inside a regular computer mouse and is 
powered from the mouse’s own power line. We drilled 
four holes in the mouse shell to connect the sensors placed 
on the outer part of the mouse to the microcontroller inside 
the mouse shell. 

Our second prototype (Fig. 3.b) also used capacitive 
sensors. This time, however, we replaced the copper tape 
with conductive paint. The advantage of conductive paint 
is that the shape of the sensor is more flexible and can be 
placed inside the mouse, underneath its shell, hiding it 
completely from the user. We tested these two prototypes 
and found that both sensors behaved similarly: 

 
Fig. 1:  Schematic of the circuit used in our instrumented keyboard. 
(a) The size of the pressure sensor used when compared to a quarter 
dollar. (b) Shows how the pressure sensor is connected to an Arduino 
microcontroller, which streams data to a Bluetooth module that can be 
paired with any Bluetooth device. 

 
Fig. 2. Top and back view of the instrumented keyboard. Four FSRs 
(indicated by the yellow arrows) are placed on the back of the 
keyboard and are connected to the analog inputs of an Arduino micro-
controller, which is used to interface with a computer. 

 
Fig. 3. Various pressure-sensitive mice prototyped. (a) A mouse with 
copper tape on the surface. (b) A mouse with conductive paint 
underneath the shell. (c) A regular mouse with four FSRs. (d) A vertical 
mouse with four FSRs covered by black tape. 
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capacitance values increased as the user made more skin 
contact with the mouse. However, we could only observe 
an increase in capacitance when the users held the mouse 
unrealistically tightly. 

This result led us to investigate the use of FSRs to 
measure grip pressure. We compared FSR and conductive 
paint by applying different weights to the sensors and re-
cording the corresponding responses. Results in Fig. 4 
show a linear relationship between weight and FSR 
response, whereas the capacitance sensor saturates rather 
quickly. Based on these results, we decided to use FSRs for 
our final mouse design.  Namely, we used an Interlink 408 
FSR, a 0.6-inch wide strip that can be cut to length. 

As with the two capacitive prototypes, we attached four 
sensors, two on the L/R buttons and two on the sides of the 
mouse. Microcontrollers and circuits were able to fit inside 
the mouse shell, and sensors were connected to the 
microcontrollers through four holes drilled in the plastic 
shell. The measurement circuit for these sensors is the 
same as the one proposed for the pressure keyboard (Fig. 
1.b). An example of the FSR-based prototype is shown in 
Fig. 3.c. During pilot studies, we observed that people used  

a variety of grip patterns (e.g., palm grip, claw grip, tip 
grip) with this mouse, which introduced undesired 
variability into the sensor data. To overcome this issue, we 
created a fourth design using a vertical mouse (Anker 
Ergonomic). The ergonomic design of this mouse 
encourages users to grip the mouse consistently, thus 
reducing variability. After attaching the FSRs and 
protecting them with duct tape, we obtained the final 
design of the proposed pressure-sensitive mouse shown in 
Fig. 3.d. As in the keyboard design, we set the FSRs’ 
sampling rate to 100 Hz. 

4 EXPERIMENTAL PROTOCOL 

We conducted a user study to investigate whether the 
proposed pressure devices could be used to detect stress. 
We were particularly interested in determining how 
features extracted from the pressure devices compared to 
traditional keystroke and mouse dynamics analysis. 
During the experiment, software running in the 
background logged the typing pressure, mouse pressure, 
keystrokes, and mouse event-related information.  

In this work, we adhere to Lazarus and Folkman’s 
definition of stress [67], which states that stress is 
experienced when a person perceives that the “demands 

exceed the personal and social resources the individual is 
able to mobilize.” Thus, mental distress (i.e., negative 
stress) is caused when the mental resources cannot 
appropriately deal with the demands posed. In our 
experiments, the demands we impose upon our 
participants are delivered by means of cognitive 
interference, cognitive load, and rapid decision making – 
explained in more detail throughout this section. As such, 
we sought to elicit and capture changes in behavior when 
participants experience mental distress, which is often 
associated with an increase of arousal and decrease of 
valence. 

4.1 Overview  

The user study consisted of four sessions, each session 
performed on a different day. Fig. 5 shows the structure of 
each session. First, we asked participants to fill out a 
questionnaire about their arousal and valence at that 
moment. If it was their first session, we also asked them to 
provide information about computer use (how long they 
have been using computers and how frequently they use 
them). After filling out the pre-experiment questionnaire, 
we instructed participants to proceed to the study desk and 
start the experiment. Next, participants started either the 
control or experimental block (counterbalanced). In each 
block, participants performed a priming task for 5 minutes, 
followed by a 10-minute writing task. After completing the 
priming and writing tasks, participants reported their 
perceived valence, arousal, and workload by filling out a 
questionnaire using the mouse (details to follow). During 
the control block, participants performed the tasks in an 
easier mode, while in the experimental block they 
performed a more challenging version of the tasks 
designed to induce stress. We provide details of both tasks 
in the next section. Once participants finished the first 
block, they were asked to watch a 3-minute transitional 
video with images from nature and calming background 
music. Next, participants started the second block (either 
the control or experimental block, depending on the first 
block completed), which also lasted 15 minutes. At the end 
of each session, we thanked and dismissed participants. At 
the end of the last session on day 4, participants were 
debriefed and compensated with a $30 gift card. 

 
Fig. 4. Weight vs. FSR sensor response (blue curve) and conductance 
response (red curve) in arbitrary units (a.u.). 

