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Abstract 

This paper proposes a Group Latent Embedding for Vector 
Quantized Variational Autoencoders (VQ-VAE) used in non-
parallel Voice Conversion (VC). Previous studies have shown 
that VQ-VAE can generate high-quality VC syntheses when it 
is paired with a powerful decoder. However, in a conventional 
VQ-VAE, adjacent atoms in the embedding dictionary can rep-
resent entirely different phonetic content. Therefore, the VC 
syntheses can have mispronunciations and distortions whenever 
the output of the encoder is quantized to an atom representing 
entirely different phonetic content. To address this issue, we 
propose an approach that divides the embedding dictionary into 
groups and uses the weighted average of atoms in the nearest 
group as the latent embedding. We conducted both objective 
and subjective experiments on the non-parallel CSTR VCTK 
corpus. Results show that the proposed approach significantly 
improves the acoustic quality of the VC syntheses compared to 
the traditional VQ-VAE (13.7% relative improvement) while 
retaining the voice identity of the target speaker. 

Index Terms: non-parallel voice conversion, variational auto-
encoder, group latent embedding 

1. Introduction 

Voice conversion (VC) aims to transform an utterance from a 
source speaker as if a target speaker had produced it. VC finds 
use in many applications, such as personalized text-to-speech 
synthesis [1], speaker spoofing [2] and pronunciation training 
[3]. Various approaches have been proposed to perform VC. 
Gaussian Mixture Models (GMM) [4, 5], Deep Neural Net-
works (DNN) [6-9], and sparse representations [10, 11] are 
widely used and can achieve convincing results. Within DNN 
based methods, various network architectures [6-9] have been 
explored, and more recently Variational Autoencoders (VAE) 
[12-14].  A VAE consists of an encoder network and a decoder 
network. In training, the encoder network learns a speaker-in-
dependent latent embedding from input speech signals, and the 
decoder reconstructs the input speech signals given the latent 
embedding and the corresponding speaker embedding. At 
runtime, VC is achieved by replacing the speaker embedding 
with that of a target speaker. 

VC approaches based on VAE have several advantages: 
they do not require parallel corpora and time alignment during 
training [12], and they can be generalized to unseen speakers  
[15] and even cross-lingual scenarios [16]. However, speech 
generated by VAE has lower quality than that produced by 
GMM and DNN systems trained on parallel corpora [15]. The 
main reason is that the assumed prior distribution of the latent 
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variables is too simple — often a single Gaussian. The resulting 
latent embedding is often overly simplified and poorly repre-
sents the underlying structure of the data (i.e., the over-regular-
ization problem [17-19]). Several studies have addressed this 
problem. In [20, 21], the authors extended the prior distribution 
of latent variables from a single Gaussian to a Gaussian Mix-
ture. Nonetheless, the over-regularization effect still exists [20], 
and the latent embedding tends to be ignored when it is paired 
with a powerful autoregressive decoder [13]. A VQ-VAE [13] 
solves the above two problems by learning the prior through an 
embedding dictionary rather than using a pre-defined static dis-
tribution. However, there is no constraint on the embedding dic-
tionary, and therefore adjacent atoms can represent entirely dif-
ferent phonetic contents.  As a result, the VC speech can have 
mispronunciations and distortions whenever the output of the 
encoder is quantized to an atom representing entirely different 
phonetic content.  

To address this problem, we propose a Group Latent Em-
bedding for a VQ-VAE that enforces atoms with similar pho-
netic content to be close to each other but those with different 
content to be away from each other. Instead of using the nearest 
atom from the embedding dictionary as the latent embedding, 
we further divide the embedding dictionary into groups. During 
training, given the output of the encoder, we first select its near-
est group in the embedding dictionary, and then we use the 
weighted average of the atoms within the group as the latent 
embedding. The weights are reversely proportional to the dis-
tance between the output of the encoder and the atoms. During 
the back-propagation step, instead of updating only one atom in 
the embedding dictionary at a time, we update all the atoms in 
the group in proportion to their weights. Finally, we pass the 
latent embedding to the decoder and condition the decoder on a 
corresponding speaker embedding, which outputs the recon-
struction of the input. At runtime, VC is performed by replacing 
the speaker embedding with that of the target speaker. We con-
duct both objective and subjective experiments on the CSTR 
VCTK Corpus [22] to evaluate the proposed approach. Results 
show that the proposed method can improve both Mel-Cepstral 
Distortion and the acoustic quality of the VC syntheses without 
sacrificing the voice identity of the target speaker. In a final 
analysis, we demonstrate the group structure of the atoms in the 
embedding dictionary. 

