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Abstract—The oblique effect, observed in both humans and
animals, refers to the phenomenon of differential perceptual
performance in visual recognition tasks that involve horizontal
and vertical, vs. diagonal patterns. Furthermore, differences have
been found in the visual cortical organization for the horizontal
and vertical vs. diagonal representations. However, why such
structural differences leading to functional divergence emerge
in the first place is yet to be explained. In this paper, we
propose a potential explanation for the oblique effect based on the
differences in the sampling of oriented edge inputs along different
angles due to the mechanics of eye movement. Our hypothesis is
that the oblique effect is mainly due to eye movement along the
diagonal directions being less precise than the horizontal and the
vertical, which causes the sampling of the angles more variable
for the diagonal orientations. This will, in turn, lead to structural
changes in the visual cortex, which is known to be sensitive to the
natural stimulus statistics. We used our Two-Dimensional Linear
Homeomorphic Oculomotor Plant Model to simulate saccadic eye
movements and sample visual inputs along the eye movement
trajectories. Then, we used a multilayer perceptron (as a simple
surrogate of the visual cortex) to test how easy it is to learn to
classify the different angles from these samples. We found that
our results are consistent with the oblique effect data reported
in the experimental literature, thus supporting our hypothesis.
We expect our work to shed new light on the role of the motor
system in determining perceptual organization and function.

I. INTRODUCTION

The oblique effect refers to the phenomenon in which
perceptual performance in visual tasks are lower for obliquely
(diagonally) oriented patterns, compared to those that involve
horizontally or vertically oriented patterns [1]. Ernst Mach first
discovered the effect in 1861 while conducting a visual exper-
iment in an attempt to measure human perceptual performance
[2]. Research in neuroscience literature confirms that the effect
is also present in several animal species [3], [4].

Despite multiple reports in the literature confirming the
oblique effect’s existence, its underlying cause remains un-
explained. Most studies agree that the oblique effect happens
in the visual cortex but fail to elaborate on its fundamental
origin [5], [6]. Li et al. [1] suggested that the oblique effect is
due to intracortical mechanisms, whereas Furmanski et al. [7]
found that in the human visual cortex, horizontal and vertical
stimuli cause higher neural responses than obliquely oriented
stimuli. Further investigations indicate that this phenomenon
is due to the selectivity of horizontal and vertical orientations
in the parahippocampal cortex, which is in charge of scene

perception in the brain [8]. We propose that a possible ex-
planation can be found in the oculomotor system. Research
in active vision and perceptual performance discovered that
saccadic eye movements (SEMs) follow different systematic
curvatures for different angles [9]. While horizontally and
vertically SEMs are smooth and aligned along the major axis,
oblique SEMs experiences shakiness and deviation from the
center lines. Given the above, we propose that the oblique
effect is due to less precise ocular motions along the oblique
directions, which makes the image samples taken along the
trajectory more variable than the samples taken along the
vertical or horizontal directions.

In this paper, we ran computational simulations of the
visuomotor system to test our hypothesis. We used our
Two-dimensional Oculomotor Plant Mathematical Model (2D-
OPMM, Fig. 1-2) [10] to simulate eye movements for input
sampling, and model orientation perception based on these
samples using a standard classifier (a multilayer perceptron).
Note that the specific choice of the classifier is not necessary
since we are interested in the learnability of the angles based
on the samples. Our results show that the angles of the
different oriented edges sampled based on 2D-OPMM eye
movement trajectories are harder to classify for the diagonal
orientations than the horizontal or vertical orientations, pro-
viding support to our hypothesis.

The rest of this paper is organized as follows: Section II
provides background on the oblique effect and active vision
research. Section III briefly introduces 2D-OPMM and how
we reproduce the oblique effect. Section IV presents the ex-
periments and results. Sections V and VI discuss our findings.

II. BACKGROUND

A. The Oblique Effect

The history of the oblique effect began when Ernst Mach
discovered a deficiency in perceptual performance during one
of his human subject studies in 1861 [2]. In this study, he asked
human participants to recognize two adjoining parallel lines,
some of them have orientation angles greater than 0 degrees.
The experiment showed that the observers’ errors were lowest
for horizontal and vertical orientations and highest for the 45-
degree orientation.

