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Abstract

Judging similarities among objects, events, and experiences is one of the most basic cognitive

abilities, allowing us to make predictions and generalizations. The main assumption in similarity

judgment is that people selectively attend to salient features of stimuli and judge their similarities on

the basis of the common and distinct features of the stimuli. However, it is unclear how people select

features from stimuli and how they weigh features. Here, we present a computational method that

helps address these questions. Our procedure combines image-processing techniques with a machine-

learning algorithm and assesses feature weights that can account for both similarity and categoriza-

tion judgment data. Our analysis suggests that a small number of local features are particularly

important to explain our behavioral data.
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1. Introduction

How do people form similarity in their minds, and how does it affect their generalization?

A prevalent assumption in similarity research is that people perceive similarity by selec-

tively weighing matching ⁄ mismatching features of objects (Pothos, 2005; Sloutsky &

Fisher, 2004; Tversky, 1977; see Hahn, Chater, & Richardson, 2003; Markman & Gentner,

1993, for different approaches). But how do people select features?

Among the most successful techniques to study the psychological process of feature

extraction is additive clustering (Shepard & Arabie, 1979). Additive clustering is a

method of identifying latent features from clusters of stimuli that are generated from an

Correspondence should be sent to Na-Yung Yu, Department of Psychology, Mail Stop 4235, Texas A&M

University, College Station, TX 77843. E-mail: nayungyu@gmail.com

Cognitive Science 34 (2010) 1574–1593
Copyright � 2010 Cognitive Science Society, Inc. All rights reserved.
ISSN: 0364-0213 print / 1551-6709 online
DOI: 10.1111/j.1551-6709.2010.01122.x



n · n similarity matrix. This technique was developed to enhance psychological feasibil-

ity of the geometric model of similarity (Shepard, 1962a,b). Recently, this method has

been improved drastically with machine-learning algorithms, such as Expectation Maxi-

mization (Tenenbaum, 1996), regularization functions (Lee, 1998, 1999), Bayesian Infor-

mation Criterion (Lee, 2001), geometric complexity criterion (Navarro & Lee, 2004), and

nonparametric Bayesian statistics (Austerweil & Griffiths, 2009; Navarro & Griffiths,

2008).

Despite these improvements, the methods have a number of drawbacks. First, the addi-

tive clustering technique relies on behavioral data to measure pairwise comparisons of

similarity (which requires n(n)1) ⁄ 2 pairs of stimuli). Because pairwise comparisons

require a large number of trials, it is cumbersome to integrate the method with inductive

generalization tasks (see Lee & Navarro, 2002; Zeigenfuse & Lee, 2010 for notable

exceptions). Second, except for the recent work by Zeigenfuse and Lee (2008, 2010),

many of the studies are based on simple stimuli (e.g., geometric figures, cartoon faces,

Arabic numerals, or capital letters). For this reason, it is unclear whether conclusions

drawn from these studies fare well when stimuli are more complex and naturalistic (see

Carandini et al., 2005; Yuille & Kersten, 2006, for a similar argument regarding biologi-

cal models of visual perception).

Because of these technical hurdles, several theoretical questions remain unanswered. Is

similarity represented by a small number of discrete features (Lee & Navarro, 2002;

Shepard & Arabie, 1979; Tversky, 1977), rather than by geometric multidimensional space,

particularly when stimuli are natural images and their features vary continuously? What

level of feature description, local brightness, spatial frequency, edges, components, or

overall shape is important for similarity judgments (Ullman, Vidal-Naquet, & Sali, 2002;

Yamauchi et al., 2006)? Because the additive clustering method leaves an observer to inter-

pret the presence of latent features from extracted clusters, the technique makes it difficult

to address these questions.