2. Literature review 

Most conventional VC systems, such as those based on GMMs, 
DNNs, and sparse representations, require time-aligned parallel 
corpora. GMM-based methods [4, 5] learn the joint distribution 



of source and target spectral features and then estimate the tar-
get spectral features through least-squares regression. DNN-
based methods map the source spectral features directly into the 
target space through various network structures such as 
restricted Boltzmann machines [6], auto-encoders [7], feed-for-
ward neural networks [8], and recurrent neural networks [9]. 
Sparse representation methods [10, 11] first build exemplar dic-
tionaries for a source and a target speaker. At runtime, they use 
sparse coding to extract a speaker-independent code from the 
source speech and then combine it with the target dictionary to 
generate VC speech.  

To avoid the laborious process of collecting parallel cor-
pora, several non-parallel VC techniques have been proposed 
in recent years. These include the INCA algorithm [23], DNNs 
[24, 25], sparse representations [26], and phonetic 
posteriorgrams [27]. More recently, Hsu et al. [12, 28] proposed 
to use a VAE for VC. Following this, Kameoka et al. [29] and 
Huang et al. [30] improved the quality of the VC syntheses by 
using auxiliary classifier and WaveNet vocoder [31] adaption, 
respectively. Additionally, Hsu et al. [14] proposed a 
Factorized Hierarchical VAE (FHVAE) to separate the 
linguistic and speaker representations, and Mohammadi [16] 
applied FHVAE to cross-lingual VC. Saito et al. [15] alleviated 
the VC quality degradation caused by the over-regularization 
problem of VAE through adding a phonetic posteriorgram to 
the input of the decoder. They also generalized it to unseen 
speakers by using the d-vector [32] of these speakers. Oord et 
al. [13] proposed VQ-VAE to address the over-regularization 
and paired with WaveNet [33] decoder to achieve waveform-
wise high-quality voice conversion. 

3. Method 

In this section, we first introduce the general framework of us-
ing VQ-VAE  [13] for VC. Following this, we describe the pro-
posed Group Latent Embedding. 

3.1. VC using VQ-VAE 

Figure 1 illustrates the overall process of using VQ-VAE in VC. 
A VQ-VAE has an encoder-decoder network structure and an 
embedding dictionary ᵃ� ∈ ℝ�×�, where ᵃ�  is the number of at-
oms and ᵃ� is the dimensionality of each atom. Given an non-
parallel corpus of multiple speakers, the inputs to the network 
are pairs of audio segment ᵅ� and the corresponding speaker em-
bedding ᵅ�. During training, ᵅ� is passed to an encoder network 
ᵆ�, which produces the output ᵅ��(ᵅ�) = ᵆ�(ᵅ�). Then, the latent 

embedding ᵅ�(ᵅ�) is computed by finding the nearest (Euclidean 
distance) atom in the embedding dictionary as, 

ᵅ�(ᵅ�) = ᵃ��, where ᵅ� = argmin
�

�ᵅ��(ᵅ�) − ᵃ���� (1) 

where ᵃ�� is the ᵅ�-th atom in the embedding dictionary, and ᵅ� ∈
{1, 2,… , ᵃ�} . Finally, the latent embedding ᵅ�(ᵅ�)  and the 
speaker embedding ᵅ� are passed into a decoder network ᵆ� to 
produce the reconstruction of the input ᵅ�̂ = ᵆ�(ᵅ�(ᵅ�), ᵅ�).  

To learn the parameters of the model, we minimize the 
training objective: 

ᵃ� = − log(ᵅ�|ᵅ�(ᵅ�), ᵅ�) + �ᵅ�ᵃ�[ᵅ��(ᵅ�)] − ᵃ����
�

+ᵯ��ᵅ��(ᵅ�) − ᵅ�ᵃ��ᵃ�����
� (2)

 

where − log(ᵅ�|ᵅ�(ᵅ�), ᵅ�) is the negative log likelihood term op-

timizing the encoder and decoder, �ᵅ�ᵃ�[ᵅ��(ᵅ�)] − ᵃ����
� is used to 

update the embedding dictionary, and ᵯ��ᵅ��(ᵅ�) − ᵅ�ᵃ��ᵃ�����
� is a 

commitment loss to guarantee that the encoder also updates ac-
cording to the selected atom. ᵅ�ᵃ�[∙] denotes the stop-gradient 
operator, which is defined to be identity during forward-propa-
gation but zero partial derivatives during back-propagation. ᵃ�� 

is the nearest atom of ᵅ��(ᵅ�), and ᵯ� is the coefficient of the com-
mitment loss.  