 
Fig. 5. Procedure of the experiment. The order of control and 
experimental blocks were counterbalanced. 
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4.2 Priming Task: Stroop Color-Word Test  

The priming task was designed to influence the 
participants’ behavior during the subsequent 
questionnaire and writing task. Namely, participants were 
asked to complete the Stroop Color-Word Test (CWT), a 
computer-based cognitive task that is commonly used to 
elicit stress due to cognitive interference and rapid 
decision making [24, 68-72]. In particular, Tulen et al. [70] 
have shown that the Stroop CWT simultaneously induces 
four types of reactions that are required for a suitable stress 
test: 1) psychological changes that indicate increased 
distress, 2) physiological changes that indicate 
sympathoadrenal activation, 3) muscular exertion as part 
of the fight-flight defense reaction, and 4) hormonal 
changes, reflected in plasma and urinary catecholamines, 
and plasma cortisol and prolactin.  

For our study, we developed a version of the CWT 
where participants make their choices by selecting one of 
four options positioned at the corners of the screen. The 
objective of the task was to choose the correct font color or 
the text of the word, depending on what was asked. An 
example of a trial is shown in Fig. 6. In this particular trial, 
the font color (orange) does not match the text (blue) and 
the instructions ask the participant to choose word (i.e., 
blue). If the instructions had asked to select color, the 
correct choice would have been orange.  We implemented 
two versions of the CWT: difficult and easy. In the difficult 
mode, participants were presented with incongruent 
stimuli in which the font color did not match the text; see 
Fig. 6. Participants need to select the correct answer from 
the four options (shown on the corners), which were 
shown in white font color. In the easy mode, participants 
were presented with congruent stimuli, i.e., the target 
word’s font color and its text always matched. In addition, 
the four options were shown with their respective font 
colors. In either mode, whenever the participant selected 
the wrong option or took more than 5 seconds, the CWT 
played a loud buzzer sound and displayed a visual 
message as an extra stressor. Note that the sole purpose of 
this task was to elicit stressed or neutral behavior prior to 
the subsequent tasks. The tasks used in our keyboard and 
mouse analyses are described, respectively, in Sections 4.3 
and 4.4. 

4.3 Writing Task 

In this task, participants were presented with various 
classical paintings and were asked to describe them (i.e., 
how characters are dressed, what activities they are 
performing). We also encouraged participants to come up 
with a story behind that picture; see Fig. 7.a for an example 
of a description for the Story of Golden Locks painting, by 
Seymour Joseph Guy [73]. For each painting, participants 
had to write at least 200 words before submission. Within 
each block, we presented up to three paintings to the 
participants, depending on how fast they completed each 
description. To finish the task, they had to either finish 
describing the three paintings, either writing the minimum 
number of words or spending ten minutes writing, 
whichever happened first. In total, we used 24 paintings in 
our experiments, which were never repeated for a 
participant. 

To make the writing task more stressful, participants 
had to perform mental arithmetic tasks (MATs) during the 
experimental block. MATs have been extensively used to 
create a stress response due to high cognitive load, 
intensive mental demand, and rapid decision making [41, 
46, 69, 74-76]. In particular researchers have observed that 
when under mental distress elicited utilizing MATs, 
participants presented higher self-reported stress, systolic 
and diastolic blood pressure, heart rate, urinary 
catecholamines, salivary cortisol, and electromyogram 
activity [46]. Our interface is shown in Fig. 7.b. While 
describing the paintings, our software prompted MATs at 
intervals specified by sampling a Poisson distribution with 

 
Fig. 6. Stroop Color-Word test variant used in our experiments. Every 
round, the participants must select their choices using the mouse. The 
four options are positioned on the corners of the screen. 

 
Fig. 7. An example of a painting and its description is shown in (a), (b) 
shows the same painting and description overlaid with a mental 
arithmetic task during the writing task. Here, the submit button was 
deactivated because the participant/t has only written 127 words. 
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a mean of 30 seconds. When answering a MAT, the 
participant had to choose one of the four provided options 
within 5 seconds. If the participant failed to select the 
correct option or ran out of time, a loud buzzer was played. 

4.4 Self-Reported Emotional State and Workload 

All participants were asked to complete a questionnaire, in 
which they reported their perceived valence, arousal, and 
perceived workload after finishing each task in both the 
control and experimental blocks. The questionnaire served 
two purposes. First, it allowed us to determine whether the 
stressors delivered were successful. Second, it provides an 
opportunity to analyze changes in mouse behavior elicited 
by the prior priming task. To do so, we compared the 
mouse data logged during the questionnaire after the easy 
(control) CWT and after the difficult (experimental) CWT. 
We expected changes in mouse behavior after the CWT to 
be more pronounced than those after the writing task. 

Fig. 8 shows the user interface of the self-reported 
questionnaire. For self-reported valence and arousal, we 
used the 7-Point Self-Assessment Manikin [77], which has 
been extensively used for self-reporting arousal and 
valence. We expected participants to report a lower valence 
score and a higher arousal score in the tasks performed 
during the experimental block, as compared to the control 
block. 

To assess task workload, we used the NASA Task Load 
Index (NASA-TLX), a survey instrument that asks 
participants to report their perceived mental demand, 
physical demand, temporal demand, frustration, effort, 
and performance on the tasks they just finished [78]. We 
expected higher values of mental demand, physical 
demand, temporal demand, frustration, and effort, and 

 

 
2 In the keystroke dynamics literature, a key press is called a keydown 

lower values of performance reported for the experimental 
block when compared to those of the control block. 

