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Abstract

Purpose: A systematic search and review of published studies was conducted on the use of automated speech analysis (ASA)
tools for analysing and modifying speech of typically-developing children learning a foreign language and children with
speech sound disorders to determine (i) types, attributes, and purposes of ASA tools being used; (ii) accuracy against
human judgment; and (iii) performance as therapeutic tools.
Method: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Across
nine databases, 32 articles published between January 2007 and December 2016 met inclusion criteria: (i) focussed on
children’s speech; (ii) tools used for speech analysis or modification; and (iii) reporting quantitative data on accuracy.
Result: Eighteen ASA tools were identified. These met the clinical threshold of 80% agreement with human judgment when
used as predictors of intelligibility, impairment severity, or error category. Tool accuracy was typically580% accuracy for
words containing mispronunciations. ASA tools have been used effectively to improve to children’s foreign language
pronunciation.
Conclusion: ASA tools show promise for automated analysis and modification of children’s speech production within
assessment and therapeutic applications. Further work is needed to train automated systems with larger samples of speech
to increase accuracy for assessment and therapeutic feedback.

Keywords: automatic speech recognition; speech sound disorder; prosody

Introduction

Recent advances in automatic speech analysis tech-

nology are making the prospect of computer-driven

speech assessment and intervention more viable for

children with speech sound disorders (SSD).

Significant barriers of access, cost and long-term

engagement for children who require intensive and

prolonged speech therapy have been identified

(McAllister, McCormack, McLeod, & Harrison,

2011), and clients/parents have reported a desire

for alternative approaches to accessing services

(Ruggero, McCabe, Ballard, & Munro, 2012). In

light of this, computer-driven approaches, particu-

larly when embedded in serious games, have poten-

tial to overcome these barriers. Here, we performed

a systematic search and review (Grant & Booth,

2009) to determine the types of automatic speech

analysis and recognition (ASA) tools that have been

developed over the past 10 years, what they are

being used for in the context of speech assessment

and treatment, and how they are performing. We did

not aim to perform an analysis of study design and

quality. Rather, our objective was to provide an

overview of the current state of the field and an

evaluation of the quality and accuracy of the current

ASA tools; discussing feasibility for their use in

clinical practice and needs for future development.

Automatic speech analysis tools

In the 1960s and 70s, the earliest ASA systems were

able to process isolated words from small to medium

pre-defined vocabularies using acoustic phonetics to

perform: time alignment; template-based pattern

recognition; or matching of the incoming speech

signal with the stored reference production (Kurian,

2014). The inherent variability of the speech signal

introduced by vocal tract variations across speakers

and temporal variability across repeated productions

Correspondence: Jacqueline McKechnie, Faculty of Health Sciences University of Sydney, PO Box 170, Lidcombe, 1825 NSW, Australia. Email:

jacqueline.mckechnie@sydney.edu.au

ISSN 1754-9507 print/ISSN 1754-9515 online � 2018 The Speech Pathology Association of Australia Limited

Published by Informa UK Limited, trading as Taylor & Francis Group

DOI: 10.1080/17549507.2018.1477991

http://crossmark.crossref.org/dialog/?doi=&domain=pdf
http://orcid.org/0000-0001-5747-0888
http://orcid.org/0000-0002-1240-6572
http://orcid.org/0000-0002-5182-1007
http://orcid.org/0000-0002-9917-5390


of the same word affected recognition accuracy. In

the 1970s, linear predictive coding (LPC) was

introduced, which could account for some of the

individual variation caused by vocal tract differences

(Kurian, 2014). In the 1980s, ASA tools became

better able to process larger vocabularies and con-

tinuous speech, driven by the development of

technology based on statistical modelling of prob-

ability that a particular set of language symbols (i.e.

either phoneme sequences or word sequences) was a

match to the incoming speech signal (Kurian, 2014).

These systems are more robust to variations across

speaker (e.g. pronunciation or accent) and environ-

mental noise as well as temporal variations in the

speech signal (Kurian, 2014). Hidden Markov

models (HMMs), which perform temporal pattern

recognition, are now the predominant technology

behind speech recognition systems. Also in the

1990s, new innovations in pattern recognition led

to discriminative training and kernel-based tech-

niques such as Support Vector Machines (SVMs)

which functioned as classifiers. Figure 1 presents a

model of the component processes involved in

modern ASA systems (also see Keshet, in press, in

this issue; and Shaikh and Deshmukh, 2016).

Performance accuracy of ASA tools is influenced

by two main components of the system (Mustafa,

Rosdi, Salim & Mughal, 2015). One component is

the feature extraction process, which is in turn also

influenced by the type of speech (i.e. isolated words,

connected speech or continuous speech); and the

size of the vocabulary, with larger vocabularies

associated with improved performance (Mustafa

et al., 2015). Continuous speech is the most difficult

to analyse because the utterances all run together

and segmentation needs to be performed by the ASA

in order for accurate recognition to occur (Strik &

Cucchiarini, 1999). Also affecting system develop-

ment and performance accuracy is the fact that

availability of databases with large vocabularies is

limited (Mustafa et al., 2015). The second compo-

nent influencing performance accuracy is the type of

speech acoustic model, which is based on speaker

mode (i.e. speaker dependent, where the system is

trained by the user’s own speech samples; speaker

independent where the system requires no additional

training before use by a speaker; or speaker adaptive

where the system is capable of adapting to the user

over time, thus improving performance) (Mustafa

et al., 2015).

Despite the remarkable improvements in ASA,

particularly for adult speech, computational model-

ling systems continue to have difficulty adapting to

the temporal and spectral variability that is intro-

duced to the speech signal via individual differences

such as vocal tract length, words in context (i.e. co-

articulation effects) or environmental noise

(O’Shaughnessy, 2015). These factors are particu-

larly challenging for ASA in children, who are going

through periods of growth and making developmen-

tal speech errors. In both adult and child studies,

these models have also struggled with the increased

within- and between-speaker variability introduced

with disordered speech (Su, Wu, & Tsai, 2008).

