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Abstract1 
Methods for foreign accent conversion (FAC) aim to generate 
speech that sounds similar to a given non-native speaker but 
with the accent of a native speaker. Conventional FAC meth-
ods borrow excitation information (F0 and aperiodicity; pro-
duced by a conventional vocoder) from a reference (i.e., 
native) utterance during synthesis time. As such, the generated 
speech retains some aspects of the voice quality of the native 
speaker. We present a framework for FAC that eliminates the 
need for conventional vocoders (e.g., STRAIGHT, World) and 
therefore the need to use the native speaker’s excitation. Our 
approach uses an acoustic model trained on a native speech 
corpus to extract speaker-independent phonetic posteriorgrams 
(PPGs), and then train a speech synthesizer to map PPGs from 
the non-native speaker into the corresponding spectral fea-
tures, which in turn are converted into the audio waveform us-
ing a high-quality neural vocoder. At runtime, we drive the 
synthesizer with the PPG extracted from a native reference ut-
terance. Listening tests show that the proposed system produc-
es speech that sounds more clear, natural, and similar to the 
non-native speaker compared with a baseline system, while 
significantly reducing the perceived foreign accent of non-
native utterances. 
Index Terms: phonetic posteriorgram, acoustic modeling, 
speech synthesis, accent conversion 

1. Introduction 
Foreign accent conversion [1-3] aims to create a new voice 
that has the voice quality2 of a given non-native speaker and 
the pronunciation patterns (e.g., prosody, segmentals) of a 
native speaker. This can be achieved by combining accent-
related cues from a native utterance with the voice quality of 
the non-native speaker. FAC has potential application in 
computer-assisted pronunciation training [3-5], where it could 
be used as a model voice to imitate. 

The main challenge in FAC is to divide the speech signal 
into accent-related cues and voice quality. Multiple solutions 
have been proposed, including voice morphing [3, 6-8], frame 
pairing [1, 9], and articulatory synthesis [2, 10-12]. These ap-
proaches can reduce the accent of non-native utterances, but 
have various limitations. Voice morphing often generates 
voices that sound like a “third” speaker, one who is different 
from either speaker. Frame-pairing methods can synthesize 
speech that resembles the non-native speaker’s voice but the 
syntheses retain some aspects of the native speaker’s voice 
                                                             

 
1 Work supported by NSF awards 1619212 and 1623750. 
2 In the context of FAC, we use voice quality to refer solely 
the organic aspects of a speaker’s voice, e.g., pitch range, vo-
cal tract dimensions. 

quality; this is because excitation information from the native 
speaker is used to synthesize the speech. Finally, articulatory 
synthesis needs specialized apparatus to collect articulation 
data, so they are not practical for real-world applications. 

In this work, we propose to perform FAC in a speaker-
independent phonetically-rich speech embedding: a phonetic 
posteriorgram (PPG) [13]. A PPG is defined as the posterior 
probability that each speech frame belongs to a set of pre-
defined phonetic units (phonemes or triphones/senones), 
which retain the linguistic and phonetic information of the ut-
terance. Our approach works as follows. In a first step, we 
generate a PPG for the non-native speaker using a speaker-
independent acoustic model that is trained on a large corpus of 
native speech. Then, we construct a sequence-to-sequence 
speech synthesizer that captures the voice quality of the non-
native speaker. The synthesizer takes a PPG sequence from 
the non-native speaker as the input and produces the corre-
sponding mel-spectrogram sequence as the output. Finally, we 
train a neural vocoder, WaveGlow [14], to convert the mel-
spectrogram into a raw speech signal. During testing, we feed 
the synthesizer with a PPG sequence from a native utterance. 
The resulting output contains the native speaker’s pronuncia-
tion patterns and the non-native speaker’s voice quality. The 
overall workflow of the proposed system is shown in Figure 1. 

The proposed system has three advantages. First, it elimi-
nates the need to borrow excitation information from the na-
tive reference speech, which prevents aspects of the native 
speaker’s voice quality from leaking into the synthesized 
speech. Second, our system does not require any training data 
from the native reference speaker. Thus, we have the flexibil-
ity to use any reference voices during testing. Third, our 
system captures contextual information by means of a 
sequence-to-sequence model, which has shown state-of-the-art 
performance on multiple tasks [15-17], helping produce better 
audio quality. 