In this article, we present a feature selection method pertaining to a triad-based
similarity judgment task (e.g., Gelman & Markman, 1986; Sloutsky & Fisher, 2004;

Yamauchi & Yu, 2008; Yu, Yamauchi, & Schumacher, 2008) and investigate the follow-

ing questions: (a) Do a small number of features explain similarities obtained from triad-

based similarity judgments? If so, what mechanism mediates this phenomenon? and (b)

Which features are selected for similarity judgments involving realistic visual images? In

brief, our computational analysis suggests that people are likely to make generalizations

by focusing on a few task-relevant features (Lee, 2001; Shepard & Arabie, 1979;

Sloutsky, 2003; Tversky, 1977; Ullman et al., 2002) while paying little attention to over-

all face contours or a constellation of widely distributed local features. Our study further

suggests that discrete feature-based similarity is likely to arise from an attention modu-

lation process.

In what follows, we introduce two behavioral tasks—a similarity judgment task and a cat-

egorization task—and their results, followed by a description of our computational method

and the theoretical implications of our analyses.
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2. Behavioral study

We collected two sets of behavioral data from triad-based generalization tasks, a similar-

ity task and a categorization task. The data from the similarity task were used exclusively

for feature selection, and the data from the categorization task were used exclusively to test

the generalization capacity of our feature selection method. A total of 130 undergraduate

students at Texas A&M University participated in this study for course credit (n = 72 in the

similarity task and n = 58 in the categorization task).

2.1. Similarity task

We collected images of 10 original animal faces, scaled them to a size of 307 · 307

pixels, and converted the images to grayscale with pixel values between 0 and 256. From

these images, we created five pairs of animal faces. We paired faces whose appearance was

reasonably similar (Fig. 1).

For each animal pair we generated 18 morphed pictures, which changed gradually

from the original animal face to the other (Morph Man 4.0). For example, the source

image (e.g., the original bear picture in Fig. 1) was tagged with an average of 111.4

markers (SD = 14.22) that defined the positions of specific facial features, such as the

mouth, nose, and ears. These markers were adjusted for the positions of the correspond-

ing features in the target image (e.g., the original fox picture in Fig. 1). Differences

between the positions of corresponding markers in the source and target images were

computed by ‘‘feature interpolation’’ morphing (Liu, 2000, p.2). Thus, the morphed pic-

tures of the two original animal faces had different degrees of intermediate positions. We

obtained 18 different morphed pictures per pair and designated the source image as the

1st picture and the target image as the 20th picture. Thus, the 18 morphed pictures of

each pair (e.g., bear-fox) had 18 different degrees of similarity with the original source

(i.e., the bear) (Fig. 1).

Using these morphed images, we examined how people judged the similarity between

original and morphed pictures. Participants viewed two original pictures of each pair at the

top of a computer monitor and one morphed picture of the pair at the bottom (Fig. 2A).

Their task was to decide which original picture, left or right, was more similar to the mor-

phed picture (i.e., a triad task). The dependent measure was the proportion of participants

selecting one designated original picture (e.g., bear; the source picture) over the other (e.g.,

fox; the target picture). The stimuli remained on the computer screen until participants made

a response by pressing one of two designated keys.

2.2. Categorization task

The materials and procedure used in the categorization task were identical to those

described in the similarity task except for two points. First, the source and target pictures

shown in the similarity task were replaced with the category names of the source and target

pictures. For example, in the trials for bear-fox pictures, the source picture (bear) and the
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target picture (fox) were replaced with verbal labels ‘‘Bear’’ and ‘‘Fox’’ (Fig. 2B). Second,

participants judged whether each morphed picture belonged to one of the two categories

(‘‘Is this Fox or Bear’’). Except for these points, the categorization task was identical to the

similarity task.

2.3. Results

Fig. 3 shows a summary of the results obtained from the two tasks. As the figures reveal,

there was reasonable variability of responses in the animal pairs. These behavioral data were

used for our computational analysis.

Fig. 1. Sample stimuli used in the behavioral experiment. The images shown in the left box are original animal

pictures; those shown in the right box are samples of morphed images.
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3. Computational analysis

3.1. Candidate features

To obtain a computational analog of the behavioral data, we first identified 37 potential

facial features that our participants might have used. Our assumption is that the set of fea-

tures that are used by subjects can be identified by fitting our model to the behavioral data.