At runtime, an audio waveform from the source speaker 

ᵅ���� and the speaker embedding of the target speaker ᵅ���� are 

passed to the network, and the VC waveform is generated as, 

ᵅ� ̂ = ᵆ��ᵅ�(ᵅ����), ᵅ����� (3)   

3.2. Proposed method: Group Latent Embedding 

In a conventional VQ-VAE, there is no constraint on the distri-
bution of the atoms in the embedding dictionary, so adjacent 
atoms can represent entirely different phonetic content. To al-
leviate the mispronunciations and distortions caused by this in-
correct quantization, we propose a Group Latent Embedding 
(GLE) inspired by group sparse coding algorithms [34, 35]. 
With GLE, we wish to promote that similar atoms (i.e., those 
with similar phonetic content) be close to each other, and that 
different atoms be away from each other. Thus, we can reduce 
the chances of quantizing the output of the encoder to a mis-
matched atom. 

The diagram of the GLE is shown in Figure 2. We divide 
the embedding dictionary ᵃ� ∈ ℝ�×�  into ᵃ�  sub-dictionaries, 
and we denote the ᵅ�-th sub-dictionary as ᵃ�(�) ∈ ℝ�×�, where 
ᵃ� = ᵃ� × ᵃ� . During forward-propagation, we first find the 
nearest sub-dictionary ᵃ�∗ for ᵅ��(ᵅ�):  

ᵃ�∗ = ᵃ�(�), ᵅ�ℎᵃ�ᵅ�ᵃ� ᵅ� = argmin
�

 ᵃ��ᵅ��(ᵅ�), ᵃ�(�)� (4) 

where ᵃ��ᵅ��(ᵅ�), ᵃ�(�)� is the distance from ᵅ��(ᵅ�) to the ᵅ�-th sub-
dictionary, defined as the average distance over all the atoms in 
it: 

ᵃ��ᵅ��(ᵅ�), ᵃ�(�)� = 1
ᵃ� ��ᵅ��(ᵅ�) − ᵃ��

(�)�
�

�

�=�
(5) 

Within ᵃ�∗, the latent embedding is computed as the weighted 
average of the atoms in the sub-dictionary: 

Figure 1: The framework of using VQ-VAE in voice 
conversion. (a) Training (b) Testing. 

 
Figure 2: The diagram of Group Latent Embedding. 

Nearest 
group

Embedding dictionary

�� �
…

� � � � � � �∗

Weighted 
average

� �

Group Latent 
Embedding



ᵅ�(ᵅ�) =
∑ ᵅ��ᵃ��

∗�
�=�

∑ ᵅ��
�
�=�

(6) 

where ᵅ�� is the weight for the ᵅ�-th atom. ᵅ�� is inversely pro-

portional to the distance between ᵅ��(ᵅ�) and ᵃ��
∗, as in eq. (7). 

ᵅ�� = 1
�ᵅ��(ᵅ�) − ᵃ��

∗��
(7) 

Since we used the weighted average of the atoms in a group 
as the latent embedding during the forward-propagation, we 
will need to update all these atoms in the back-propagation. As 
a result, the training objective becomes eq. (8).  

ᵃ� = − log(ᵅ�|ᵅ�(ᵅ�), ᵅ�) + �ᵅ�ᵃ�[ᵅ��(ᵅ�)] −
∑ ᵅ��ᵃ��

∗�
�=�

∑ ᵅ��
�
�=�

�
�

�

+ᵯ� �ᵅ��(ᵅ�) − ᵅ�ᵃ� �
∑ ᵅ��ᵃ��

∗�
�=�

∑ ᵅ��
�
�=�

��
�

�

(8)

 

3.3. Network architecture 

The proposed Group Latent Embedding can be used with any 
encoder and decoder structure. To enable a fair comparison, we 
use an encoder-decoder architecture similar to that in [13]. The 
encoder contains 10 one-dimensional convolutional layers. Six 
of them are with kernel size of 4 and stride of 2, and the other 4 
are with kernel size of 4 and stride 1. The decoder has 3 one-
dimensional convolutional layers with kernel size of 4 and 
stride of 4, 3 RNN layers with GRU [36] cells, followed by a 
WaveRNN [37] module. We do not use WaveNet [33] (as in 
[13]), since WaveRNN is much more efficient (~10 times faster 
in generating an audio waveform, as shown in [37]) without a 
loss of acoustic quality. The number of channels of all the con-
volutional layers and RNN layers is 128, and that of WaveRNN 
is 896. Additionally, we use one-hot vectors for speaker embed-
ding for simplicity, but the model can be generalized to unseen 
speakers using other speaker embeddings such as i-vectors [38], 
x-vectors [39], and d-vectors [32]. 