Given the rapid changes in this field, it is timely to

consider the state of the field in terms of child-

focussed ASA tools being developed for assessment

and modification of disordered or non-native

speech.

Technology

Smartphone and tablet technology are now a part of

children’s everyday lives. In Australian households

with children under 15, 88% in major cities and 79%

in remote areas have access to the Internet

(Australian Bureau of Statistics, 2016). Of these,

94% access the Internet via laptop or desktop

computer, 85% via mobile or smartphone and

62% via tablet (Australian Bureau of Statistics,

2016). Despite reports of infrequent use of com-

puter-based or mobile-based analysis procedures or

intervention activities in children with SSD

(McLeod & Baker, 2014); these tools have potential

to facilitate easily accessible, cost effective and

objective measures of speech. This may increase

clinician efficiency and assist in caseload manage-

ment, and such tools may also supplement face-to-

face speech-language pathology to reduce barriers to

access and facilitate higher practice intensity (Baker,

Figure 1. Basic components of a speech recognition system.
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2012). Technology-based approaches may also

increase child engagement and motivation with

learning tasks as they are colourful, can include

animation and audio prompts or reinforcers, involve

active manipulation of stimuli and gameplay by the

child, and can incorporate speech recording, pre-

recorded models, and playback of responses

(Morton, Gunson, & Jack, 2012; Simmons, Paul,

& Shic, 2016; Tommy & Minoi, 2016). However, to

be viable, any ASA tools incorporated into diagnos-

tic or therapeutic software need to meet the same

reliability standards that we apply to human raters.

Commonly accepted criteria for percent agree-

ment on perceptual judgments of speech between

two human raters or reliability of outcome

across two separate evaluations of the same behav-

iour is between 75 and 85% (Charter, 2003;

Cucchiarini, 1996). We therefore apply an 80%

threshold in evaluations of the tools identified

for this review.

Assessment and treatment of SSD

Recent surveys of Australian and American paedi-

atric speech-language pathologists (SLPs) reported

that phonological process analysis, estimating intel-

ligibility, determining phonetic inventory (independ-

ent analysis) and use of phonological processes

(relational analysis) constitute essential elements of

a speech assessment battery (McLeod & Baker,

2014; Skahan, Watson, & Lof, 2007). The resultant

post-assessment data analysis and paperwork were

reported to be equally (McLeod & Baker, 2014) or

more time-consuming (Skahan et al., 2007) than the

assessment process itself. Few SLPs in either study

reported use of computerised analysis procedures.

Scope clearly exists for automated analysis processes

to be developed that could increase clinical effi-

ciency. Such tools would ideally include: (i) high

agreement with human decisions regarding word

recognition, which could automate the process of

intelligibility assessment; (ii) judgments of correct/

incorrect for a given speech attempt, with reference

to a stored template or canonical representation,

thus automating the process of relational analysis;

(iii) classification or categorisation of speech error or

prosodic error patterns, useful for detecting presence

of impairment; and (iv) potentially use clusters of

features to differentially diagnose disorders.

If well designed, such tools could also be used to

monitor and shape response to intervention over

time as well as augmenting and increasing home

practice. Recommended intervention frequency for

SSD is 2–4 sessions per week with at least 100 trials

per session (Allen, 2013; Baker & McLeod, 2011;

Ballard, Robin, McCabe, & McDonald, 2010;

Edeal & Gildersleeve-Neumann, 2011; Murray,

McCabe, & Ballard, 2014, 2015; Thomas,

McCabe, & Ballard, 2014; Williams, 2012). These

treatment intensities do not, however, reflect typical

practice (Keilmann, Braun, & Napiontek, 2004;

McLeod & Baker, 2014; Oliveira et al., 2015;

Ruggero, McCabe, Ballard, & Munro, 2012; To,

Law, & Cheung, 2012). Families face barriers of

service availability where community demand

cannot be met by available speech-language pathol-

ogy resources (Kenny & Lincoln, 2012; Lim,

McCabe, & Purcell, 2017; McAllister et al., 2011;

O’Callaghan, McAllister, & Wilson, 2005; Ruggero

et al., 2012; Verdon, Wilson, Smith-Tamaray, &

McAllister, 2011) and barriers of distance in rural

and remote areas (McAllister et al., 2011;

O’Callaghan et al., 2005; Ruggero et al., 2012;

Verdon, Wilson, Smith-Tamaray, & McAllister,

2011). This discrepancy is further confounded by

parental reports of difficulty finding time for home

practice and their perception that speech homework

is ‘‘work’’ (McAllister et al., 2011).

McAllister et al. (2011) found computer-based

homework is provided to only 17% of families

contrasting the high level of interest expressed by

participants in Ruggero et al. (2012). Capitalising on

this interest, as well as on the automated corrective

instruction already used in second language learning

contexts (e.g. Neri, Mich, Gerosa, & Giulian, 2008),

ASA tools could be developed and integrated into

training programmes to help facilitate independent

practice (Eskenazi, 2009).

Purpose

In this review, we aim to address the following

research questions:

(1) ASA tools and purposes:

(a) What ASA tools are being used?;

(b) For what populations of children (i.e. language

learners/disordered speech; and the range of

languages/disorders investigated)?;

(c) For which aspects of production/pronunciation

evaluation and what types of stimuli (i.e. sound/

word/phrase level; restricted or unrestricted

stimulus sets)?

(2) Accuracy of analysis: How do these tools perform

compared with human perceptual evaluation?

(3) Behaviour change: Is there evidence that improve-

ments to children’s speech sound production abilities

as a response to intervention are comparable between

ASA-based training tools and face-to-face training?

