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Abstract— Continuous glucose monitoring (CGM) is essential
towards effectively managing type 1 diabetes. Developing CGM
time-series models may help identify clinically-meaningful sig-
nal components and rule-out noise providing new insights into
treatment. As a step towards this goal, we propose to use
sparse representation techniques with appropriately designed
dictionaries to express CGM signals as a linear combination of
a small set of knowledge-driven atoms. Results on a dataset
of 25 patients diagnosed with type 1 diabetes indicate that
the proposed framework is a viable solution for modeling
CGM time-series reaching relative reconstruction error of 0.08
and suggest that this approach can be used to interpret the
underlying CGM time-series in relation to clinical assessments.

I. INTRODUCTION
Type 1 diabetes is a chronic condition related to the body’s

ability to produce insulin, an essential hormone to energy
production. Patients suffering from this disease have to be-
come actively involved in its management. Continuous glu-
cose monitoring (CGM) systems can effectively provide real-
time blood-glucose measures and warn individuals regarding
dangerously high or low glucose levels [1]. While such
systems have a great potential towards improving diabetes-
related outcomes, the corresponding time-series might con-
tain multiple sources of noise related to sensor limitations,
needle drifts, and calibration issues. Thus, signal processing
steps are needed to identify the meaningful signal compo-
nents and appropriately interpret the underlying information.
CGM time-series depict a characteristic structure over time,
since the corresponding signal increases abruptly after food
intake and slowly recovers. Taking this into account, we pro-
pose to use sparse representation methods with appropriately-
designed signal-dependent dictionaries.

II. METHODS AND RESULTS
Our data come from the publicly available DirecNet repos-

itory. The dataset contains 25 participants (8-19 years old)
with type 1 diabetes wearing a continuous glucose monitor
for 6-7 days [2]. Glucose values were sampled every 5
minutes resulting in 67,388 measurements.

Sparse decomposition models represent a signal using
a small set of exemplar sub-signals, called “atoms”, that
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Fig. 1. Example of original and reconstructed continuous glucose moni-
toring (CGM) time-series and the selected Bateman atoms.
are selected from a larger pool, called “dictionary”. Dic-
tionaries are designed from a set of parametric functions
in a knowledge-driven way in order to simulate the ex-
pected structure of the CGM signal. For the current study,
we used Bateman functions to represent the CGM signal
fluctuations and straight lines to capture the overall glu-
cose levels. Bateman functions are written as φ1(t) =(
e−b(st−t0) − e−a(st−t0)

)
u(t − t0), a < b, where u(t)

is the step function centered at 0, a ∈ {.2, .4. . . . , 2}
and b ∈ {.4, .8. . . . , 2} are parameters related to the
steepness of recovery and onset of a CGM fluctuation,
s ∈ {.6, .12. . . . , .60} is the time scale, and t0 ∈
{0, 2, 4, . . . , 120} captures the time-shift of an atom within
an analysis frame. We further included time-reversed atoms,
i.e. φ2 = φ1(120 − t), to capture multiple shapes of CGM
fluctuations. The analysis window was empirically set to 120
samples (i.e. 10 hours) to account for enough context and
variability within the original time-series, while the window
shift was set to 40 samples. These resulted in a dictionary
of 30,063 atoms. Signal decomposition was performed using
the orthogonal matching pursuit (OMP) algorithm.

Results indicate a relative reconstruction error of 0.081.
Visual inspection of the original and reconstructed signals
(Fig. 1) suggests that the proposed model achieves reliable
signal representation, while the selected atoms can be mean-
ingfully interpreted according to the corresponding signal
fluctuations. Future work will quantitatively evaluate this
approach in relation to clinically-relevant outcomes.
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