It was not until 1972 that this phenomenon was given its
current name by Appelle [11]. In his review, he confirmed the
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effect appears not only in humans (both adults and children)
but also in several other animal species where perception and
discrimination performance vary with different orientations of
the stimulus. Appelle also suggested the effect is a function of
the number of cells in the visual cortex that are in charge of
analyzing orientation stimulus. Further investigations uncov-
ered two major categories of oblique effect. The first category,
commonly known as the class-1 oblique effect, involves visual
tasks directly engaging the basic function of the visual system
such as perceptual acuity. The second category (class-2 oblique
effect) involves tasks that reflect learning, cognitive process,
and memory [12].

Attempts to explain the origin of the oblique effect have
pursued two major directions: physiological and empirical.
The empirical direction aims to explain the oblique effect by
finding a “purpose” for it, i.e., is the oblique effect a random
event or the consequence of natural selection to adapt to
the environment [13]. However, empirical explanations failed
to uncover the underlying mechanism of the oblique effect.
Thus, explanations based on those results cannot be used
to reproduce the oblique effect on mechanistic grounds. In
contrast, the physiological explanations focus on the question:
Which step in visual processing contributes most to the oblique
effect? Differences regarding orientations can emerge at three
stages within the visual pathway: (1) Eyes capture the image
of the objects via eye movements and project the images on the
retina. (2) The neural pathway that connects the retina and the
visual cortex transmits the projected images as nerve signals.
(3) The Visual cortex processes and analyzes the received
signals. Hubel and Wiesel [14] investigated neural processing
of orientations and the distribution of preferred orientation
of the visual cortical neurons. They found fewer neurons
were representing the oblique direction than the vertical and
the horizontal. Additionally, work by Coppolal on ferrets
showed on average, 7% more of the animal’s visual cortex
was favorably activated by vertical and horizontal contours
compared to oblique contours [15]. A study by Chapman [16]
in the same year also agreed with the above but did not explain
why this kind of bias came about.

How do these stimulus-specific differences arise in the
visual cortex? Computational models of cortical development
can potentially help answer this question. Visual cortical
development models have been used successfully to model
orientation preferences, tilt aftereffects, binding and segmen-
tation, and contour integration [17]–[19]. These models have
shown the complex structural organization and function of the
visual cortex are mainly due to an input-driven self-organizing
process. Additional studies [17] (chapter 13) have revealed
that the visual cortical development process exhibits stimulus-
specific differences in structure and function when the learning
algorithm is subjected to differential natural stimulus statistics
during development. According to these studies, differences in
stimulus presentation frequency and input feature (curvature)
distribution could result in differentiation in both the structure
(lateral connection profiles) and the function (contour integra-
tion performance). These results led us to hypothesize that

Fig. 1: The extraocular muscles that control the ocular
motor system [20]. LR is the Lateral Rectus. MR is the Medial
Rectus. SR is the Superior Rectus. IR is the Inferior Rectus.
SO is the Superior Oblique. IO is the Inferior Oblique.

Fig. 2: 2D-OPMM: front view. Left downward saccadic
eye movement driven by medial rectus and inferior rectus as
agonists, and lateral rectus and superior rectus as antagonists.
See text for details [21]–[23].

input sampling, if biased by the variability of the trajectory of
eye movement along the major axis, will lead to differential
structural organization and functional performance.

B. The Oculomotor System

In humans, eye motion is controlled by a set of muscles
known as the extraocular muscles. There are six muscles
in total, including the superior rectus, inferior rectus, lateral
rectus, medial rectus, superior oblique and inferior oblique
(see fig. 1). Horizontal movements of the eye are driven by
the medial and lateral rectus, whereas vertical movements are
driven by the superior and inferior rectus. Diagonal movements
are driven by a combination of forces exerted by superior
or inferior rectus and, lateral or medial rectus. Finally, the
superior and inferior obliques are in charge of rolling the
eyeballs.

Eye movements are of four primary types: saccades, pursuit,
vergence, and vestibular-ocular [24]. In this study, we are
interested only in saccadic eye movements (SEMs), which are
rapid movements of the eyes that suddenly shift the fixation
point. It has been shown that SEMs between two different gaze
positions result in curved and tortuous trajectories [25]. Viviani
et al. [9] have shown these saccades are not straight lines and
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Fig. 3: Overview of the experimental procedure. 2D-OPMM is used to generate SEM trajectories. Using these trajectories,
images patches are generated from the images which are later fed into the multilayer perceptron to train and test. The
corresponding human visual process is shown above (vertical arrows simply show the correspondence).

follow different systematic curvatures as shown in Fig. 4b. The
evidence in [9] also indicates while horizontal and vertical
SEMs are smooth and steady, oblique SEMs experiences
shakiness and deviation from the center line. This variability
can be explained based on the muscles that control the type of
movements as mentioned earlier. Each vertical or horizontal
SEM is driven by just a pair of opposing muscles (lateral +
medial rectus for horizontal and superior + inferior rectus). By
contrast, four muscles (lateral, medial, superior, and inferior)
are required to perform oblique SEMs. We hypothesize that the
motor performance variation corresponding to different types
of SEM is the major cause of the perceptual oblique effect,
and this is explained in detail in section III.