Method

We used the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA)

search guidelines (Moher, Liberarti, Tetzlaff,

Altman, & The PRISMA Group, 2009) when

formulating our search strategy. The flow diagram

of study selection is presented in Figure 2.
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Evidence identification

We searched the following key databases in the fields

of allied health, engineering and computer sciences to

identify relevant articles: Medline, Cinahl, ERIC,

Embase, Scopus, Web of Science, IEEEXplore,

ACM Digital Library and Applied Science and

Technology. The following search terms were used

with Boolean operators, wildcards and proximity

syntax: artic*; impair*; phonol*; disorder; apraxia;

dyspraxia; dysarthria; speech error; patholog*

speech; multilingual*; bilingual*; foreign language;

language learn*; pronunciation; diagnosis; ‘‘decision

making’’; instruction; therapy; intervention; training;

response feedback; computer based/assisted/aided;

signal processing; mobile application; app; software;

speech recognition software; android; iOs; handheld;

intelligent tutoring system; computer managed

instruction; education* technology; electronic

learning; virtual speech therapist; virtual classroom;

web based instruction; computer programme; auto-

mat* speech recognition/analysis/evaluation/assess-

ment/intelligibility assessment; speech/pronunciation

verification; automat* speech error detect*/feedback/

speech processing; spoken dialogue systems; artificial

intelligence; neural networks (NNs); automated pat-

tern recognition; machine learning; acoustic-phon-

etic classification; corrective feedback. See

Supplementary Appendix 1 for sample search strate-

gies. Note that studies of ASA technology in foreign

language learning were sought because these tools

have similar goals to those designed for children with

SSD (e.g. detection of phoneme mispronunciations

or provision of corrective feedback for modifying

productions; Saz, Lleida, & Rodrı́guez, 2009) that

could inform development of tools for SSD diagnosis

and treatment.

Records identified 
through database 

searching 
(n = 7669) 

Additional records 
identified through other 

sources 
(n = 59) 

Records after duplicates 
removed 

(n = 5910) 

Records screened at title 
and abstract 
(n =1004) 

Full-text articles 
assessed for eligibility 

(n = 96) 

Studies included  
in analysis 

(n = 32)

Records excluded (n = 
4906) 

1. Pre-2007 
2. No child samples 

Records excluded (n = 908) 

1. Not about speech 
sound production 
/pronunciation 

2. Not about speech 
evaluation or 
modification 

3. Population cancer or 
unrepaired structural 
deficit  

4. Unable to access full-
text 

Recorded excluded (n = 64) 

1. Duplicate 
2. No child samples 
3. No quantitative data 

on ASR performance 
accuracy 

Id
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Figure 2. Systematic search and review flowchart.
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Studies published between January 2007 and

December 2016 were considered for inclusion.

Date restrictions were imposed in order to focus

the review on current tools and technologies and to

exclude out-dated technology that has been replaced

with more advanced versions. The year 2007 was

selected as it marks the release of the first iPhone,

with Apple’s processing speed, graphics, touch

screens, and integration of app technology making

them the industry front runner (Martin, 2014), and

accelerating development in the field.

Screening

A total of 7669 articles were retrieved from database

searching, and a further 59 from later hand

searching of reference lists in articles that survived

initial screening. Of these, 1759 duplicates were

removed. After applying limits of (i) published

between 2007 and 2016 and (ii) focussed on

children’s speech production, 4906 additional rec-

ords were excluded. Therefore, 1004 were retained

for title and abstract screening. Of these, 908 were

excluded for the following reasons: (1) not dealing

with paediatric speech sound production/pronunci-

ation; (2) not explicitly focussed on evaluation or

modification of speech production skills; (3) not the

target population (e.g. oral or pharyngeal cancers,

laryngectomy); or (4) full text record not accessible.

A total of 96 papers were shortlisted for full text

review.

Eligibility criteria

The review focussed on studies of ASA technology

applied to the speech of typically developing (TD)

children, using either their native or a non-native

language (i.e. language learning; LL), or children

reported to have SSD. Studies were included if they

reported on the use of automated tools for speech

analysis and/or speech modification delivering sum-

mative or formative feedback to the clinician or the

speaker. While we acknowledge that there are

numerous computer programmes and mobile appli-

cations that provide interactive and game-based

presentation of stimuli such as ArtikPix (Expressive

Solutions LLC, 2011), only software integrating

ASA for the purpose of determining speech accuracy

was included in this review, as we were interested in

software with potential to act as a virtual clinician.

Studies were required to provide quantitative data

on the accuracy of the tool’s ASA algorithms against

human judgment and, for automated speech modi-

fication tools, on treatment effects or changes to

speech intelligibility, word accuracy or pronunci-

ation accuracy. All study formats were considered,

including journal articles, serials, conference papers

and proceedings provided that new data were

reported. The search was limited to studies written

in English.

Of the 96 studies accepted for full text analysis,

32 were judged eligible for this review. Reasons for

exclusion included: (1) duplicates overlooked in the

initial screening process; (2) only adult participants

(where this had been unclear at the screening phase);

and (3) no quantitative data on ASA performance

accuracy.

Analysis of evidence

To address research question (i) we extracted infor-

mation on characteristics of the participants (i.e.

age, sex and type of speech disorder, where appro-

priate); the purpose of speech analysis (i.e. phoneme

or prosodic accuracy); types and attributes of ASA

tools being used (i.e. technology for different ASA

purposes, operating system, format of the interface

and the user-feedback generated); characteristics of

the speech samples used (i.e. type of speech sample

and whether speech stimuli were from open or

constrained sets); the speech features extracted by

the tool; and the language of operation of the tool.

To address question (ii) we tabulated the outcome

measures used and their reported accuracy against

human perceptual judgment. To answer question

(iii) we tabulated details of behaviour change

outcomes.

Result

All data extracted from each of the 32 publications

were collated in a spreadsheet (see Supplementary

Table SI). Summary tables are presented here.

ASA tools and purposes

Table I presents a summary of the tools reviewed,

the speech analysis foci and participant characteris-

tics cross the 32 studies.