4. Experimental setup 

4.1. Corpus 

We conducted experiments on a non-parallel corpus, CSTR 
VCTK Corpus [22], which consists of 109 English speakers 
with several accents (e.g., English, American, Scottish, Irish, 
Indian, etc.). For each speaker, there are ~300 utterances, and 
part of them have the same linguistic contents across all the 
speakers. In our experiments, we used a subset of the corpus 
containing all the utterances for the first 30 speakers (p225-
p256, with p235 and p242 missing). We selected four speakers 
for evaluation: p225 (Female), p226 (Male), p229 (Female), 
and p232 (Male). All four speakers have an English accent. For 
each of them, we used the first 30 utterances as the testing set, 
and we considered four VC directions: p225 to p226 (F-M), 
p226 to p232 (M-M), p232 to p229 (M-F), and p229 to p225 
(F-F). All the results are averaged over these four VC direc-
tions. We use the other utterances from these 4 speakers and all 
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the utterances from the other 26 speakers for training, or 11,533 
utterances in total.  

4.2. Implementation details 

We implemented the proposed approach in PyTorch 1  [40]. 
First, we down-sampled the waveforms from 48kHz to 
22.05kHz. Then, we randomly selected segments of 1,024 sam-
ples from the original waveform and used the segments as in-
puts to the network. We also did zero-padding of the inputs to 
guarantee them to be compatible with the encoder and decoder. 
Furthermore, we augmented the data by adding random noise 
and randomly shifted inputs to the left or right to enhance trans-
lational invariance.  

We set the number of groups in the latent embedding to 41, 
corresponding to the number of phonemes in the CMU 
ARCTIC corpus [41]. For the sub-dictionary of each group, we 
set the number of atoms to 10, for a total of 410 atoms in the 
embedding dictionary. At each iteration, we normalized the 
128-dimensional atoms to have unit norm after updating them. 
We set ᵯ� = 0.25 following [13]. As we have 30 speakers in the 
training set, the speaker embedding was a 30-dimensional one-
hot vector. 

Our model was trained on an Nvidia GTX 1080Ti GPU 
with a batch size of 48. We used Adam optimizer with a base 
learning rate of 10��. The model converged after 3,000 epochs, 
and the entire training time was around 120 hours. 

5. Results 

We evaluated the VC performance of the proposed method 
(GLE) through a set of objective and subjective evaluations. 
We also compared the proposed method against two baselines: 

VQ-VAE: the original Vector Quantized Variational Auto-
encoder [13]. To ensure a fair comparison, we used the same 
number of atoms in the embedding dictionary (410 atoms) as 
well as the same encoder and decoder network structure. 

PPG-GMM: a state-of-the-art GMM-based non-parallel 
VC framework [27]. The approach extracts a phonetic posteri-
orgram (PPG) for each frame in the source and target speaker 
corpus. Then, it generates pairs of source-target frames  by com-
puting the similarity of their respective PPGs. Finally, the 
paired speech frames are used to train a GMM. We set the num-
ber of mixture components to 41, the same as the number of 
groups in our proposed method. We also applied Maximum 
Likelihood Parameter Generation (MLPG) and Global Vari-
ance (GV) compensation [5] based on static+delta features to 
maximize VC performance.  

5.1. Objective evaluation 

We evaluated the proposed method objectively by computing 
the Mel-Cepstral Distortion (MCD) between the converted 
speech and the time-aligned target speech. Since computing 
MCD requires the ground-truth target speech, we selected 29 
utterances that have the same linguistic content from the testing 
set and used dynamic time warping [42] to align the converted 
speech and the target ground-truth2. Following this, we used the 
WORLD vocoder [43] (D4C edition [44]) to extract a 513-di-
mensional spectrogram and 25-dimensional Mel-cepstrum. We 

2 Note that this is done for evaluation purposes. Our proposed 
technique does not require parallel corpora. 



finally used the Mel-cepstrum to compute the MCD. Results are 
shown in Figure 3 (a). The proposed GLE achieved the lowest 
MCD (7.56) and outperformed both baseline systems (VQ-
VAE: 8.43, 10.3% relative improvement; PPG-GMM: 8.57, 
11.8% relative improvement).  