Our online-appendix (http://people.tamu.edu/~takashi-yamauchi/cog_sci/appendix.doc)

describes the procedure of obtaining image features in detail. Below, we briefly summarize

the 37 candidate features we preprocessed.

The candidate features included texture, brightness, size, and shape of the animal faces,

which were extracted from local face areas and the entire face areas (Table 1 and Fig. 4).

To obtain textural information, we computed Gabor-based textures (Manjunath & Ma,

1996) and the rate of co-occurring features (Haralick, Shanmugan, & Dinstein, 1973;

Howarth & Ruger, 2004), which have been commonly used in content-based image retrie-

val. Brightness can also be an important feature in discriminating images. To measure

brightness, we averaged the gray values of the image. To capture the relative size of the

faces, we computed the ratio of width to height of individual face pictures. Finally, we com-

puted features related to the contour of the faces by measuring the distance from the center

of each face to the contour. To extract contour features, we identified the outermost pixel

relative to the center of mass of the foreground in angular increments of 1 degree and

stored the distance between center mass and the radially spaced outermost pixels in a 360-

dimensional feature vector. Finally, we employed principal component analysis (PCA) to

identify the directions of maximum variance in the 360-dimensional contour vector, and we

kept the top three principal components as contour features.1 Fig. 5 shows the resulting

(A) (B) 

Fig. 2. A sample trial of the similarity task (A) and of the categorization task (B).
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average contour (solid) superimposed onto the contour +3 (dotted) and )3 standard devia-

tions (dashed) away from the average along each of the three principal components.

Because people can extract features from the entire face as well as from a part of the face

(such as nose, mouth, and eyes), texture, brightness, and size features were extracted from

the whole image as well as from nine subregions, which roughly corresponded to different

parts of an animal’s face (Fig. 4; Edelman & Intrator, 2000; Heisele, Serre, Pontil, Vetter, &

Poggio, 2002; Schyns, Bonnar, & Gosselin, 2002; Ullman et al., 2002). We defined the
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Fig. 3. A summary of the main results from the similarity task (A) and the categorization task (B). The x-axis

represents the animal pictures. 0 represents the source picture; 19 represents the target picture; indices from 1 to

18 represent 18 morphed pictures of the source and target pictures. The y-axis represents proportions of partici-

pants selecting one original picture (source) as more similar to the morphed picture (input).
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features extracted from the entire image as ‘‘holistic features’’ and the features extracted

from one of the subregions as ‘‘local features,’’ and we examined the relative contributions

of holistic and local features as well (Table 1).

We preselected these features because variants of these features have been used success-

fully in biologically inspired object-recognition models (e.g., Serre, Wolf, Bileschi,

Riesenhuber, & Poggio, 2007) and standard face recognition methods (e.g., Brunelli &

Poggio, 1993; Kanade, 1973). In addition, these features are likely to be assessed during

similarity judgments. For example, the human visual system processes pixel-level brightness

at the retina and lateral geniculate nucleus, spatial frequency and edges (V1), implied lines

(V2), and geometric components and their combinations (anterior and posterior inferotem-

poral cortex—TE and TEO) (Kreiman, 2007; Pessoa, Tootell, & Ungerleider, 2008;

Table 1

Thirty-seven candidate features

Characteristic Description Feature ID Description

Holistic features Brightness 1 Averaged grayscale value computed from the whole image

Size 2 Ratio of width and height of the whole image

3 The number of pixels above a threshold counted

from the whole image

Texture 4 Gabor-based texture feature extracted from the whole image

5–7 Co-occurrence based texture feature extracted from

the whole image

Contour 8–10 The distance between the geometric center and the

border of the whole face

Local features Brightness 11–19 Averaged grayscale value computed from each subregion

Size 20–28 The number of pixels above a threshold counted from each subregion

Texture 29–37 Gabor-based texture feature extracted from each subregion

Note. The Feature ID was used to represent individual features in Fig. 7. Characteristic denotes whether the

feature was extracted from the whole image (i.e., holistic features) or a specific part of the image (i.e., local

features). The Gabor-based texture feature was computed using Gabor filters (Manjunath & Ma, 1996). Co-

occurrence-based texture features were computed using gray-level co-occurrence matrices (GLCM) (Howarth &

Ruger, 2004).