Participant characteristics

Participants ranged in age from 3 to 21 years. Four

studies included participants of58 years; 17 studies

included participants up to 16 years and one up to

21 years. Twenty-two of the 32 articles (71%) did

not report on the sex distribution of the participants

in the study, therefore, these data are not discussed

further. When extracting sample size data, we

considered only the samples used to evaluate the

tool’s accuracy, not samples used for training and

development of the tool. Sample sizes ranged from 1

to 1133 (n¼ 29 publications) with a median sample

size of 37. Half of all studies had sample sizes within

the range 19–119. In three publications, sample size

was not stated. Tools were applied to language

learning populations in 28.1% (n¼ 9) of articles and

to disordered speech in 71.9% (n¼ 23).

Technology and purpose

Within the 32 articles, 18 types of ASA tools were

discussed (see Figure 3(A)). Twenty-four studies
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(75%) described tools for phoneme level analysis of

pronunciation, eight studies (25%) described tools

for prosodic aspects of pronunciation and two

studies (6.25%) described tools that simultaneously

analysed phonemic and prosodic aspects of pronun-

ciation (See Table I).

Twelve publications evaluated two or more ASA

tools. Some studies compared the performance of

two or more tools for a specific analysis purpose; for

example, comparing classification accuracy for dys-

arthria severity using Gaussian Mixture Models

(GMM), a SVM or a hybrid of the two (Kadi,

Selouani, Boudraa, & Boudraa, 2016). Other studies

reported an ASA system comprised of multiple

automated analysis modules, each performing a

different task, for example, a HMM-based phoneme

segmentation/forced alignment module and a

dependence network for subsequent phoneme error

classification accuracy (Chen, 2011). For details, see

Supplementary Table SI.

Figure 3(A) also presents data on the proportion

of tools addressing the different analysis foci of the

ASA tools. The majority of tools (17/18) were

designed to analyse a specific feature of speech (i.e.

intelligibility, correctness, classification of phoneme

error or lexical stress pattern). Nine tools across 8/32

studies (25%) measured speech recognition rates.

These studies reported on whether the tool recog-

nised the input as the target word or phoneme.

These tools could be applied to automated intelli-

gibility assessment or evaluation of the degree of

disorder or mispronunciation. Success of classifying

speech into different categories was reported in

twenty-five of the included studies (25/32; 78%).

This included classification of speech input as

correct or incorrect based on reference to a stored

representation as well as classification to a specific

category, such as lexical stress patterns (e.g. strong-

weak or weak-strong) or phoneme error type (e.g.

substitution or omission). Two studies (2/32;

6.25%) reported duration measures including total

voicing/utterance duration and voicing delay.

Voicing delay was defined as a measure of response

latency or delayed initiation of speech following

presentation of stimulus.

No studies reported on tools designed for iden-

tifying a syndrome or differentiating different speech

disorders. Only three systems were designed for

speech modification within a treatment or learning

package (Delmonte, 2009; Lee et al., 2011;

Navarro-Newball et al., 2014).

Operating system

The operating system (OS) for the ASA tool was not

defined in 20 publications (62.5%). Three papers

described Web-based tools and servers (Lee et al.,

2011; Maier et al., 2009b; Parnandi et al., 2015),

four described tools that run on a desktop or laptop

computer (Duenser, 2016; Pantoja, 2014; Shahin,

Ahmed, & Ballard, 2012; Shahin, Ahmed,T
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McKechnie, Ballard, & Gutierrez-Osuna, 2014),

two specified Windows OS (Navarro-Newball et al.,

2014; Sztaho, Nagy, & Vicsi, 2010), one ran on the

Mac OS (Delmonte, 2009), one on the Android OS

(Parnandi et al., 2015), and one was a cross-

platform tool that could operate in Windows, Mac,

Linux and Android (Ferrer et al., 2015).

Interface: user input and output

In four studies, ASA was embedded in an applica-

tion incorporating both a clinician/teacher interface

and a child interface (Maier et al., 2009a; Navarro-

Newball et al., 2014; Parnandi et al 2015; Saz et al.,

2009). That is, the ASA potentially could be used to

deliver feedback on speech productions to the child

or to provide analysis of performance to a remote

clinician/teacher. Of these, two studies addressed

dysarthria (Maier et al., 2009a; Saz, Yin, et al.,

2009); one addressed childhood apraxia of speech

(CAS) (Parnandi et al., 2015); and one included

children with hearing loss (Navarro-Newball et al.,

2014). Two studies focussed on describing a speech

processing engine, which was being developed for

later integration into a programme with both clin-

ician/teacher and child interfaces; one for language

learning (Hacker, Cincarek, Maier, HeBler, & Noth,

2007) and one for CAS (Shahin et al., 2015). Two

tools, both designed for foreign language learning,

had only a child interface (Delmonte, 2009; Lee

et al., 2011). The ASA system in the remaining 16

studies had been evaluated in its development phase,

without reference to the user interface.

Regarding the child interface, three studies

described game-based programmes through which

the children recorded their speech samples (Lee

et al., 2011; Navarro-Newball et al., 2014; Parnandi

et al., 2015). All other studies used non-game

speech sampling methods such as picture naming

or word reading, or provided insufficient informa-

tion to determine the method used.

Of the six studies that reported an ASA system

already integrated into a child interface, four used

the speech analysis output to provide feedback to the

child. In three of these studies, all using HMM-

based ASA systems, the feedback was on accuracy

(i.e. correct/incorrect) of phonemes in picture
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Figure 3. Frequency across the 32 studies of A. each automated technology used and proportion of tools addressing each analysis focus

(HMM¼Hidden Markov Models; SVM¼Support Vector Machine; MLP¼MultiLayer Perceptron; ANN¼Artificial Neural Network;

DNN¼Deep Neural Network VAD¼Voice Activity Detector; MaxEnt¼Maximum Entropy; CNN¼Convolutional Neural Network;

DTW¼Dynamic Time Warping; GMM¼Gaussian Mixture Models; KNN¼ k-nearest neighbour algorithm; LALR parser was not

defined in the study; LDA¼Linear Discriminant Analysis); B. each type of speech sample elicited; C. use for each feature extraction

method (MFCCs¼mel-frequency cepstral coefficients; LPC¼ linear predictive coding coefficients; PLP¼ perceptual linear prediction

coding coefficients; HFCCs¼ human frequency cepstral coefficients); D. each language represented.
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naming (Saz, Yin, et al., 2009), syllable string

repetition (Navarro-Newball et al., 2014) or sen-

tence level (Lee et al., 2011) tasks. The language-

learning system in Lee et al. (2011) also provided

feedback in the form of a model and recast. The

fourth system with a child interface, an LALR parser

system, was designed for children learning English

pronunciation and provided feedback on accuracy of

lexical and phrasal stress assignment, as well as

performance-based feedback such as ‘speak more

slowly’ (Delmonte, 2009). Two other language–

learning studies, with systems not yet integrated into

a child–friendly interface, provided feedback on

pronunciation accuracy. The system in Pantoja

(2014) focussed on phonemic accuracy and the

system in Hacker et al. (2007) analysed both

phonemic and prosodic input features to provide

the child with feedback on pronunciation accuracy.