5.2. Subjective evaluation 

To provide a subjective evaluation of the proposed method, we 
conducted two listening tests on Amazon Mechanical Turk. 
First, we measured acoustic quality with a 5-point Mean Opin-
ion Score (MOS) test. Second, we measured speaker identity 
with a Voice Similarity Score (VSS) test ranging from -7 (def-
initely different speakers) to +7 (definitely the same speaker) 
[45]. Participants were required to reside in the U.S. and pass a 
pre-test that asked them to identify different regional accents in 
the United States. 

Mean opinion Score. Sixteen participants rated 72 utter-
ances from the three VC systems: 20 utterances per system, plus 
12 calibration utterances to detect if participants were cheating 
[46]. We excluded ratings of the calibration utterances from the 
data analysis. Figure 3 (b) shows the MOS results with 95% 
confidence intervals. The proposed method (GLE) was rated to 
have a 3.56 MOS, which is higher than the two baselines with 
statistical significance: VQ-VAE (3.13 MOS; 13.7% relative 
improvement; single-tail t-test, ᵅ� ≪  0.001) and PPG-GMM 
(2.57 MOS; 38.5% relative improvement; single-tail t-test, ᵅ� ≪ 
0.001).  

Voice Similarity Score. Seventeen participants rated 108 
utterance pairs: 32 pairs (16 VC-SRC pairs and 16 VC-TGT 
pairs) for each of the three systems, and 12 calibration utter-
ances. For each utterance pair, participants were required to de-
cide whether the two utterances were from the same speaker 
and then rate their confidence in the decision on a 7-point scale. 
Following [45], VSS was computed by collapsing the above 
two fields into a 14-point scale. Figure 4 shows the results of 
the VSS test. Participants were quite confident that the GLE 
syntheses and the source speech are produced by different 
speakers (VSS: -5.51), and that GLE syntheses and the target 
speech are produced by the same speaker (VSS: 4.44). We 

found no statistical significance between GLE and the two base-
lines (VC-SRC VSS, ᵅ� ≫ 0.05 ; VC-TGT VSS, ᵅ� ≫ 0.05 ). 
Additionally, we noticed that the confidence level for VC-TGT 
pairs is slightly lower than that for VC-SRC for the three sys-
tems. A possible explanation is that the VC syntheses still have 
part of the source speaker’s segmental characteristics, which is 
an important cue of voice identity. As a result, it discourages 
participants from rating VC and the ground-truth target speech 
as being from the same speaker. 

6. Discussion 

Our experiments show that the proposed system can improve 
the MCD and MOS of VCs without sacrificing the voice iden-
tity of the target speaker. This is achieved by adding a Group 
Latent Embedding to a conventional VQ-VAE. We analyzed 
the time complexity of the proposed method (based on a single 
GTX 1080Ti GPU and batch size of 48). During training, GLE 
has slightly higher time complexity (1.45 iterations per sec) 
than the original VQ-VAE (1.60 iterations per sec). At runtime, 
GLE took around 20 sec to synthesize one sec of 22.05 kHz 
speech (~1000 samples per second). We did not find significant 
differences between GLE and VQ-VAE in terms of synthesis 
time.  

Finally, we analyzed the effect of GLE on the distribution 
of atoms in the embedding dictionary. For this purpose, we 
computed two measures per group: 1) the average distance be-
tween the group’s mean and all the atoms within the group (in-
tra-group distance); and 2) the average distance between the 
group’s mean and the means of the remaining groups (inter-
group distance). Figure 5 shows these two distances for all 41 
groups. In all cases, the intra-group distance is significantly 
lower than the inter-group distance (an average of 1.12 vs. 
1.68). This observation matches our goal that GLE can enforce 
similar atoms to be close to each other and different atoms to be 
away from each other. 

7. Conclusions 

We proposed a Group Latent Embedding for a VQ-VAE in non-
parallel VC. Namely, we first divided the embedding dictionary 
into groups and then used the weighted average of the atoms in 
a group as the latent embedding. Both objective and subjective 
experimental results indicate that the proposed method im-
proves the MCD and MOS of VC syntheses (compared to two 
state-of-the-art baselines) while retaining the target speakers’ 
voice identity.  

 
Figure 3: (a) Average MCD of the proposed method 

(GLE) and baselines (VQ-VAE, PPG-GMM). (b)  Acous-
tic quality results with 95% confidence intervals. 

 
Figure 4: Voice identity results of the proposed method 
(GLE) and baselines (VQ-VAE, PPG-GMM). VC-SRC: 
VSS between VC and the source speaker; VC-TGT: VSS 

between VC and the target speaker. 

 
Figure 5: Intra-group distances and inter-group dis-
tances of all 41 groups in Group Latent Embedding. 
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