1

5

32

8

64

7 9

Fig. 4. Nine subregions used for feature extraction, which roughly correspond to different parts of animal faces

such as ears, eyes, and cheeks.
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Quiroga, Reddy, Kreiman, Koch, & Fried, 2005; Riesenhuber & Poggio, 1999; Tanaka,

1993; Ullman et al., 2002). Correspondingly, 2D Gabor filters are known to simulate the

activity of simple cells in the primary visual cortex of cats (Jones & Palmer, 1987), geomet-

ric face features such as the width and height of a face are among commonly processed

facial features for automated face recognition systems, and direct gray level comparisons of

rectangular fragments are shown to be effective for object classification (Ullman, 2001;

Ullman et al., 2002).

3.2. Selecting salient features

Because the behavioral task was to judge whether the input picture was similar to the

source picture or to the target picture, we adopted Nosofsky’s Generalized Context Model

(i.e., GCM: Nosofsky, 1984, 1986; Nosofsky & Zaki, 1998) because of its success in

accounting for performance for perceptual categorization, stimulus identification, and recog-

nition tasks. To model the behavioral data, we first used the weighted Minkowski metric

and measured the distance between an input image and a source image d(Xi, S), and the dis-

tance between an input image and a target image d(Xi, T).

dðXi;SÞ ¼ c½
X37

j¼1
wjjxij � sjjr�1=r ð1AÞ

dðXi;TÞ ¼ c½
X37

j¼1
wjjxij � tjjr�1=r ð1BÞ

where Xi denotes the 37-dimensional feature vector of the i-th input image

(Xi ¼ xi1 x
i
2 ::: x

i
37

� �
), S denotes the feature vector from the source image

(S ¼ s1 s2 ::: s37
� �

), and T is the feature vector from the target image (T ¼ t1 t2 ::: t37
� �

).

The index j stands for feature ID (Table 1), whereas the index i indicates an image in a

given animal pair (i = 1 is the source, i = 20 is the target image, and i = 2–19 are morphed

principal component #1 principal component #2 principal component #3

Fig. 5. The top three directions of variance on the contour of an animal’s face; the top principal component cap-

tures the relative roundness of the face, whereas the second and third principal components capture the horizon-

tal and vertical protrusion of ears, respectively.
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images). The parameter c is a scale parameter and represents the overall discriminability of

stimuli (0 £ c < ¥). Because our focus was to find appropriate weight distributions for the

37 candidate features, we fixed the scale parameter (either c = 1 or 2) and measured the dis-

tance using the city-block (r = 1) or Euclidean metric (r = 2) in our actual analyses (the

implications of fixing these parameters are discussed later in this section). Thus, to deter-

mine the relative salience of the 37 features, we treated the weight vector W
(W ¼ ½w1 w2 . . .w37�, 0 £ wj £ 1,

P
wj = 1) as the sole free parameter and adjusted the vec-

tor such that our computational measure of similarity between face images paralleled the

similarity judgment data obtained in the behavioral study.

We adopted an exponential decay function to link stimulus similarity to psychological

distance (Nosofsky, 1986; Shepard, 1986, 1987).

gXiS ¼ e�dðX
i;SÞ ð2AÞ

gXiT ¼ e�dðX
i;TÞ ð2BÞ

Our behavioral data represented the probability that one input image (Xi) was judged to

be more similar to the source (S) than to the target (T) (Fig. 2A). To simulate participants’

probability scores, we transformed the distances in Eqs. 2A and 2B into an estimated proba-

bility measure Pr(S|Xi) by applying Luce’s choice model:

Pr ðSjXiÞ ¼ bðgXiSÞp

bðgXiSÞp þ ð1� bÞðgXiTÞp
ð3Þ

where parameter p denotes the power function of the measured distances (Luce, 1963,

p. 113; Maddox & Ashby, 1993, p. 54; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier,