Speech sample characteristics

Figure 3(B) presents data on the elicited speech

samples used to develop and evaluate the tools in the

included studies. Most commonly, ASA tools were

developed and evaluated using single word stimuli

(n¼ 22 studies). When multi-word utterances were

used, they ranged from three word phrases to

sentences. Ten tools, across seven publications,

were tested using both single and multi-word utter-

ances (see Supplementary Table SI). The majority

(75%) of ASA tools were tested with a constrained

stimulus set (n¼ 24 studies), meaning participants

were produced a specific set of words or sentences

rather than spontaneous speech. In seven studies, it

was unclear whether the stimulus set was open or

constrained.

There was large variability across the selected

studies in number of speech tokens used to evaluate

a tool. The median was 1750 (range 78–54,080),

with 50% of studies reporting between 340 and

8400. Six publications did not report number of

tokens per participant or total number.

Features extracted

Figure 3(C) summarises the feature extraction data

from the studies. The majority of tools, in 20/32

publications, used Mel-frequency cepstral coeffi-

cients (MFCCs), often in combination with other

features. MFCCs map spectral information from the

speech signal onto the Mel scale, which approxi-

mates the way the human auditory system perceives

frequencies. For three tools feature extraction was

not reported (de Wet, Van der Walt, & Niesler, 2009;

Duenser et al., 2016; Lee et al., 2011).

Language

ASA systems were developed for thirteen different

languages, most commonly English (14/32 or

43.75%) (see Figure 3(D)). Of the studies targeting

English, 9/14 were designed for children learning

English as a non-native language and 5 were for

English-speaking children with a speech disorder.

For the other 12 languages addressed, 2 studies were

tools for second language learning and 15 for

helping children with disorders in their native

language. One study did not specify the language

used to train and test the tool.

Accuracy of analysis

The accuracy of speech recognition or classification

against human judgment was reported in a number

of ways including word recognition rate, percent

agreement, correlation and measures used in signal

detection (e.g. true/false positive rates, sensitivity,

specificity). A summary of the ASA technology,

outcome measure, and accuracy of analysis and

population studies is in Supplementary Table SII.

Word recognition rate

Word recognition rates for TD children ranged from

69.4% to 98% (Azizi, Towhidkhah, & Almasganj,

2012; Suanpirintr & Thubthong, 2007, respect-

ively). For SSD/LL speech, word recognition rates

ranged from 48.5% for speakers with dysarthria

(Suanpirintr & Thubthong, 2007) to 91.67% for

children learning another language (Wielgat,

Zieliński, Woźniak, Grabias, & Król, 2008). Ting

and Mark (2008) achieved high recognition rates of

97–100% for isolated vowel phonemes in a SSD/LL

speaker. Mazenan et al. (2015) reported high

recognition rates on a range of isolated phonemes

(88.19–96.92%) and at the whole word level (95–

100%); however, the population was not specified.

Percent agreement with human judgment

Accuracy in classifying phoneme-level pronunciation as

(in)correct against human judgment ranged from

45.7% for mispronounced words for a combined

group of TD and SSD speakers (Dudy, Asgari, &

Kain, 2015) to 95.67% for LL speakers (Obach &

Cordel, 2012). Tools categorising phoneme error

type in SSD speech showed from 91.13% agreement

with human judgment (Singh, Thakur, & Vir, 2015)

to 99.6% (Maier, Honig, Hacker, Schuster, & Noth,

2008).

One study reported on a dual-component tool in

which an HMM-based component decoded the

sequence of incoming phonemes and compared

this input to a stored representation of the target

word; and a Dependence Network component

classified the input sequence to a particular phon-

eme error category (e.g. substitution or omission)

(Chen, 2011). Accuracy for automated vs. manual

phoneme labelling accuracy of the HMM tool

ranged from 46.32% for mispronounced words,

where the sequence of phonemes produced violated

the phonotactic rules/permissible sequences of the

target language, to 88.7% for correctly pronounced

words (Chen, 2011).
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Regarding percent agreement for lexical stress

classification, four studies of TD children reported

values ranging from 53–70% (Sztaho et al., 2010) to

93.4% (Shahin et al., 2016). Shahin et al. (2012)

reported higher agreement for words with strong-

weak stress (93.8%) than words with weak-strong

stress (75%). For two studies of TD and SSD/LL

children combined, overall accuracy ranged from

77.6% (Shahin et al., 2015) to 88.4% (Duenser

et al., 2016). For nine studies examining only SSD/

LL speech, percent agreement ranged between 10

and 71% (Sztaho et al., 2010) up to 93.5% (Ferrer

et al., 2015).

Considering phonemic and prosodic features simul-

taneously for determining word accuracy, Hacker

et al. (2007) reported 74.2% agreement with human

judgment for SSD/LL speakers and 89% for the

pooled TD and SSD/LL.

For intensity threshold-based voice activity detec-

tion tools, percent agreement for automated vs.

manual calculation ranged from 96% in SSD/LL

speech (Parnandi et al., 2015) to 96.6%. These

studies considered TD and SSD/LL speech com-

bined (Shahin et al., 2015). For calculations of total

utterance duration, accuracy of the tool ranged from

94% for SSD/LL speech (Parnandi et al., 2015) to

94.8% (Shahin et al., 2015) for TD and SSD/LL

speech combined. These measures were explored in

only two studies from the same research team, which

may account for the narrow range of percent

agreement values.