  
Figure 1: Overall workflow of the proposed system. 

L1: native, L2: non-native. 
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2. Related work 
Early attempts at accent conversion used voice morphing [3, 
6-8] to control the degree of accent by blending spectral com-
ponents from the native and non-native speakers.  In [18, 19], 
the authors used PSOLA to modify the duration and pitch pat-
terns of accented speech. Aryal and Gutierrez-Osuna [1] 
adapted voice conversion (VC) techniques, replacing Dynamic 
Time Warping (DTW) with a technique that matched source 
and target frames based on their MFCC similarity after vocal 
tract length normalization. Later, Zhao et al. [9] used PPG 
similarity instead of MFCC similarity to pair acoustic frames. 

PPGs have been applied to many tasks, e.g., neural-
network-based speech recognition [20, 21], spoken term detec-
tion [13], mispronunciation detection [22], and personalized 
TTS [23]. PPGs have also gained much recent attention for 
VC. Xie et al. [24] divided PPGs from a target speaker into 
clusters and then mapped PPGs from a source speaker into the 
closest cluster of the target speaker. Sun et al. [25] used PPGs 
for many-to-one voice conversion. Miyoshi et al. [26] extend-
ed the PPG-based VC framework to include a mapping be-
tween source and target PPGs using LSTMs; they obtained 
better speech individuality ratings but worse audio quality 
than a baseline that did not include the PPG mapping process. 
Zhang et al. [15] concatenated bottleneck features and mel-
spectrograms from a source speaker, then used a sequence-to-
sequence model to convert the source mel-spectrograms into 
those of the target speaker, and finally recovered the speech 
waveform using a WaveNet [27] vocoder. Their model re-
quired parallel recordings and needed to train a new model for 
each speaker pair. They then applied text supervision [28] to 
resolve some of the mispronunciations and artifacts in the 
converted speech. Recently, Zhou et al. [29] adopted bilingual 
PPG for cross-lingual voice conversion. 

3. Method 
Our system is composed of three major components; a speaker 
independent acoustic model (AM) that extracts PPGs, a speech 
synthesizer for the non-native speaker that converts PPGs into 
mel-spectrograms, and a WaveGlow vocoder to generate 
speech waveform from the mel-spectrograms in real-time. 

3.1. Acoustic modeling and PPG extraction 

We use a DNN with multiple hidden layers and the 𝑝-norm 
non-linearity as the AM. We train the AM on a native speech 
corpus [30] by minimizing the cross-entropy between outputs 
and senone labels obtained from a pre-trained GMM-HMM 
forced aligner. Training on native speech is critical for our 
task because the native and non-native frames have to be 
matched in a native phonetic space. For more details about the 
AM, please refer to [31]. 

3.2. PPG-to-Mel-spectrogram conversion 

We convert PPGs from the non-native speaker into their corre-
sponding mel-spectrograms using a modified Tacotron 2 mod-
el [32]. The original Tacotron 2 model takes a one-hot vector 
representation of characters and passes it to an encoder LSTM 
that converts it into a hidden representation, which is then 
passed to a decoder LSTM with a location-sensitive attention 
mechanism [33] that predicts the mel-spectrogram. To 
improve model performance, the character embedding is 
passed through multiple convolution layers before being fed to 
the encoder LSTM. The decoder appends a PreNet (two fully 
connected layers) before passing the predicted mel-

spectrogram to the attention and decoder LSTM to extract 
structural information. It also applies a PostNet (multiple 1-D 
convolutional layers) after the decoder to predict spectral de-
tails and add them to the raw prediction. 

In this work, we replace the character-embedding layer 
with a PPG-embedding network (PPG PreNet), which contains 
two fully connected hidden layers with the ReLU nonlinearity. 
This PPG-embedding network is similar to the PreNet in 
Tacotron 2 and transforms the original high-dimensional input 
PPGs to lower dimensional bottleneck features. This step is 
essential for the model to converge. The PPG-to-Mel conver-
sion model is illustrated in Figure 2. 