1994, p. 359). Parameter b captures subjects’ bias in selecting a source or target picture,

which we defined as 0.5 (b = [1)b] = 0.5) with the assumption that there is no a priori bias

in favoring either a source or target picture. Our goal was then to identify the pattern of fea-

ture weights that minimized the sum of squared errors (SSE) between the estimated similar-

ity (i.e., Pr(S|Xi) in Eq. 3) and behavioral data (i.e., Pr(S|Xi) obtained from the similarity

judgment task:

SSE ¼
X20

i¼1
½Pr ðSjXiÞ � Pr ðSjXiÞ�2 ð4Þ

To identify such a weight vector we employed simulated annealing (SA) (Kirkpatrick,

Gelatt, & Vecchi, 1983). Our SA algorithm started by assigning 37 random numbers to the

37-dimensional weight vector (W in Eq. 1), the similarity between the input and target vec-

tors was estimated, and the SSE was calculated for each animal pair. From the 37 features,

one feature was randomly selected and its weight was randomly increased or decreased by a

fixed amount u (i.e., update parameter), resulting in a new 37-dimensional weight vector.

Using the new vector, a new SSE was computed as defined in Eq. 4. If the new SSE was lar-

ger than the previously estimated SSE, the updated weight vector was accepted (i.e., an

uphill move) with the following probability,
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Pr ¼ e�D=T ð5Þ

where D is the difference between the new and previous SSEs, and T denotes the ‘‘tempera-

ture’’ parameter. Following Monticelli, Romero, and Asada (2008), the temperature param-

eter was initially set so that the probability of uphill moves was approximately .85, and the

temperature parameter was reduced gradually in order for the probability of an uphill move

to decline as the search process continued. The SA algorithm was implemented as outlined

by Duda, Hart, and Stork (2001, p. 353).

3.3. Search protocols

In each animal pair, SA was run for 10,000 iterations. This process, which we called a

‘‘run,’’ was repeated 368 times, each with a different setting {46 different update parameter

values (u = [0.001, 0.01] in increments of 0.002), two scale parameter values (c = 1 or 2;

Eq. 1), two different power parameter values (p = 1 or 2; Eq. 3), and two different metrics

(r = 1—city-block, or r = 2—Euclidean metric; Eq. 1) = 368 runs for each animal pair}.

The city-block metric generally corresponds to feature dimensions that are psychologically

separated, while the Euclidean metric corresponds to features with psychologically inte-

grated dimensions (Attneave, 1950; Garner, 1970; Goldstone & Son, 2005). For determinis-

tic responses, a large power parameter p (>1) is usually favored (Nosofsky et al., 1994). The

scale parameter c represents the discriminability of stimuli. For stimuli that are easily dis-

criminable, a large c is given. Because the goal of this study is to identify feature weights

for similarity judgments, we fixed these parameters as constant and analyzed their effects by

repeating the SA algorithm in the 368 different settings.

3.4. Predictions

The presence of a discrete feature-based similarity representation (i.e., Lee & Navarro,

2002; Shepard & Arabie, 1979) can be revealed by selected weights concentrated on a small

number of features (two or three features), rather than widely distributed weights. If holistic

features are preferred over local features, the features representing contours, overall size,

and overall spatial frequency features should have larger weights (feature IDs 1–10). If local

features are favored, the features obtained from local face areas (IDs 11–37) should collect

larger weights.

4. Results

4.1. Results

The upper panel of Table 2 shows a summary of SSE scores obtained from the similarity

task. Overall, the city-block and Euclidean metrics produced analogous results. The scale
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parameter c and power parameter p influenced SSE scores considerably. However, as

Fig. 6A shows, analogous sets of features were selected under different settings.