Correlation

Eight of the 32 studies reported human–machine

correlations for the evaluation of pronunciation at

the phoneme-level in SSD/LL speech. Correlations

ranged from a non-significant or weak correlation

(range 0.02–0.40; de Wet, Van der Walt, & Niesler,

2009) to a strong correlation of 0.89 (Maier et al.,

2008, 2009a,b). One study exploring prosodic

accuracy in a sample of pooled TD and SSD/LL

speakers reported moderate to strong correlations

(0.66–0.86) between automatic and human assess-

ments (van Santen, Prud’hommeaux, & Black,

2009).

Signal detection theory measures

Thirteen of the 32 studies reported more detailed

information on classification accuracy of the tool

versus the ‘‘gold standard’’ of human judgment. Six

reported on true positive rate (i.e. sensitivity – all

items included in a category truly do belong in that

category); two reported on precision (i.e. the prob-

ability that an item truly belongs in the assigned

category); one reported on true negative rate (i.e.

specificity – all items excluded from a category truly

do not belong in that category); four reported true

and false positive/negative rates; and one reported

equal errors rates (i.e. the threshold where likelihood

of false acceptance and false rejection is equal).

For SSD/LL phoneme-level classification accur-

acy, true positive rates ranged from 52.6% (SSD) in

Maier et al. (2009b) to 100% (LL) in Obach &

Cordel (2012). For TD speakers, true positive rate

was reported at 96% (Shahin et al., 2014).

Classification true negative rate for phoneme-level

analysis in SSD/LL speakers ranged from 53.8%

(Shahin et al., 2014) to 82–95% (Chen, 2011). For

TD speakers, Shahin et al. (2014) reported a true

negative rate of 74.6%. Classification precision rates

for phoneme-level pronunciation accuracy ranged

from 87 to 100% for LL speech in Obach and

Cordel (2012). For TD and SSD speakers com-

bined, classification precision was reported at 91.1%

by Shahin et al. (2015). The ASA tool from three

studies reported multiple measures including sensi-

tivity, specificity, false positive and/or false negative

rates for SSD/LL speakers. False positive rates

ranged from 19.5% (Duenser et al., 2016) to

70.5% (Saz, Yin, et al., 2009). The lowest false

negative rates were reported by Saz et al. (2009) at

1.5% for speaker-dependent conditions (i.e. where

the ASA tool had been trained for each impaired

speaker). For speaker-independent conditions (i.e.

where the tool had been trained on unimpaired

speakers), false negative rates ranged from 6.1%

(Shahin et al., 2014) to 12.3% (Saz, Yin, et al.,

2009). Shahin et al. (2014) reported 16.3% false

positives; and 4% false negatives for their tool’s

analysis of phoneme-level accuracy in TD speakers.

Equal error rates ranged from 14 to 25.3% across a

range of speaker-dependent and speaker-independ-

ent conditions analysed by Saz et al. (2009).

Behaviour change

Only three publications reported on changes in

speech production following practice with an ASA-

based tool providing feedback on accuracy: one tool

was an LALR parser (Delmonte, 2009) and the

other two studies both developed and evaluated an

HMM-based ASA system (Lee et al., 2011;

Navarro-Newball et al., 2014). Delmonte (2009)

reported that 20 LL children improved their pro-

duction of lexical and phrasal stress after 10 hours of

training but no statistics were reported to substan-

tiate this claim. Lee et al. (2011) reported significant

improvement in mean pronunciation scores in 21

beginner and intermediate LL students, with a large

effect size of 0.90. Navarro-Newball et al. (2014)

studied a single child with hearing loss who acquired

all trained two to three syllable consonant-vowel

combinations within eight sessions. No studies

compared performance of the children using ASA-

based tools against traditional clinician-delivered

intervention. Given the variability in outcome meas-

urement across these three studies and the absence

of raw data/statistical analyses in two studies, we

were unable to report on pooled results.
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Discussion

The over-arching aim of this review was to examine

the use and effectiveness of ASA tools in analysing

and/or modifying children’s speech production. To

that end, we addressed the following sub-goals: 1.

(a) to examine the types of automatic speech analysis

(ASA) and recognition (ASR) tools used for speech

analysis/modification; (b) the populations and (c)

goals/purposes to which they have been applied; 2.

to determine the accuracy of ASA tools’ analyses of

speech in typically developing (TD) children, chil-

dren with speech sound disorders (SSD), or TD

children learning a foreign language (LL); and 3. to

determine whether currently there is evidence that

changes in children’s speech production accuracy is

comparable between of ASA-based training tools

and face-to-face training.

ASA tools and purpose

Based on the data extracted from the studies

included in this review, HMMs are the most studied

automated analysis tools to date. SVMs, NNs and

GMMs were also frequently described with out-

comes meeting or exceeding clinical thresholds.

These tools apply probability or likelihood measures

that are better able to adapt to temporal variability in

the speech signal and nonlinear interactions between

speech input and other environmental acoustic

variables (Deng & Li, 2013). ASA-based tools have

been most often applied to phonemic accuracy at

single word level and infrequently at utterance level.

Less commonly, tools evaluated lexical or phrasal

stress at both word and utterance level. These tools

have been applied to populations of children with

SSDs in their native language and typically develop-

ing children learning to speak additional languages.

Most tools are being used to analyse single words

in one language and have been tested using con-

strained word sets. Such tools are limited in their

generalisability to other contexts without extensive

training and re-testing. Accessing or collecting large

samples of speech from specific user groups/popu-

lations in order to comprehensively train the ASA

module to better adapt to speaker variability can be

difficult (Lee et al., 2011; O’Shaughnessy, 2008).