The original Tacotron 2 was designed to accept character 
sequences as input, which are significantly shorter than our 
PPG sequences. For example, each sentence in our speech 
corpus [34] contains an average of 41 characters, whereas the 
PPG sequence has a few hundred frames. Therefore, the origi-
nal Tacotron 2 attention mechanism would be confused by 
such long input sequences and cause misalignment between 
the PPG and acoustic sequences, as pointed out in [15]. As a 
result, the inference would be ill-conditioned and would gen-
erate non-intelligible speech. One solution to this issue is to 
train the PPG-to-Mel model with shorter PPG sequences. For 
example, one could use word segments instead of sentences. 
However, this solution has several issues. First, to obtain accu-
rate word boundaries, we need to perform forced alignment on 
the training sentences, which requires access to the transcrip-
tion. Second, and more importantly, training with short seg-
ments and performing inference with significant longer input 
sequences leads to model failure, as observed in [33]. 

We resolve this issue by adding a locality constraint to the 
attention mechanism. Speech signals have a strong temporal-
continuity and progressive nature. To capture the phonetic 
context, we only need to look at the PPGs in a small local 
window. Inspired by this, at each decoding step during train-
ing we constrain the attention mechanism to look at a window 
in the hidden state sequence, instead of the full sequence. We 
formally define this constraint as follows. Let 𝑑# be the output 
of the decoder LSTM at time step 𝑖, 𝑦# be the predicted acous-
tic features (output after applying a linear projection on 𝑑#), 
and ℎ = [ℎ1,… , ℎ( ] be the full sequence of hidden states from 
the encoder. Applying the location-sensitive attention mecha-
nism, we have, 

𝑑# = DecoderLSTM(𝑠#−1, 𝑔#). (1) 
where 𝑠#−1 is the hidden state of the attention LSTM at the 
(𝑖 − 1)-th time step, and 𝑔# is the attention context, 

𝑠# = AttentionLSTM(𝑠#−1, 𝑔#, PreNet(𝑦#)), (2) 
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Figure 2: PPG-to-Mel conversion model. 



𝑔# = ∑ 𝛼#
0ℎ0

(

0=1
. (3) 

and, 
𝛼# = Attend(𝑠#−1, 𝛼#−1, ℎ) = [𝛼#

1,… 𝛼#
( ], (4) 

𝛼#
0 =

exp(𝑒#0)
∑ exp(𝑒#0)0=1

, (5) 

are the attention weights. The attention scores 𝑒#0 are comput-
ed as follows, 

𝑒#0 = 𝑣( tanh(𝑊𝑠#−1 + 𝑉 ℎ0 + 𝑈𝑓#
0 + 𝑏) , (6) 

𝑓# = 𝐹 ∗ 𝛼#−1 = [𝑓#
1,… , 𝑓#

( ], 𝐹 ∈ 𝑅?×A, (7) 
where 𝑣, 𝑊 , 𝑉 , 𝑈 , 𝑏 are learnable parameters of the attention 
module. 𝐹  contains 𝑘 1-D learnable kernels with 𝑟-dims, and 
𝑓#

0 ∈ 𝑅? is the result of convolving 𝛼#−1 at position 𝑗 with 𝐹 . 
Now, to enforce the locality constraint, we only consider 

the hidden representation within a fixed window centered on 
the current frame, i.e., let, 

ℎ̃ = [0,… ,0, ℎ#−F,… , ℎ#+F, 0,… , 0], (8) 

where 𝑤 is the window size, and let, 
𝛼# = Attend(𝑠#−1, 𝛼#−1, ℎ̃). (9) 

The loss function for training the PPG-to-Mel model is, 
𝐿 = 𝛼‖𝐺MNO − 𝑃QNRSTNA‖2 + 𝛽‖𝐺MNO − 𝑃WSXYZNY‖2

+ 𝛾CE(𝐺XYS\, 𝑃XYS\), (10) 

where 𝐺MNO is the ground-truth mel-spectrogram; 𝑃QNRSTNA 
and 𝑃WSXYZNY are the predicted mel-spectrograms from the de-
coder (after linear projection) and PostNet, respectively; 𝐺XYS\ 
is the ground-truth stop token, and 𝑃XYS\ is the predicted stop 
token value; CE(∙) is the cross-entropy loss; 𝛼, 𝛽, 𝛾 control 
the relative importance of each loss term. 