Figs. 7 and 8 illustrate the selected salient features. Note that these features were selected

by fitting the model to the behavioral data obtained from the similarity task only. The two

most salient dimensions for the bear-box pairs were the brightness of their right cheeks and

the Gabor texture of their heads. For the cow-pig pairs, the two most salient dimensions

were the relative size of the center (around the eyes and nose ridges) of the pairs and the

Gabor texture of the heads, respectively. For the hippo-sheep pairs, the brightness of their

heads, the center of the faces, as well as the Gabor texture of the right ears were important.

For the koala-rat pairs, the two most salient dimensions were the size of the right ears and

the texture of their right cheeks. For the lion-horse pairs, the size of the right ears and the

size of their nose ridges were salient.

Our analysis suggests that, given our stimulus set, a small number of local features were

more salient than holistic features or constellations of widely distributed features. The

dominant features were almost always local features and were confined narrowly to two or

three features (Fig. 7). For example, nearly 94% of the weights were given to two local fea-

tures in both the bear-fox pairs and the koala-rat pairs. A similar trend was present in the

hippo-sheep pairs as well as in the cow-pig pairs. In the lion-horse pairs, our algorithm

selected some holistic features, but the weights of these holistic features were not dominant.

Note that other nonselected features were also highly diagnostic in dividing the animal pairs.

For example, some holistic features were highly correlated with the morphing steps (Fig. 7),

but these features were not selected. These results suggest that our participants were most

Table 2

Average sum of squared errorsa

Metrics c p Bear-fox Cow-pig Hippo-sheep Koala-rat Lion-horse

Similarity data

City block 1 1 0.571 0.309 0.723 0.808 0.249

City block 1 2 0.129 0.052 0.199 0.181 0.012

City block 2 1 0.128 0.053 0.199 0.181 0.013

City block 2 2 0.007 0.012 0.011 0.014 0.001

Euclidean 1 1 0.617 0.356 0.722 0.813 0.275

Euclidean 1 2 0.149 0.067 0.218 0.193 0.017

Euclidean 2 1 0.149 0.067 0.217 0.194 0.017

Euclidean 2 2 0.008 0.012 0.013 0.017 0.001

Categorization data

City block 1 1 0.386 0.302 0.509 0.511 0.236

City block 1 2 0.087 0.147 0.093 0.047 0.149

City block 2 1 0.087 0.146 0.092 0.047 0.149

City block 2 2 0.107 0.158 0.033 0.070 0.174

Euclidean 1 1 0.410 0.339 0.503 0.507 0.259

Euclidean 1 2 0.091 0.152 0.114 0.045 0.147

Euclidean 2 1 0.091 0.152 0.114 0.045 0.146

Euclidean 2 2 0.102 0.155 0.031 0.055 0.175

aCalculated over 46 runs.
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likely to make similarity judgments based on narrowly defined local characteristics rather

than overall characteristics of morphed images. The next subsection discusses the psycho-

logical implications of these results.

4.2. Psychological implications

4.2.1. Generalization capacity: Similarity and categorization
Previous research has shown that there is a close relationship between similarity and

categorization judgments (Nosofsky, 1984, 1986, 1989; Yamauchi & Markman, 1998;

Yamauchi & Markman, 2000; Yamauchi, Love, & Markman, 2002). In fact, Nosofsky’s

GCM was originally developed to account for perceptual categorization performance. Thus,

(A)

(B)

(C)

Fig. 6. (A) These heat maps show the best weight distributions identified for each of the 368 runs. The x-axis

represents 368 runs made in eight different parameter settings (city block ⁄ Euclidean, c = 1 ⁄ c = 2, p = 1 ⁄ p = 2).