4.5 Participants 

We invited participants using our institution’s bulk mail 
system, which sends the invitations to student and staff 
mailing lists. The inclusion criteria were that participants 
should be 18 years of age or older and fluent in English. We 
received approval from the Texas A&M University 
Institutional Review Board (study #IRB2017-0183D) prior 
to the study. We obtained written consent from each 
participant before the first session started. 

In total, 25 participants (9 male and 16 female) 
participated in this study. One of the participants was left-
handed, so we decided not to consider his data in the 
mouse analysis. Participants had an average age of 22 
(standard deviation (SD): 8.1). All participants reported 
using computers for at least 2 years (average: 13 years, SD: 
6.8 years) and at least 5 hours of weekly usage (average: 28 
hours, SD: 15.3 hours). One participant decided to drop out 
after the second session for personal reasons unrelated to 
the experiments, but we were able to use the data from her 
first two sessions in our analysis. 

 

5 DATA ANALYSIS METHODS 

5.1 Keyboard Features 

We extracted two types of features from the keyboard data: 
keystroke dynamics features2  and pressure features; see 
Table 1. We chose keystroke dynamics features that have 
been used extensively in the affect-recognition and user-
authentication domains [19, 28, 79]; see Fig. 9 for an 
illustration of these features. To define the set of pressure 
features, we initially referred to the works of Hernandez et 
al. [21], Lv et al. [64], and Carneiro et al. [61]. From these 
works, we used the features mean pressure, maximum 
pressure (referred to as peak pressure), and pressure 
standard deviation, and combined them with additional 
pressure features we designed. As summarized in Table 1, 
we extracted six features aiming to capture the pressure 
signature. 

event, and a key release is called a keyup event. 

 
Fig. 8. Self-report questionnaire. Self-Assessment Manikin questions 
are shown in the top of the questionnaire, and NASA-TLX questions 
in the bottom. 

 
Fig. 9. Keystroke features computed over consecutive key events. 
Respectively, 𝑲𝑫𝒊  and 𝑲𝑼𝒊  represents the 𝑖 -th keydown and keyup 
events. 
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To extract pressure features, we sampled the pressure 
time series only when keydown events occurred. This 
allowed us to discard pressure measurements when there 
was no keyboard activity. In a first step, we subtracted the 
static load (i.e., keyboard weight) from each sensor's raw 
pressure time series, which helped normalize sessions 
from different days and different participants. Then, we 
assigned a pressure measurement to each keypress by 
choosing the maximum pressure value between the 
current and the next keydown event, which we refer to as 
Peak Pressure (PP); see Fig. 10. To compute the features 
Pressure Difference (PD) and Pressure Time Difference 
(PTD), we considered the sampled pressure (PP) as the 
reference value, as described above. The Mean Pressure 
(MP) and Standard Deviation (STD) features represent, 
respectively, the mean and standard deviation of each 
pressure response. Finally, the feature Area Under the 
Curve Difference (AUCD) is obtained by computing the 
AUC of each pressure response, and then calculating the 
difference in AUC between consecutive keys. 

 

 
3 In a separate experiment not reported here, we compared performance 

when using a single sensor vs. using the four sensors, and the results were 

We considered keydown and keyup events only for 
keys in the range A, B, …, Z. Hence, the features 
considered are calculated for either each single key (A, B, 
…, Z) or pairs of keys ([A,A], [A,B], …, [Z,Z]), depending 
on whether the feature involves a single key or a pair of 
keys. For each feature, we used its average value across the 
entire session block. In instances where a key or pair of 
keys was not observed during a session, the corresponding 
features were assigned a value of zero. In summary, the 
features KDU, MP, PP, and STD have dimensionality 26 (26 
keys), and the features KDD, KUD, DD, PD, AUCD, and 
PTD have dimensionality 676 (26 keys × 26 keys).  

As mentioned previously, we used mental arithmetic 
tasks (MATs) during the writing task as a stress-elicitation 
procedure. One of the drawbacks of this procedure, 
however, is that it interrupts the participants’ writing 
process. As these interruptions could lead to exaggerated 
features calculations, we preprocessed the keyboard data 
in order to minimize the effect caused by the MATs on the 
keyboard features. Namely, we observed that typing speed 
decreases to zero while participants were answering the 
MATs (as expected) and that, once participants resume 
typing, it took an average of two seconds (or five 
keystrokes) for their typing speed to return to its average 
level. Hence, in our approach, we ignored any eventual 
keystroke logged during the MAT and five additional 
keystrokes after each MAT. Further, our analysis showed 
that the sensor placed at the bottom-left corner (i.e., close 
to the Z key) was the most sensitive of the four sensors; this 
was likely because the bottom-left sensor was the closest 
sensor for 60% of the keys examined in our study (the 26 
alphabetical keys). Therefore, all preprocessing methods 
and data analyses are based on the pressure time series 
obtained by the bottom-left sensor3. 

5.2 Mouse Features 

We extracted two types of features from the mouse data: 

virtually identical.   

 
Fig. 10. A segment of a pressure time series in arbitrary units (a.u.), 
along with keystroke information. The pressure time series are shown 
in blue; red vertical lines represent keydown events; black arrows 
point to the pressure values chosen to represent the pressure of each 
keystroke, which we refer to as the Peak Pressure (PP) feature. The 
characters shown close to the keydown events represent which key 
was typed at that moment. 