Task-dependent and/or speaker-dependent models

such as the HMM + Confusion Network model in

Saz et al. (2009), demonstrated clinically acceptable

performance accuracy; however, their reliance on a

specific set of vocabulary items significantly limits

transferability to other populations, languages and

word sets. Using a limited vocabulary, particularly

one with few easily confused words (e.g. neighbours

such as ‘‘pat’’ and ‘‘bat’’) will increase analysis/

recognition accuracy at the cost of reducing breadth

of application, which places limits on their wider use

in assessment and treatment.

None of the studies included in this review

demonstrated the use of ASA methods to

differentially diagnose disorders. This is an area of

particular clinical need, particularly for disorders

that have historically been difficult to differentiate,

for example, CAS and inconsistent phonological

disorder (Dodd, 2013; Murray, McCabe, Heard, &

Ballard, 2015) or some types of dysarthria (Kent &

Kim, 2003).

Accuracy of analysis

ASA-based tools built on HMM architectures that

extract Mel-frequency cepstral coefficients

(MFCCs) from the speech signal correlate well

with human judgment and can accurately predict

intelligibility/severity ratings for child speech (Maier

et al., 2009a; Saz, Yin, et al., 2009). For both

phoneme- and prosody-level judgments of correct/

incorrect, accuracy was particularly high when tools

were applied to correctly pronounced words in

groups of TD speakers or groups of SSD/LL

speakers (Chen, 2011; Duenser et al., 2016; Ferrer

et al., 2015; Shahin et al., 2012, 2016). Mixed

results were obtained when evaluating the perform-

ance accuracy of HMM-based tools on combined

samples of TD and SSD/LL speakers (Hacker et al.,

2007; Obach & Cordel, 2012; Parnandi et al., 2015;

Shahin et al., 2015). It is possible that, in studies

reporting high rates of classification accuracy for

combined samples of TD and SSD/LL speakers,

high accuracy for correctly pronounced words from

TD speakers may have masked potentially poorer

performance of the tool with SSD/LL speech.

Classification of incorrectly pronounced words did

not reach the 80% threshold for TD, LL, or SSD

speakers at phoneme- or prosodic-level analysis

(Chen, 2011; Ferrer et al., 2015; Shahin et al.,

2014).

For tools which demonstrated high rates of

classification/categorisation accuracy for phoneme

error patterns (Dependence Network based tool,

Chen, 2011; HMM-based tool, Maier et al., 2009b,

SVM-based tool, Singh et al., 2015) or severity level

(GMM-based tool, Kadi et al., 2016), results need

to be interpreted with caution, as overall sensitivity

can be low when datasets contain few samples with

errors (Maier et al., 2008, 2009b). Wider clinical

applicability of these particular tools (Singh et al.,

2015; Kadi et al., 2016) will be limited as each tool

is language specific, disorder specific and word-list

specific.

Regarding tools which classify/categorise lexical

stress patterns, tools meeting clinically acceptable

standards when applied to TD speakers (ANN-

based tool, Shahin et al., 2012; CNN-based tool,

Shahin et al., 2016) or approaching clinically

acceptable accuracy when applied to a combined

group of TD and SSD/LL speakers (MLP-based

tools, Parnandi et al., 2015; Shahin et al., 2015)

need to be validated on SSD/LL speakers to
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determine their accuracy on speech samples where

the likelihood of mispronunciations is high.

Taken together, these findings suggest that ASA

methods are able to meet/exceed clinically accept-

able thresholds for correctly-pronounced words but

do not meet clinically acceptable standards when

evaluating words containing mispronunciations, par-

ticularly in the case of impaired speech. Of the best

performing ASA tools in the reviewed studies, two

HMM-based tools (Duenser et al., 2016; Obach &

Cordel, 2012), one GMM-based tool (Kadi et al.,

2016), one SVM-based tool (Singh et al., 2015) and

one HMM plus Dependence Network tool (Chen,

2011) were trained on populations of LL or SSD

speakers, which may account for their increased

performance accuracy. Of these five tools, two

incorporated Knowledge Driven recognition systems

that had been trained specifically for the types of

errors those speakers were likely to produce (Chen,

2011; Duenser et al., 2016). For performance

accuracy to increase for mispronounced words,

ASA models need to be trained on a larger corpus

of speech containing incorrectly pronounced words.

Until this happens, clinical applicability of these

tools to speech disordered populations will be

limited, particularly in the case of disorders with a

motor basis where errors may be less predictable and

consistent than in disorders with a linguistic basis

that follow largely predictable ‘‘rules’’.

Behaviour change

To date, the focus on tools for automated speech

analysis (ASA) have been mainly at the development

stage and for evaluation of accuracy or error type in

speech production. Given the varied success of these

tools, it is not surprising that very few studies have

yet explored their utility or appropriateness for

changing behaviour. We found only three studies

documenting the ability of these tools to facilitate

changes to speech production/pronunciation abilities

of the child. For two of these studies (LALR parser,

Delmonte, 2009; HMM-based ASA, Navarro-

Newball, et al., 2014), the exact nature of the

intervention and performance measurement was

unclear and the effect size for the intervention was

not reported. For these reasons, pooled data on

effect sizes could not be reported. The HMM-based

tool in Lee et al. (2011) was reported to facilitate

significant improvement in mean pronunciation

accuracy with large effect sizes; however, the exact

measure of pronunciation accuracy was not defined.

None of the studies compared ASA-based instruc-

tion and feedback to face-to-face instruction.

The absence of information about the quality and

accuracy of the ASA-based feedback in many studies

reporting quantitative changes to speech production

(Neri et al., 2008; Wang & Young, 2015) makes it

difficult to determine the true agent of change in

these studies. Qualitative data suggests that, to be

effective, feedback must be both ‘‘correct’’ i.e. not

reject an utterance that a human listener would

accept, and ‘‘adequate’’, i.e. specific to the error

made by the user (Engwall & Balter, 2007). The

quantitative data reviewed here leads us to question

the capacity of ASA tools to meet both these criteria,

especially for children and impaired speakers.