3.3. Mel-spectrogram to speech 

We use a WaveGlow vocoder to convert the output of the 
speech synthesizer back into a speech waveform. WaveGlow 
is a flow-based [35] network capable of generating high-
quality speech from mel-spectrograms (comparable to Wave-
Net). It takes samples from a zero mean spherical Gaussian 
(with variance 𝜎) with the same number of dimensions as the 
desired output and passes those samples through a series of 
layers that transform the simple distribution to one that has the 
desired distribution. In the case of training a vocoder, we use 
WaveGlow to model the distribution of audio samples condi-
tioned on a mel-spectrogram. WaveGlow can achieve real-
time inference speed using only a single neural network, 
whereas WaveNet takes a long time to synthesize an utterance 
due to its auto-regressive nature. For more details about the 
WaveGlow vocoder, we refer readers to [14]. 

4. Experiments and results 
4.1. Experimental setup 

We used the Librispeech corpus [30] to train the AM. It con-
tains 960 hours of native English speech, most of which from 
North America. The AM has five hidden layers and an output 
layer with 5816 senones. We trained the PPG-to-Mel and 
WaveGlow models on two non-native speakers, YKWK (na-
tive male Korean speaker) and ZHAA (native female Arabic 
speaker) from the publicly-available L2-ARCTIC corpus [34]. 
We applied noise reduction on the original L2-ARCTIC re-
cordings using Audacity [36] to remove ambient background 

noise. For the native reference speech, we used two North 
American speakers, BDL (M) and CLB (F) from the ARCTIC 
corpus [37]. Each speaker in L2-ARCTIC and ARCTIC rec-
orded the same set of 1132 sentences, or about an hour of 
speech. For each L2-ARCTIC speaker, we used the first 1032 
sentences for model training, the next 50 sentences for valida-
tion, and the remaining 50 sentences for testing. All audio sig-
nals were sampled at 16 KHz. We used 80 filter banks to ex-
tract mel-spectrograms with a 10ms shift and a 64ms window. 
The PPG was also extracted with a 10ms shift. 

The PPG-to-Mel model parameters are summarized in Ta-
ble 1. We used a batch size of 6 and a learning rate of 
1 × 10−4. 𝛼, 𝛽, 𝛾 were empirically set to 1.0, 1.0, and 0.005, 
respectively. The window size 𝑤 of the locality constraint of 
the attention mechanism was set to 20. We trained the model 
until the validation loss reached a plateau (~8h). For the 
WaveGlow models, we set 𝜎 to 0.701 during training and 0.6 
during testing, as suggested by [14]. The batch size was 3 and 
the learning rate was 1 × 10−4. The models were trained until 
convergence (~one day). All models were trained on a single 
Nvidia GTX 1070 GPU. 

The AM was trained with Kaldi, and the other models 
were implemented in PyTorch and trained with the Adam op-
timizer [38]. For more details and audio samples, please refer 
to https://github.com/guanlongzhao/fac-via-ppg. 

 We compared our proposed system against a baseline 
from [9] that worked as follows. First, we computed the PPG 
for each native and non-native frame. Then, we used the 
symmetric KL divergence in the PPG space to pair the closest 
native and non-native frames. In a final step, we extracted 
Mel-Cepstral Coefficients (MCEPs) from the frame pairs to 
train a joint-density GMM (JD-GMM) spectral conversion as 
described in [39]. We then converted the native MCEPs using 
the JD-GMM to match the non-native speaker’s voice quality. 
Finally, we used the STRAIGHT vocoder [40] to synthesize 
speech from the converted MCEPs combined with the native 
speaker’s aperiodicity (AP) and F0 (normalized to the non-
native speaker’s pitch range). We used the same 1032-
utterance training set for the baseline system. The GMM con-
tained 128 mixtures and full covariance matrices. We used 24-
dim MCEPs (excluding MCEP0) and the Δ features. All fea-
tures were extracted by STRAIGHT with a 10ms shift and 
25ms window. For each system, we generated accent conver-
sion for speaker pairs BDL-YKWK and CLB-ZHAA. 