TABLE 1 

KEYBOARD FEATURES USED, WHERE 𝑲𝑫𝒊 STANDS FOR A 

KEYDOWN AT TIME 𝑖, 𝑲𝑼𝒊 STANDS FOR A KEYUP AT TIME 𝑖, 
AND 𝑲𝒊 REPRESENTS A KEYSTROKE AT TIME 𝑖 

Feature Acronym Description 

Keystroke Dynamics  

Keydown-

Keydown 

𝐾𝐷𝐷(𝐾𝐷𝑖 , 𝐾𝐷𝑖+1) Time between two 

consecutive keydown 

events 

Keydown-Keyup 𝐾𝐷𝑈(𝐾𝐷𝑖 , 𝐾𝑈𝑖) Duration of key being 

pressed. Also known as 

dwell time 

Keyup-Keydown 𝐾𝑈𝐷(𝐾𝑈𝑖, 𝐾𝐷𝑖+1) Time between 

releasing a key and 

pressing the next one. 

Also known as flight 

time 

Digraph duration 𝐷𝐷(𝐾𝐷𝑖 , 𝐾𝑈𝑖+1) Time between pressing 

a key and releasing the 

consecutive one 

Pressure features 

Mean Pressure 𝑀𝑃(𝐾𝑖) Pressure value  

Peak Pressure 𝑃𝑃(𝐾𝑖) Peak pressure value 

Standard 

Deviation 

𝑆𝑇𝐷(𝐾𝑖) Standard deviation of a 

pressure response 

Pressure 

Difference 

𝑃𝐷(𝐾𝑖 , 𝐾𝑖+1) Difference between 

two consecutive 

pressure values 

AUC Difference 𝐴𝑈𝐶𝐷(𝐾𝑖, 𝐾𝑖+1) Difference between the 

area under the curve 

(AUC) of two 

consecutive pressure 

samples 

Pressure Time 

Difference 

𝑃𝑇𝐷(𝐾𝑖, 𝐾𝑖+1) Time difference of two 

consecutive pressure 

samples 
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mouse dynamics and pressure measurements from the 
FSR sensors. As with the keyboard dynamics, we chose 
mouse dynamics features that have been used in the 
related literature [26, 42], with the exception of the 
pressure features, which we needed to design on our own. 
The mouse features are listed in Table 2. We extracted six 
features from mouse dynamics: two mouse trajectory 
features (travel distance and direction change), two speed 
features (overall speed and moving speed), and two timing 
features (dwell duration and moving duration). Note that 
the mouse features were calculated considering the entire 
session duration. For example, for the Travel Distance (TD) 
feature, we summed up the distance covered by each 
mouse stroke performed during a session. We extracted 
four pressure features from the FSR sensors. Two of these 
pressure features were from the FSR on the left click 
button: mean and standard deviation of the click forces 
(since no right-click was required during our experiments, 
we did not extract any features from the FSRs on the right-
click button). The other two features were the mean and 
standard deviation of the grip force, measured from the 
two FSRs on the sides; see Fig. 3. 

As with typing pressure, we only considered pressure 
values during periods of mouse activity. We used the 
maximum peak value immediately after the click event as 
the clicking force. As for the grip force features, we 
sampled the FSR time series whenever a user interaction 
event occurred (e.g., cursor movement, click). 

5.3 Classifier Design 

Once the time series were preprocessed (as described in the 
previous two sections), we executed our feature extractor 
module to convert raw data into feature sets, which were 
then passed to a binary classifier trained to discriminate 
between neutral and stress conditions, as described below. 
Due to the large number of features relative to the number 
of samples in our dataset, we used linear discriminant 
analysis (LDA) [80] to reduce the dimensionality of the 
feature vector. LDA projects the features in a way that 
maximizes the ratio of between-class scatter to within-class 
scatter, leading to more pronounced differences between 
neutral and stressed samples. In addition, since we only 
have eight samples per participant, we pooled data from 
multiple participants to train subject-independent 
classifiers (i.e., generic classifiers) using a leave-one-
participant-out procedure. For illustration purposes, 
assume we are considering four feature groups in our 
keyboard analysis: Keydown-Keydown (676 dimensions: 
26 keys × 26 keys), Keydown-Keyup (676 dimensions), 
Mean Pressure (26 dimensions), and Pressure Time 
Difference (676 dimensions); see Fig. 11. The 
dimensionality of this combined set would be equal to 
2,054. Our dimensionality-reduction procedure projects 
each feature group (i.e., KDD, KDU, MP, PTD) into a single 
dimension (i.e., a two-class problem has one LDA 
projection), resulting in four projections – one projection 
per feature group. The procedure shown in Fig. 11 is 
detailed next. 

For each run, we split the dataset into a training and a 
test set. The test set contains data from a single participant 
(8 samples), while the training set contains data of the 
remaining participants (180 samples). We use the training 
set to compute an LDA eigenvector for each feature group, 
as illustrated in Fig. 11. Then, we use the resulting 
eigenvectors to project the test set. As such, the test data is 
never used to compute the LDA eigenvectors. Once the 
training set and test set are projected into the LDA 
subspace, we use a classifier to generate class labels for the 
test samples. We repeat this procedure for each participant 

 
Fig. 11. Generating a low-dimensional projection from four feature 
sets (F1-F4; blue block) using Linear Discriminants analysis. The 
reduced feature vector (four dimensions; red block) is passed to a 
nearest neighbor classifier to generate a class prediction into neutral 
vs. stressed states. 