III. METHODS

This section introduces the Two-Dimensional Linear Home-
omorphic Oculomotor Plant Mathematical Model for oriented
input sampling and the orientation classification method used
to test our hypothesis.

A. Two-dimensional Oculomotor Plant Mathematical Model

To generate SEM trajectories, we used our Two-dimensional
Oculomotor Plant Mathematical Model (2D-OPMM) [10].
This model was designed specifically to simulates saccadic
eye movements by modelling the muscles that control the
eye movement, the agonist (AG) muscles that pull the eye to
the desired direction and the antagonist (ANT) muscles that
oppose the pull 1. A saccade is described by two components:
horizontal and vertical. The mathematical description of a
saccade is ẋ = Ax+ u and ẏ = Bx+ c, where A and B are
transition matrices, x (represent horizontal component) and y
(represent vertical component) are state vectors, and u and c
are control vectors for the horizontal and vertical components.
A detailed description of the model can be found in [21]–[23].
Fig. 2 shows a left downward saccadic eye movement example
generated by the 2D-OPMM.

1Note that four major muscles control the movement of the eye: lateral
rectus (close to the ear - LR), medial rectus (close to the nose - MR), superior
rectus (top - SR), and inferior rectus (bottom - IR). We did not include the
two oblique muscles for simplicity as they control eye roll.
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(a) Simulated SEM trajectories (b) Real SEM trajectories
Fig. 4: Saccadic eye movement trajectories with a max
degree of 5◦5◦5◦. (a) shows saccadic eye movement trajectories
(0◦, 30◦, 60◦, 90◦, 120◦, and 150◦) generated from the
2D-OPMM. The dashed lines are center lines. (b) shows the
human saccadic eye movement trajectories [9].

(a) 30◦ (b) 90◦

Fig. 5: Generating 30◦30◦30◦ and 90◦90◦90◦ image samples (max
amplitude = 5◦5◦5◦) from the corresponding saccadic eye
movement trajectories. (a) shows 4 image samples from the
trajectory along the 30◦ saccade. (b) shows 4 image samples
from the 90◦ trajectory. The trajectories are plotted in red and
each black square represents an image patch sample. Each
image patch was 225 × 225 pixel in size and the size of the
natural image was 3264× 2448 pixel.

B. Learnability of Visual Orientation Perception

Using image patches sampled along the saccade trajectory
for each orientation, we tested how easy it is to learn the
mapping from these sampled image to the orientation (angle)
using off-the-shelf classification algorithms (note again that the
specific classification algorithm used is not important since
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we are more interested in the learnability of the sampled
inputs). This technique circumvents the complex processing
in the visual cortex and instead focuses on the nature of
the information made available to the visual cortex by the
motor system. We used image samples themselves as the input
after binarization, bypassing the retinal and lateral geniculate
nucleus processing, directly feeding them into a multilayer
perceptron with one hidden layer (8 hidden neurons) trained
with backpropagation [26] as a surrogate for visual cortical
orientation perception.

IV. EXPERIMENTS AND RESULTS

We carried out our experiment in a processing pipeline
where a series of steps were used including generating move-
ment trajectories, producing image patches from the trajecto-
ries, and using the sampled image patches to train and perform
angle classification tasks. See Fig. 3 for an overview of the
experiment.