Table 1: The model details of the PPG-to-Mel synthesizer. 
Module Parameters 

PPG PreNet Two fully connected (FC) layers; 600 ReLU units; 
0.5 dropout rate [41] 

Conv. Layers Three 1-D convolution layers (kernel size 5); batch 
normalization [42] after each layer 

Encoder LSTM One-layer Bi-LSTM; 300 cells in each direction 
Decoder PreNet Two FC layers; 300 ReLU units; 0.5 dropout rate 
Attention LSTM One-layer LSTM; 300 cells; 0.1 dropout rate 

Attention 𝑣 in eq. (6) has 150 dims; eq. (7), 𝑘 = 32, 𝑟 = 31 
Decoder LSTM One-layer LSTM; 300 cells; 0.1 dropout rate 

PostNet Five 1-D conv. layers; 512 channels; kernel size 5 

4.2. Results 

We conducted three listening tests to compare the perfor-
mance of the systems: a Mean Opinion Score (MOS) test of 
audio quality and naturalness, a voice similarity test, and an 
accentedness test. All experiments were conducted on Ama-
zon Mechanical Turk, and all participants resided in the U.S. 



For each test, 25 utterances per speaker pair (50 in total) from 
each system were randomly selected. The presentation order 
of the samples was randomized in all experiments. 

The MOS test rated the audio quality and naturalness of 
audio samples on a five-point scale (1-bad, 2-poor, 3-fair, 4-
good, 5-excellent). Audio quality and naturalness MOS de-
scribed how clear and human-like the speech was, respective-
ly. The two measures were obtained from non-overlapping 
groups of listeners to avoid bias. Each audio sample received 
at least 17 ratings. Listeners also rated the same set of original 
ARCTIC and L2-ARCTIC recordings as a reference. Results 
are summarized in Table 2 and Table 3. It should be noted that 
in [9], we established that the baseline system’s audio quality 
MOS is around 0.4 higher than a conventional JD-GMM sys-
tem that uses DTW for frame pairing. Therefore, our baseline 
is a stronger system than the conventional JD-GMM.  

In all cases, our system outperformed the baseline signifi-
cantly in both audio quality and naturalness. Although the two 
systems have lower audio quality MOS than the original re-
cordings, there is no significant difference between the pro-
posed system and either the ARCTIC (𝑝 = 0.35) or L2-
ARCTIC (𝑝 = 0.54) recordings on the naturalness MOS, us-
ing a two-tail two-sample t-test. 

In the voice similarity test, listeners were provided with 
three utterances, the original non-native utterance and synthe-
ses from the two systems, and were asked to choose which of 
the two syntheses sounded more like the non-native speaker. 
Participants were also asked to rate their confidence level on a 
7-point scale (1-not at all confident, 7-extremely confident) 
when making a choice. Participants were instructed to ignore 
accent when performing the task. Presentation order of sam-
ples from the two systems was counter-balanced in each trial, 
and 17 participants rated the audio samples. Results are 
presented in Table 4. In 72.47% of the cases, listeners pre-
ferred the proposed system with a 3.4 confidence level (above 
“somewhat confident”), whereas in the remaining 27.53% of 
the cases, listeners chose the baseline with a much lower con-
fidence level (1.05, or “not at all confident.”) 

Table 2: MOS results with 95% confidence inter-
vals. Q: audio quality; N: naturalness. 