TABLE 2 

MOUSE FEATURES USED IN OUR ANALYSES 

Feature Acron. Description 

Mouse trajectories features 

Dwell duration DD How long the mouse remains 

idle 

Moving duration MD How long the mouse is being 

moved 

Travel distance TD Cumulated distance in pixel (px) 

that the mouse cursor moved 

Overall speed OS OS = TD / (DD + MD) 

Moving speed MS The speed only during mouse 

movement. Given by MS = TD / 

MD 

Direction change DC Cumulative direction change (in 

radian) that the mouse cursor 

traveled 

Pressure features 

Click force mean CFM Mean of the click peak values 

from the FSR on the left click 

button (our task never requires 

using a right click) 

Click force std CFS Standard deviation of the click 

peak values from the FSR on the 

left click button 

Grip force mean GFM Mean of the grip forces (grip 

force is defined as the sum of 

left-side and right-side FSR) 

Grip force std GFS Standard deviation of the grip 

forces 
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and report the mean classification accuracy obtained by 
each run of the leave-one-participant-out analysis. We 
compared three classifiers for this purpose: 5-nearest-
neighbors (5-NN)4 , support vector machine (SVM), and 
naïve bayes (NB) using their corresponding optimized set 
of features. On keyboard data, the best-performing 
classifier was 5-NN, achieving 74% classification accuracy, 
whereas SVM and NB classifiers achieved 73% and 69% 
classification accuracy, respectively. On mouse data, 5-NN 
also yielded the highest classification rate (73%), compared 
to SVM (70%) and NB (72%). We expand on the results 
achieved by 5-NN in the following section. 

6 RESULTS  

In this section, we show how the stressors delivered 
affected the participants’ perceived arousal, valence, and 
workload with respect to the control block. Then, we 
present the results obtained by the automated classifiers. 

6.1 Stress Elicitation (SAM) 

As described earlier, we used four questionnaires in each 
session to rate the participants’ stress levels at different 
time points. We administered a questionnaire after the 
easy CWT (Easy CWT Questionnaire, or ECQ for short), 
and another after the difficult CWT (DCQ). We also 
administered questionnaires for the easy and difficult 
typing tasks (ETQ and DTQ, respectively). Presenting both 
the Self-Assessment Manikin (SAM) and NASA Task Load 
Index (NASA-TLX) questionnaires after each task ensured 
that participants faced the same questionnaire page every 
time, for a fair mouse analysis comparison during the 
questionnaire. Fig. 12 shows boxplots for the arousal and 
valence ratings, with each session as one sample. Since 
each of the 24 participants completed 4 sessions (except 
one who only finished two sessions), we have 94 pairs of 
samples in total. We used paired t-test for statistical 
purposes. 

 

 
4 To optimize the number of neighbors (k), we varied k from 1 to 10 and 

did the following. In each iteration of the leave-one-participant-out 
analysis, we randomly selected eight samples from the training data and 
used them for validation purposes. We then trained a k-NN classifier with 

First, we examined if the perceived stress level was 
different between the two versions of the CWT. A 
comparison of ECQ to DCQ indicates that arousal ratings 
during the difficult CWT were significantly higher (mean 
increase of 1.05, t(93) = -7.63, p << 0.01) and valence ratings 
were significantly lower (mean decrease of 0.81, t(93) = 
6.12, p << 0.01) than those during the easy CWT. This 
indicates that the difficult CWT increased participants’ 
stress levels, as expected. Next, we examined whether 
stress levels were different between the two versions of the 
typing task. A comparison of ETQ to DTQ indicates that 
arousal ratings during the difficult typing task were 
significantly higher (mean increase of 0.44, t(93) = -4.23, p 
<< 0.01), and the valence was significantly lower (decreased 
by 0.26, t(93) = 2.03, p = 0.04) than those during the easy 
typing task. These results confirm that the two tasks were 
able to manipulate the participants’ stress levels as we had 
intended. 

6.2 NASA TLX 

Analyzing the TLX results also served as a validity check 
to determine whether the nature of the tasks performed 
during the experimental block was more difficult than 
those during the control block. Indeed, during the difficult 
version of the CWT/typing task, participants reported 
significantly higher mental demand, higher physical 
demand, higher temporal demand, lower performance, 
higher effort, and higher frustration than during the easy 
version of the CWT/typing task – see Fig. 13. The only 

the specific value of k using the remaining training samples. Next, we 
evaluated the models trained using the validation data. We repeated this 
analysis for each participant and considered the average classification 
accuracy obtained with each k to decide the final configuration.  

 
Fig. 12. Box plots for self-reported valence and arousal. The x-axis 
labels represent questionnaire after easy CWT (ECQ), questionnaire 
after difficult CWT (DCQ), questionnaire after easy typing task (ETQ), 
and questionnaire after difficult typing task (DTQ). 

 
Fig. 13. Box plots for self-reported NASA-TLX scores. The x-axis 
labels represent questionnaire after easy CWT (ECQ), questionnaire 
after difficult CWT (DCQ), questionnaire after easy typing task (ETQ), 
and questionnaire after difficult typing task (DTQ). * represents 
statistically-significant differences for the scores reported for each 
task. 
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exception was the self-reported physical demand for the 
typing task (mean increase of 0.62, t(93) = 1.92, p = 0.056). 
However, we still observed a trend towards the expected 
direction (difficult typing task leading to higher physical 
demand) and a p-value close to significance. These results 
suggest that the tasks were successful in eliciting stress. 

6.3 Keyboard Analysis 

In total, we collected 188 samples (a sample contains all 
features computed during a block), as every participant 
but one went through four control sessions and four 
experimental sessions. Given that the number of samples 
in the control and experimental sessions are the same, a 
random classifier would achieve 50% classification 
accuracy. For the remainder of the manuscript, the 
classification accuracy obtained by such a random 
classifier will be referred to as a chance-level classification 
accuracy. 