A. Generating Saccadic Eye Movement Trajectories

The first step in the pipeline involves using the 2D-OPMM
model to generate the trajectories of six different SEM types,
corresponding to the six different orientations: 0◦, 30◦, 60◦,
90◦, 120◦, and 150◦ where the angles are measured counter-
clockwise from the positive x-axis. The SEMs are generated
with a set of amplitudes (in ◦ unit) applied to the extraoc-
ular muscles. The SEMs start from the original resting gaze
(0◦, 0◦) to the other end gaze and from that end gaze going
back to the resting gaze. For example, a SEM with a maximum
amplitude of 5◦ in 30◦ direction was produced by applying an
amplitude of +5◦ to the (lateral + medial) rectus muscles and
an amplitude of +3◦ to the (superior + inferior) rectus muscles
with the onset position at the resting gaze (0◦, 0◦). Next, an
amplitude of −5◦ was applied to the (lateral + medial) rectus
muscles and another amplitude of −3◦ was applied to the
(superior + inferior) rectus muscles from the gaze (5◦, 3◦) to
drive the eye back to the original resting position.

We ran the 2D-OPMM algorithm six times to produce
six different sets of data with different maximum amplitudes
(5◦, 10◦, 15◦, 20◦, 25◦, and 30◦) where each set contain six
different trajectory types (in 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦

direction). All SEMs were produced within 200-millisecond
duration. The amplitudes were chosen between [−30◦, 30◦]
because of the limit of the eye’s angular span and the ac-
curacy of the 2D-OPMM. The greater the amplitudes are, the
more differences between actual eye trajectories and simulated
trajectories, due to non-linearity of the real oculomotor plant
[21]. Fig. 4 shows the resulting trajectories of the saccades.

B. Sampling Images from The Eye Movements Trajectories

The next step in the pipeline is to generate training image
patches from natural (and synthetic) images, using the trajec-
tories in the previous step. The natural image set contained
six different images which describe natural objects with linear
features along with various orientations corresponding to the
six orientations to be tested. To generate an image patch e.g.

30◦ orientation with a maximum amplitude (analogous to the
force applied to the ocular muscle) of 5◦ image patch, we
first align the corresponding SEM trajectory to the centerline
of the 30◦ orientation feature in the given image. Next, we use
a sliding window to trace along the trajectory to collect the
image samples (the image patches). We considered each point
on the 30◦ SEM trajectory as the center of a square window
(225 pixel × 225 pixel) and collected all the pixels within
that window to produce an image sample. Each trajectory
contained 400 points; therefore, 400 image samples were
produced for each oriented feature in the image. The process is
repeated for all other SEM trajectories (i.e. 0◦, 60◦, 90◦, 120◦,
and 150◦) and for all other maximum amplitudes (i.e. 10◦, 15◦,
20◦, 25◦, and 30◦). In total, there were six training datasets
corresponding to the six different maximum amplitudes with
each dataset containing samples for all six orientations (each
orientation with 400 samples). Fig. 5 illustrates the sampling
method we used to generate the training image patches from
the SEM trajectories with a maximum amplitude of 5◦.

Note that since we are primarily interested in the learnability
of the orientation from these image patches, and the sampling
is dense along the eye movement trajectories, we do not need
a separate test set to measure the generalization performance.
Therefore, the whole dataset including 2,400 images (400
images per orientation) was randomly divided into three sets:
training (70%), validation (15%), and testing (15%). Finally,
as a baseline, we repeated the above procedure on a different
image set with six artificial objects (just straight oriented lines)
to compare the outcome of the oblique effect in laboratory
conditions typically used in the psychophysics literature.

C. Learning to map image patch to orientation angle

In the final step, we used the datasets to train the MLP
and observe the accuracy (Matlab Neural Network Toolbox
was employed for this purpose). We ran the algorithm ten
times for each maximum amplitude and considered the average
recognition accuracy of the angles as the performance of
the MLP on those angles for that maximum amplitude (Fig.
6b shows the results for both natural and artificial images).
Results are summarized in Fig. 6a.

The results in Fig. 6 show the performance on oblique
angles (30◦, 60◦, 120◦, and 150◦) was much lower than that
on the horizontal and vertical angles (0◦ and 90◦). Recognition
accuracy for vertical and horizontal angles was very consistent
and ranged from 90% to 100%, while recognition rates for
oblique angles were more variable and ranged from 50% to
80%. Also shown in Fig. 6, there were no significant differ-
ences between natural and artificial inputs. Table I provides a
statistical summary of the results.

V. DISCUSSION

The main contribution of this study is to point to the
oculomotor mechanics and the resulting sampling bias as
the fundamental cause of the oblique effect. Note that one
might argue there is no visual perception during saccades
due to the visual saccadic masking phenomenon [28] which
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(a) Average recognition rate for each angle (b) Recognition rate for each angle with different max amplitudes

Fig. 6: Performance of the multilayer perceptron in recognizing the angles. Recognition accuracy (in percentage %) of
the classifier for each angle. (a) shows the average performances of the classifier for each angle for both natural objects and
artificial objects (straight oriented lines). (b) shows the performance of the classifier in recognizing each angle for each max
amplitude (analogous to the force applied to the ocular muscles during the saccade) for natural vs. artificial input.