The y-axis represents 37 feature dimensions. As the illuminations of the maps illustrate, a small number of local

features were selected for each animal pair under the 368 different parameter conditions. (B) However, when the

normalization function (wi = 1 ⁄
P

wi) was removed, widely distributed features were selected. (C) When the

same image features were fitted to the normalized morphing values (1–20 morphing steps were converted to a

0–1 scale) rather than actual behavioral data, our algorithm selected some holistic features in bear-fox, hippo-

sheep, and koala-rat pairs. This suggests that the feature selection shown in (A) was not just ‘‘artifacts’’ of our

analysis procedure.
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Fig. 7. Graphical representation of weight vectors. The x-axis represents the indices of the individual features

listed in Table 1; features 1 through 10 are holistic, whereas features 11 through 37 are local. The black bars

indicate the selected features with the y-axis representing their normalized weights. To examine the diagnosticity

of ‘‘nonselected features,’’ we calculated the absolute values of the correlation coefficients between individual

feature values and the indices of morphing steps (1–20) (shown with circle markers). For example, to create

bear-fox stimuli, we generated 18 morphed pictures, which changed gradually from the original bear face (index

1) to the original fox face (index 20). Thus, the morphing steps are highly indicative of two classes of animal

faces (e.g., bear and fox), and the diagnosticity of each image feature can be estimated by the absolute correla-

tion between the morphing values (1–20) and the feature values extracted from 20 stimuli of each animal pair.

Note that many of the 37 features (including holistic features) are highly correlated with the morphing values,

suggesting that these features are diagnostic in separating animal pairs. Square markers show the rank order of

the correlation scores of the 37 features in increasing order (from low to high correlation).
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Fig. 8. Locations of salient features selected for each animal pair (see also Fig. 4).
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if our feature selection method is valid, the feature weights that we identified from the

similarity data should be able to explain categorization data reasonably well.

The lower panel of Table 2 summarizes the results of this analysis. Here, all weights were

obtained from the similarity data, and SSEs between the estimated categorization perfor-

mance (Eq. 3) and the actual categorization performance was calculated directly for each

animal pair without adjusting any parameters. Overall, our selected feature weights were

able to account for categorization data and similarity data equally well. Given the cow-pig

and lion-horse pairs, the average SSEs from the categorization data were significantly larger

than the average SSEs from the similarity data; cow-pig pairs, t(734) = 10.14, p < .001;

lion-horse pairs, t(734) = 19.14, p < .001. However, for all the other animal pairs, the aver-

age SSEs from the categorization data were significantly smaller than the average SSEs

from the similarity data; bear-fox pairs, t(734) = 3.68, p < .001; hippo-sheep pairs,

t(734) = 6.03, p < .001; koala-rat pairs, t(734) = 7.10, p < .001. This result suggests that

the salient features identified by our method were general enough to explain both similarity

and categorization data.

4.2.2. Local features vs. holistic features
People tend to perceive human faces in a holistic manner (Bukach, Gauthier, & Tarr,

2006; McKone, Kanwisher, & Duchaine, 2007), while local image fragments are important

for object classification (Edelman & Intrator, 2000; Ullman, 2006). To investigate the rela-

tive significance of local and holistic features, we compared the performance of the local

feature weights (ID 11–37 in Table 1) to that of holistic feature weights (ID 1–10 in

Table 1). We first divided the 37 feature into two subsets—holistic features (ID 1–10) and

local features (ID 11–37), and then applied the SA algorithm in the same manner described

above and compared how well the two sets of feature weights could be generalized to

explain the categorization data. Again, the feature weights were identified first from the sim-

ilarity data, and they were applied directly to the categorization data without modifying any

parameters.

The local feature weights explained the categorization data better than the global feature

weights in bear-fox [t(734) = 31.76, p < .001], cow-pig [t(734) = 58.10, p < .001], hippo-

sheep [t(734) = 16.81, p < .001], and koala-rat [t(734) = 8.16, p < .001] pairs. The differ-

ence between local and holistic features was not significant in the lion-horse pairs;

[t(734) = 0.73, p < .1] (Table 3). These results indicate that local features selected by our

method were, relative to our holistic features, general enough to explain both similarity and

categorization data.