To identify the best subset of features for each type 
(keystroke only, pressure only, and keystroke + pressure), 
we performed exhaustive search on the feature sets, i.e., we 
evaluated our models on every possible combination of 
features, for a total of 1023 (210 – 1) feature subsets. Average 
classification accuracies are shown in Table 3. Using all 
(timing and pressure) features as input performs slightly 
worse than selecting a subset of them. When using timing 
features alone, the classifier obtained an accuracy of 68% 
using the feature groups DD and KDU. Using pressure 
features alone, our classifier obtained an accuracy of 71% 
using the feature groups PP, MP, AUCD, and PDT. When 
both timing and pressure features were combined, the 
optimal feature subset contained the feature groups KDD, 
KUD, DD, KDU, PP, AUCD, and PTD and achieved 74% 
classification accuracy. Thus, adding pressure information 
to timing features led to a 6% absolute improvement in 
average classification accuracy (i.e., from 68% to 74%). 
Hence, combining timing and pressure features provides 
higher classification accuracy than using each feature type 

 

 
5 To generate this plot, we adapted our 5NN model to classify a stressed 

sample for different minimum number of neighbors (e.g., classify as 

in isolation. Next, we expand on the results achieved by the 
optimal feature subset, obtained with the combination of 
keystroke dynamics and pressure features. 

Results per participant for the optimal feature subset 
model are shown in Fig. 14.a. The classifier obtained 
accuracies of 60% or higher for all but three participants, 
and accuracy of 85% or higher for ten participants. It is 
important to note that these classification results were 
obtained using a leave-one-participant-out procedure; in 
other words, the classifiers are subject independent. 
Classification performance would likely increase if the 
classifier were to be adapted to match the characteristic 
typing patterns of each user. 

The confusion matrix for the optimal keyboard data 
feature subset is shown in Table 4. As it can be seen, there 
is no significant correct class prediction imbalance, as the 
number of samples correctly classified do not differ by 
much (67 vs. 73). The same happened when the prediction 
did not agree with the actual class label (21 vs. 27). Finally, 
Fig. 15 shows the ROC curves of the optimal feature subset 
model trained with keyboard data and that of a null 
classifier5 . The optimal feature subset obtained an AUC 
equal to 0.77, outperforming the null classifier (AUC: 0.50).  

6.4 Mouse Analysis 

Mouse pressure data was lost due to Bluetooth connection 
problem for three sessions, and as mentioned earlier, one 
participant dropped out after the second session and one 
was left-handed. Thus, we ended up with mouse data for 
87 sessions, totaling 174 samples (87 sessions x 2 blocks). 

It is tempting to compare mouse features between the 
easy and difficult CWT. However, this comparison would 
yield overly optimistic results since the difficult CWT 
naturally results in longer response times. In fact, we 
observed differences in mouse usage patterns (e.g., faster  

stressed if at least two out five neighbors are also stressed). 

 
Fig. 14. Individual participant classification accuracies using the best-
performing input set from a) the keyboard device, b) the mouse 
device. 

TABLE 3 

GENERIC-CLASSIFIER CLASSIFICATION ACCURACY WHEN 

USING DIFFERENT SETS OF KEYBOARD FEATURES 

Feature Set Accuracy 

(St. dev) 

Keystroke Only 

Full: [DD, KDU, KUD, KDD] 65.1 % 

(16.1 %) 

Optimal: [DD, KDU] 67.7 % 

(13.7 %) 

Pressure Only 

Full: [MP, PP, STD, PD, AUCD, PTD] 67.1 % 

(14.2 %) 

Optimal: [PP, MP, AUCD, PTD] 71.3 % 

(13.5%) 

Keystroke and Pressure  

Full:[KDD,KDU,KUD,DD,MP,PP,STD,PD,AUCD,PTD] 72.4 % 

(14.2 %) 

Optimal: [KDD,KUD,DD,KDU,PP,AUCD,PTD] 74.5 % 

(14.7 %) 

 

TABLE 4 

CONFUSION MATRIX SHOWING THE ACTUAL VS. PREDICTED 

OUTPUT OF THE OPTIMUM FEATURE SUBSET FOR THE 

KEYBOARD ANALYSIS 

P
re

d
ic

te
d

  Actual 
 Neutral Stressed 

Neutral 67 27 

Stressed 21 73 
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mouse movements during the difficult CWT), but these are 
likely due to the nature of the task, rather than due to the 
participants’ stress levels.  

Instead, to examine how stress affected mouse behavior 
without a time-pressure confounder, we used the mouse 
data collected during the NASA TLX questionnaire. This 
phase is ideal for stress analysis because (1) the 
questionnaire page is the same for the two blocks, (2) no 
time pressure was applied during the task, and (3) 
answering a questionnaire is a more realistic task than 
completing a lab task (i.e., CWT). 

Following the procedures outlined for the keyboard 
analysis, we perform a leave-one-participant-out analysis 
with the mouse data. Then, we computed LDA projections 
for three different combinations of features: (1) trajectory 
features only, (2) pressure features only, and (3) trajectory 
features and pressure features combined. All these features 
were projected into a one-dimensional feature and fed to a 
classifier.  

Classification results are reported in Table 6. As with the 
keyboard analysis, we used exhaustive search to find the 
optimal set of features when building our models. 
Trajectory features (70%) outperformed pressure features 
(61%), both performing performed above chance levels.  