Natural Objects Artificial Objects
0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

µ 98.96 68.91 63.70 97.40 69.60 71.21 98.85 60.52 72.08 97.43 65.17 65.67
σ 0.84 9.57 4.17 1.95 5.25 7.91 0.78 6.84 3.62 0.8 8.61 9.04

CI Lower 98.08 58.86 59.33 95.35 64.09 62.91 98.03 53.33 68.28 96.59 56.14 56.19
CI Upper 99.83 78.96 68.07 99.45 75.11 79.51 99.66 67.70 75.88 98.28 74.21 75.15

TABLE I: Statistics collected from the experiment for natural objects. µ: mean, σ: standard deviation, CI Lower + Upper:
95% confidence interval lower and upper bound. The unit is percentage (%) accuracy.

(a) Results from [12]. (b) Results from [27]. (c) Our result.

Fig. 7: Comparison between results from human subject studies and our computational study. (a) Line orientation
identification results from [12] where 4 males and 4 females were asked to identify the orientation patterns and their response
(reaction) time was recorded (the lower the better). (b) Line orientation discrimination results from [27] where 13 subjects with
normal or corrected vision were asked to perform the discrimination task with extensive number of trials. The just noticeable
differences (JND, the lower the better) and the number of trials were recorded. Closed circles: practiced oblique, open circles:
non-practiced oblique, closed triangles: horizontal orientation, and open triangles: vertical orientations. (c) Our experimentation
results for both natural and artificial objects (the higher the better).

says the brain blocks visual processing whenever our eyes
move. However, this theory is controversial, and the thought
that we are blind during saccades is generally known as a
common false belief since recent research shows vision does
not shut down during eye movements [29]. Work of Burr
et al. [30], Castet et al. [31], and Ross et al. [32], also
indicated that saccadic masking happens only on specific types
of stimuli. While saccadic masking does occur in patterns
modulated at low spatial frequencies (low details and blurry
parts), patterns of higher spatial frequency (high details parts)

were not affected, and even enhanced during saccades.
Using the proposed hypothesized model, we were able to

reproduce the oblique effect in a simulated visual orientation
perception task. Our results suggest that imprecise and variable
eye motions along the diagonal directions lead to a more
variable sampling of oriented inputs, which then leads to
reduced performance in orientation perception for diagonal
inputs. Our computational results match results collected from
human subject studies [12] and [27], where line orientation
judgment/identification performances in vertical and horizontal
orientation were significantly higher than those of obliques
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(Fig. 7).
Our results suggest that in general motor output can play

a significant role in determining the efficiency in perceptual
performance. This idea is supported by the finding in [33]
which showed that for tasks requiring high levels of precision,
optimal perceptual performance would be achieved if the noise
present is at the minimum level so that motor output can
be accurately performed [33]. One prediction of our model
is that the oblique effect can be reduced with more motor
practice (cf. [34] and Fig. 7). Also, it is known that more
accurate visual sampling improves recognition accuracy as
shown in [27] where line orientation discrimination improves
with practice with oblique orientation lines. Another prediction
from our experiment is that more abrupt saccades (higher
max amplitude) can lead to more emphasized oblique effect.
We expect that these predictions can be validated through
psychophysical experiments. A promising future direction is
to train visual cortical development models (such as LISSOM
[17]) on the samples generated from our experiment and
observe if structural and functional divergence emerges (e.g.
differential representation of horizontal or vertical orientation
vs. diagonal orientation [15], [16]).

VI. CONCLUSION

In this paper, we put forth a potential explanation for the
origin of the oblique effect. To our knowledge, this is the first
study to provide a mechanistic explanation of this effect and
a computational argument based on sampling bias. The main
idea is that due to the oculomotor mechanics of eye movement,
saccade trajectories deviate more from the centerline along
the diagonal orientation than the horizontal or vertical, thus
leading to more variable sampling in the diagonal orientation.
Due to this, the learnability of the diagonal orientation class
is lower than the horizontal/vertical class, which is confirmed
by training a multilayer perceptron. These results accurately
reproduce the perceptual oblique effect.
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