Surprisingly, only one of the studies included in

this review described the development of a mobile

application for speech analysis and modification

(Parnandi et al., 2015), despite the proliferation of

speech therapy apps over the last 10 years. In that

study, the application offered a digital, interactive

method of stimulus presentation and a method for

assigning rewards for correct productions, but the

speech processing unit was located on a separate

server and automated analysis of the child’s speech

attempts was conducted offline. Therefore, the user

relied on traditional feedback from a trained clin-

ician or parent (Parnandi et al., 2015). Most therapy

apps for paediatric speech disorders simply provide

an alternative method of stimulus presentation and

rely on a SLP, therapy assistant or parent/caregiver

to provide feedback and shaping of responses. One

possible reason for the current scarcity of apps

equipped with in-built real-time ASA-based evalu-

ation and feedback is that mobile devices have

limited computational capacity to perform those

functions with high reliability (Lee, Lee, Kim, &

Kang, 2017).

Limitations and future directions

While the demand for ASA continues to grow, its

rate of growth depends on successfully closing the

performance gap between human and machine

recognition, a need that has been described for 10

years (O’Shaughnessy, 2008). Some authors have

investigated the effects of applying vocal tract length

normalisation to samples of children’s speech to

improve the recognition accuracy of ASA models

trained on adult speech (Azizi et al., 2012). Dudy

et al. (2015) demonstrated that training a standard

Goodness-of-Pronunciation model (GOP) on expli-

cit samples of correct and incorrect pronunciations

produced a statistically-significant increase in the

rate of agreement between ASA and human experts’

classification; however, the modified GOP algorithm

continued to perform below clinical ‘‘gold stan-

dard’’. Phonetically-based systems are, by necessity,

language-specific as the set of phonemes and the

range of allowable phoneme sequences is specific to

individual languages (Delmonte, 2009). By exten-

sion, this could be applied to impaired speech.

Future research should focus on optimising the

performance of automated tools for phoneme label-

ling, classification of correct/incorrect, and sensitiv-

ity for error identification in populations with

impaired speech production abilities where high

instances of mispronounced words are likely.
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We acknowledge the risk of publication bias and

English language bias as a result of restricting our

database search terms to title and abstract fields,

limiting the date range, restricting the search to

articles published in English, and to tools that have

been evaluated in scholarly journals. Further inves-

tigation is needed to identify potentially useful ASA

tools developed for languages other than English.

Although outside the date range of this review,

two papers were recently published on video-game

delivered (Cler, Mittelman, Braden, Woodnorth, &

Stepp, 2017) and app-delivered (Byun et al., 2017)

biofeedback for treatment of speech sound dis-

orders. Notably, these studies both focussed on

discrete aspects of speech production (velopharyn-

geal valving and production of the /r/ phoneme,

respectively). This suggests tools more narrowly

focussed to specific speech sounds or discrete bio-

acoustic features may have greater potential for

success, at least in the short-term.

Conclusion

ASA shows promise for automated assessments of

intelligibility or automated classification of impair-

ment severity level. In order for ASA systems to be

useful to users, false acceptance and rejection rates

need to be low to avoid frustration for the user, and

error detection accuracy and feedback capabilities

need to be high in order to avoid potentially harmful

effects of inaccurate guidance for shaping a student’s

behaviour. Quantitative data presented in this review

suggest that clinical transferability of the described

ASA tools is limited at this time. This is due to sub-

par performance on mispronounced words com-

bined with highly constrained speech sample sets, as

well as heterogeneous languages on which these

systems have been trained. The proliferation of

language learning and speech therapy apps suggests

that automated feedback from computer and tablet-

based gaming as speech therapy is an area of keen

interest and we should expect to see the body of

literature growing in the near future. With continued

research interest and effort, these tools have real

potential to assist children to achieve high intensity

and engaging speech practice outside the clinic and

can help overcome service delivery barriers. It is

feasible that serious games with integrated ASA

could soon be used to assist children with SSD to

achieve rapid speech change by facilitating high

frequency, high quality, engaging home practice with

ASA-generated feedback on performance.

Acknowledgements

The statements made herein are solely the responsibil-

ity of the authors. Jacqueline McKechnie wishes to

thank Yulia Ulyannikova from the University of Sydney

Health Sciences Library for her time and expertise in

database search syntax.

Declaration of interest

No potential conflict of interest was reported by the

authors.

Funding

This work was supported by the Qatar National

Research Fund (a member of the Qatar Foundation)

[NPRP # 8-293-2-124].

ORCID

J. McKechnie http://orcid.org/0000-0001-5747-

0888

B. Ahmed http://orcid.org/0000-0002-1240-6572

P. McCabe http://orcid.org/0000-0002-5182-1007

K. J. Ballard http://orcid.org/0000-0002-9917-5390

References

Allen, M.M. (2013). Intervention efficacy and intensity for

children with speech sound disorder. Journal of Speech,

Language & Hearing Research, 56, 865–877. doi: 1092-

4388(2012/11-0076)

Australian Bureau of Statistics. (2016). Household use of informa-

tion technology, Australia, 2014-15 (Vol. 2017). Canberra,

Australia: Australian Bureau of Statistics.

Azizi, S., Towhidkhah, F., & Almasganj, F. (2012). Study of VTLN

method to recognize common speech disorders in speech therapy of

Persian children. Paper presented at the 2012 19th Iranian

Conference of Biomedical Engineering, ICBME 2012.

Baker, E. (2012). Optimal intervention intensity in speech-

language pathology: Discoveries, challenges, and unchartered

territories. International Journal of Speech-Language Pathology,

14, 478–485. doi:10.3109/17549507.2012.717967

Baker, E., & McLeod, S. (2011). Evidence-based practice for

children with speech sound disorders: Part 1 Narrative review.

Language, Speech & Hearing Services in Schools, 42, 102–139.

doi:10.1044/0161-1461(2010/09-0075)

Ballard, K.J., Robin, D.A., McCabe, P., & McDonald, J. (2010).

A treatment for dysprosody in childhood apraxia of speech.

Journal of Speech, Language & Hearing Research, 53, 1227–

1245. doi:1092-4388(2010/09-0130)
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