More importantly, combining both types of features 
into a single vector yielded higher classification 
performance (73%) than either feature alone – a 3% 
absolute improvement in classification accuracy from 
using trajectory features alone. Classification rates per 
participant are shown in Fig. 14.b. Our models obtained 
classification accuracies above 60% for all but one 
participant, and 80% classification accuracy or higher for 
seven participants. As with the keyboard analysis, it is 
important to note that these classification models are 
subject-independent. It is likely that higher performance may 
be obtained by adapting a generic classifier to fit the 
individual mouse behaviors of each user. 

Table 5 shows the confusion matrix of the actual vs. 
predicted class label for the optimum feature subset 
trained using trajectories and pressure features. As in the 
keyboard analysis, there is neither significant imbalance 
between the elements of the main diagonal nor of the anti-
diagonal. This indicates the best performing classifier did 
not obtain the highest classification rate by mainly 
predicting one class over the other. Fig. 16 shows the ROC 
curves of the classifier trained with the optimum feature 
subset using mouse data and that of the null classifiers. As 
in the keyboard analysis, optimum feature set trained 
using mouse data obtained an AUC (0.75) superior to that 
of the null classifier (0.50). 

7 DISCUSSION 

This paper presents an approach to monitor work stress by 
analyzing subtle changes in keyboard and mouse usage 
during knowledge work tasks. The approach involves 
instrumenting computer peripherals that are already part 
of modern workplace settings with low-cost external 
sensors. We developed an experimental protocol to 

 
Fig. 15. ROC curves achieved by the optimal feature subset using 
keyboard data. 

 
Fig. 16. ROC curves achieved by the optimum feature set using 
mouse data. 

TABLE 6 

GENERIC-CLASSIFIER CLASSIFICATION ACCURACY WHEN 

USING DIFFERENT SETS OF MOUSE FEATURES 

Feature Set Accuracy 

(St. dev.) 

Trajectories Only 

Full: [DD, MD, TD, OS, MS, DC] 64.1 % 

(12.1 %) 

Optimal: [MD, TD, OS] 70.2 % 

(17.8 %) 

Pressure Only 

Full: [CFM, CFS, GFM, GFS] 56.5 % 

(15.2 %) 

Optimal: [CFM] 61.1 % 

(19.8 %) 

Trajectories and Pressure  

Full: [DD,MD,TD,OS,MS,DC,CFM,CFS,GFM,GFS] 70.1 % 

(16.1 %) 

Optimal: [DD, OS, DC, CFM, CFS, GFS] 73.3 % 

(15.5 %) 

 

TABLE 5 

CONFUSION MATRIX SHOWING THE ACTUAL VS. PREDICTED 

OUTPUT OF THE OPTIMUM FEATURE SUBSET FOR THE MOUSE 

ANALYSIS 

P
re
d
ic
te
d

  Actual 
 Neutral Stressed 

Neutral 62 21 

Stressed 25 66 

 

Authorized licensed use limited to: Texas A M University. Downloaded on February 25,2021 at 03:53:15 UTC from IEEE Xplore.  Restrictions apply. 



1949-3045 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAFFC.2021.3061417, IEEE Transactions on Affective Computing

14 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING,  MANUSCRIPT ID 

 

simulate two typical tasks in knowledge work (completing 
questionnaires and writing reports) that require keyboard 
and mouse interaction. With our instrumented 
peripherals, we are able to detect consistent changes in 
behavior caused by mild stressors. 

We designed a protocol that addresses the limitations 
found in the literature, as discussed in Section 2.4. First, we 
used vetted stressors (Stroop effect and mental arithmetic) 
in our emotion-induction procedure and validated their 
effects by analyzing changes in arousal and valence 
through self-report measures. Second, we carefully 
avoided confounding factors that may yield overly 
optimistic results, such as time pressure, one of the most 
widely used stressors in affective computing. Third, we 
carried out a multiday user study, totaling four sessions for 
each participant, and showed that our method is robust to 
inter-session variability. Finally, we provided detailed 
instructions about our procedure, to enable other 
researchers to replicate our study and compare their 
methods against ours. 

To analyze whether we could correctly classify data 
from neutral and stressed conditions, we designed 
participant-independent models and trained them with 
keystroke or mouse dynamics and pressure features from 
the respective devices. We believe that classification 
accuracies could have been even higher if we had trained 
participant-specific classifiers, but the limited number of 
samples per participant was not sufficient to successfully 
build a model and test it. Although the recent literature [21, 
31, 65] raises awareness that personalized models can lead 
to higher performance, we showed how to create 
participant-independent classifiers using simple and 
robust methods. In addition, we believe that deploying a 
participant-independent classifier would be more 
beneficial for workplace settings since it could be trained 
with a much larger number of samples and would be 
readily available for new workers. 

A major challenge when building participant-
independent classifiers is how to account for individual 
differences. For example, when under stress some people 
move the mouse cursor faster; others more slowly. In our 
analysis, we did not explicitly apply any type of feature 
normalization to account for these individual differences6. 
Instead, our classification approach projects the features 
onto the LDA subspace to minimize within-class scatter 
(i.e., intra and inter-individual differences) while 
maximizing between-class scatter (i.e., due to the stress 
manipulation). This step makes the classifier more robust 
against individual differences. 