4.2.3. Attention modulation and concentrated feature weights
Sloutsky (2003) argues that the basic mechanism of inductive generalization is attention

allocation (see also Goldstone, 1998; Schyns, Goldstone, & Thibaut, 1997). One interesting

aspect of attention is modulation: When a particular feature is attended, attention enhances

the awareness of that feature, while reducing the awareness of other features (Boyton, 2005;

Treue, 2003). In our model, the attention modulation process is implemented by the normal-

ization factor (wi = 1 ⁄
P

wi) (Heeger, 1993; Heeger, Simoncelli, & Movshon, 1996). This
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process ensures that an enhanced weight of a particular feature necessarily reduces the

weights of the other features. If the attention modulation process was responsible for

selective weight allocations, removing the normalization factor should simultaneously

remove selective weight allocations. As Fig. 6B reveals, without the normalization factor

(wi = 1 ⁄
P

wi), selected feature weights were distributed widely, implying that the attention

modulation mechanism is likely to play a key role in the generation of discrete feature-based

similarity representation.

5. Discussion

Inductive judgments involving visual images go through hierarchical processes. In the

ventral visual pathway, neurons show progressively longer latencies and larger and more

complex receptive fields (Kreiman, 2007; Pessoa et al., 2008; Riesenhuber & Poggio,

1999). In this process, people use information that is most diagnostic for the task at hand

(Schyns et al., 2002). When they have limited prior knowledge, their best strategy is to fol-

low the principle of least commitment (Goldstone & Son, 2005; Kersten & Yuille, 2003;

Marr, 1982) by holding judgments until enough evidence is accumulated for decision mak-

ing (Ratcliff, Van Zandt, & McKoon, 1999). Attention enhances the awareness of the diag-

nostic features, and increased attention decreases the awareness of other nondiagnostic

features. It is likely that the feature-based similarity representation emerges as a natural out-

Table 3

Average sum of squared errors obtained from the categorization dataa

Metrics c p Bear-fox Cow-pig Hippo-sheep Koala-rat Lion-horse

27 local features

City block 1 1 0.377 0.298 0.498 0.502 0.235

City block 1 2 0.085 0.147 0.091 0.046 0.150

City block 2 1 0.085 0.147 0.091 0.045 0.150

City block 2 2 0.112 0.156 0.034 0.073 0.175

Euclidean 1 1 0.402 0.335 0.494 0.497 0.257

Euclidean 1 2 0.089 0.151 0.112 0.043 0.147

Euclidean 2 1 0.089 0.151 0.112 0.043 0.148

Euclidean 2 2 0.104 0.153 0.032 0.058 0.175

10 holistic features

City block 1 1 2.242 1.819 1.333 0.689 0.291

City block 1 2 1.226 1.336 0.475 0.202 0.130

City block 2 1 1.226 1.336 0.475 0.201 0.130

City block 2 2 0.372 0.761 0.087 0.019 0.174

Euclidean 1 1 2.258 1.825 1.334 0.690 0.293

Euclidean 1 2 1.257 1.358 0.476 0.270 0.129

Euclidean 2 1 1.258 1.359 0.476 0.270 0.129

Euclidean 2 2 0.406 0.814 0.096 0.026 0.172

aCalculated over 46 runs.
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come of the attention process, and our SA method offers a viable tool to capture the salient

features used for similarity judgment.

Our SA method can be viewed as a complement to the additive clustering methods devel-

oped by Lee and colleagues. One advantage of our method is simplicity. To implement the

additive clustering methods, at least n · (n)1) ⁄ 2 trials are needed. Thus, the additive clus-

tering methods are cumbersome when the number of the stimuli in an experiment exceeds

50 (in this case at least 2,526 trials are needed). Implementing model-specific constraints

such as normalization of weight parameters (wi = 1 ⁄
P

wi) is relatively straightforward in

our method. However, implementing model-specific constraints is not always straightfor-

ward for the search algorithms that employ elaborate procedures such as Bayesian analyses

based on Markov Chain Monte Carlo methods (Lee, 2008).

The simplicity of our method is also liability. Our SA method is a feature-selection

method, not a feature-extraction method, and before applying our method, candidate fea-

tures should be preselected. This means that the result from our procedure depends on how

candidate features are determined. Given these pros and cons, the two types of feature iden-

tification methods can be used together along with other behavioral methods such as eye

tracking.

Note

1. These three principal components explain 92% of the total variance in the contour

features.
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