   Conversion Baseline Proposed 

BDL-YKWK 
Q 3.23±0.11 3.48±0.12 
N 3.18±0.15 3.59±0.15 

CLB-ZHAA 
Q 2.86±0.15 3.58±0.14 
N 2.66±0.13 3.32±0.20 

All pairs Q 3.04±0.10 3.53±0.09 
N 2.92±0.12 3.46±0.13 

Table 3: MOS ratings for original recordings. 
Real speech  Rating 

ARCTIC 
Q 4.40±0.08 
N 3.54±0.11 

L2-ARCTIC Q 3.98±0.09 
N 3.50±0.08 

Table 4: Voice similarity test results. 
Measure Baseline Proposed 

Preference 27.53±5.00% 72.47±5.00% 
Confidence 1.05±0.21 3.40±0.32 

Table 5: Accentedness ratings. 
Baseline Proposed ARCTIC L2-ARCTIC 

2.94±0.30 3.93±0.30 1.20±0.04 7.17±0.17 

In the accentedness test, participants were asked to rate the 
degree of foreign accent in a nine-point scale (1-no foreign ac-
cent, 9-very strong foreign accent), which is commonly used 
in the pronunciation literature [43]. Each audio sample was 
rated by 18 individuals. Results are summarized in Table 5. 
Original utterances from ARCTIC speakers were rated as “no 
foreign accent” (1.20), whereas original utterances from the 
L2-ARCTIC speakers were rated as heavily accented (7.17). 
Both the baseline (2.94) and proposed (3.93) systems reduced 
the foreign accent significantly compared with the L2-
ARCTIC speech but were rated more accented than the native 
speech. Surprisingly, speech generated from our system was 
rated as more accented than that of the baseline system; see 
discussion section for a potential explanation of this result.  

5. Discussion and conclusion 
The proposed accent-conversion system produces speech with 
better quality than the baseline system because it uses a state 
of-the-art sequence-to-sequence model (a modified Tacotron 
2) to convert PPGs into mel-spectrograms, and then utilizes a 
neural vocoder to generate audio directly from the mel-
spectrogram. This process takes advantage of the temporal-
dependent natural of speech signals and avoids the use of con-
ventional signal-processing based vocoders, which generally 
degrade the synthesis quality. We have also proposed an easy-
to-implement locality constraint on the attention mechanism to 
make the PPG-to-Mel model trainable on utterance-level sam-
ples. Note that our MOS ratings are lower than those in the 
original Tacotron 2 and WaveGlow paper, largely because 
their systems were trained with 24× more data. One future di-
rection for improving the MOS ratings of the proposed system 
is training the PPG-to-Mel and WaveGlow models jointly. 

In contrast with the baseline, which borrows excitation in-
formation (F0, AP) from the native speaker, our system gener-
ates the non-native speaker’s excitation directly from the syn-
thesized mel-spectrogram. This prevents the voice quality of 
the native speaker from “leaking” into the synthesis, making it 
more similar to the voice quality of the non-native speaker. 

Our system extracts native pronunciation patterns from the 
native PPG sequence, and therefore makes the synthesized 
speech significantly less accented than the non-native speech. 
The slight increase in accentedness rating compared to the 
baseline system could be the result of two factors. First, the 
AM inevitably produces recognition errors when extracting 
the PPG and these errors will be reflected as mispronuncia-
tions in the synthesis. Second, the proposed model does not 
explicitly model stress and intonation patterns; as such, we 
find that some of synthesis results have unexpected intona-
tions. Therefore, in future work we plan to incorporate intona-
tion information into the modeling process; one possible solu-
tion is to condition the PPG sequence on a normalized F0 con-
tour when training and testing the PPG-to-Mel model. 

Currently, the PPG-to-Mel and WaveGlow models need at 
least one hour of speech from the non-native speaker. This re-
quirement may be relaxed by following the transfer-learning 
paradigm from multi-speaker TTS [44]. The ultimate goal of 
accent conversion is to eliminate the need for a reference ut-
terance at synthesis time, i.e., to take a non-native utterance 
and automatically reduce its accent. This may be accom-
plished by learning a sequence-to-sequence mapping from the 
non-native speaker’s PPG sequence to a native PPG sequence, 
and then driving the PPG-to-Mel synthesizer with this accent-
reduced PPG sequence.  
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