Our results indicate that combining keyboard and 
mouse dynamics with their respective pressure features 
improves discrimination between neutral and stressed 
states. This suggests that features extracted from the two 
modalities (i.e., time vs. pressure) provide complementary 
information. However, since using all features during 
training is not necessarily beneficial, we used exhaustive 
search to find the set of features that provided the highest 

 

 
6 In an early stage of our analysis, we tried normalizing the data for each 

subject by computing the z-score of each feature across the eight samples, 

discrimination power for the trained classifiers. Exhaustive 
search was helpful in both the keyboard and mouse 
analysis, where we obtained the highest classification rates 
when using a reduced set of features.  

7.1 Limitations of our Work 

One of the challenges in affective computing research 
consists of labeling behavioral data with the proper 
emotional state. In our work, our classification models 
were trained on the tasks’ labels (i.e., the intended effect of 
the tasks), rather than on the participants’ actual stress 
levels. While the questionnaires we administered confirm 
that our experiments were successful in manipulating the 
participants’ stress levels, objective measures of stress by 
means of physiological stress responses would have 
provided additional validation. However, gathering these 
measurements is difficult using existing technology. The 
most reliable physiological measure of stress, 
electrodermal activity (EDA), requires placing electrodes 
at the fingers or the palms, which interferes with typing 
tasks. While measuring EDA from the wrist or the sole/feet 
is possible, it also has drawbacks; see Tsiamyrtzis et al. [81] 
for a recent guide comparing the accuracy of different EDA 
sensors and measurement configurations. Alternatively, 
perinasal perspiration, a measure known to correlate with 
EDA, can be captured from image sequences collected 
from thermal cameras [82], but this requires specialized 
hardware.  

Even though our experimental protocol was designed 
to be realistic (filling out questionnaires and writing 
descriptions), performing tasks in a laboratory setting can 
still cause participants to behave differently than when 
they are in their usual work environments. Thus, 
replicating our findings with a field study could help us 
understand how our methods would work with real-life 
stressors. This field study would have participants 
perform their daily computer tasks at work, and would use 
ecological momentary assessment (EMA) to provide the 
ground truth emotional state at the time of work – a similar 
approach is described in [19]. This could lead to an even 
more realistic keyboard and mouse usage dataset. A field 
study would also help us collect more data per participant, 
which could help us build more robust prediction models 
or adapt generic models to each user. 

One potential limitation of our work was the use of 
desktop computers as opposed to mobile devices, such as 
laptops and tablets. Projections show that there should be 
approximately four times as many new laptops and tablets 
as desktops by 2023 [22]. However, there will also be 80 
million desktop shipments by the same year, a number that 
is far from negligible [22]. More importantly, there is 
nothing inherent to our approach that would prevent it 
from being used in laptop keyboards and touchpads, other 
than we would need to design new features (e.g., specific 
to touchpads) and adjust the classification models 
accordingly. Yet, the rise of popularity of laptops and 
tablets cannot be ignored and we strongly recommend 

but the results were largely identical when compared to the ones 
presented. 
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future efforts on the detection of stress using these devices 
– some of which already provide touch intensity [55, 56, 
61]. 

7.2 Future Work 

Our work may find application in the domain of user 
authentication [17, 18], where instrumented devices could 
be used to gather additional biometric information and 
train existing user authentication techniques to 
differentiate between valid users and imposters. One 
situation where current user authentication methods 
might fall short is when changes in keyboard and mouse 
due to stress are recognized as an anomaly (i.e., potential 
imposter). To address this shortcoming, user 
authentication algorithms would require training on both 
unstressed and stressed data from multiple users. This 
could lead to more robust continuous user-authentication 
methods. 

Most office tasks are computer-based and involve 
significant mouse and keyboard usage (e.g., writing an e-
mail, filling out a spreadsheet). As such, future work on 
stress detection could benefit from considering tasks 
which use the keyboard and mouse simultaneously, and 
build stress detection models using the combined set of 
features. Such a set of features can be used to train 
classifiers with even higher discriminatory power, since 
complementary information can be extracted from both 
mouse and keyboard usage, potentially leading to higher 
stress detection rates.  

The ultimate goal of stress-detection methods is to help 
people suffering from stress. One potential future 
application of our work is to deploy our method in a live 
workplace, where a software gathers data to detect 
moments of stress and then recommends just-in-time 
relaxation interventions to employees (e.g., perform deep 
breathing exercises, go for a walk, play a relaxation game) 
to help them better cope with acute stress. While it can be 
difficult to deploy our stress detection system at a large 
scale since pressure-sensing peripherals are rare, we think 
the simplicity and low-cost of our design would not be 
barriers. 

8 CONCLUSIONS 

In this paper, we investigated whether keyboard and 
mouse pressure, combined with keystroke dynamics and 
mouse dynamics, could be used to predict users’ stress 
levels. We designed a simple and cost-effective pressure-
sensitive augmentation for keyboard and mouse using 
force-sensitive resistors (FSRs) and low-cost 
microcontrollers. To test our approach, we recruited 25 
participants to perform two sets of tasks under neutral and 
stressed conditions. We built a generic classifier by 
projecting keyboard and mouse features with LDA and fed 
into a nearest neighbor classifier. Our leave-one-
participant-out analysis showed that combining pressure 
features with keystroke and mouse dynamics improves 
classification rates. We achieved subject-independent 
classification rate of 74% with the keyboard device and 
73% with the mouse device, an average absolute 

improvement of 6% and 3%, respectively, when adding 
pressure information to the set of keystroke and mouse 
dynamics. This work presents the first attempt to build a 
subject-independent classifier to predict stress with 
realistic tasks using a pressure-sensitive keyboard and 
mouse. This is especially important because it is a step 
closer to providing ways to automatically, continuously, 
and non-intrusively detect stress in the workplace. 
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