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This paper describes a new semi-supervised learning algorithm for intra-class clustering (ICC). ICC parti-
tions each class into sub-classes in order to minimize overlap across clusters from different classes. This is
achieved by allowing partitioning of a certain class to be assisted by data points from other classes in a
context-dependent fashion. The result is that overlap across sub-classes (both within- and across class) is
greatly reduced. ICC is particularly useful when combined with algorithms that assume that each class
has a unimodal Gaussian distribution (e.g., Linear Discriminant Analysis (LDA), quadratic classifiers),
an assumption that is not always true in many real-world situations. ICC can help partition non-Gaussian,
multimodal distributions to overcome such a problem. In this sense, ICC works as a preprocessor.
Experiments with our ICC algorithm on synthetic data sets and real-world data sets indicated that it
can significantly improve the performance of LDA and quadratic classifiers. We expect our approach to
be applicable to a broader class of pattern recognition problems where class-conditional densities are
significantly non-Gaussian or multi-modal.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Many existing clustering methods based on unsupervised
learning can partition data into clusters using the distribution of
data points and the relative distance between the data points. A
small amount of class information can help refine such clustering
results by providing contextual information in a semi-supervised
manner. In such a semi-supervised clustering situation, not only
the distance among data points within the object class (e.g., targets
to be recognized), but also the position of the context class (e.g.,
backgrounds or confounders) relative to the object class becomes
important. As an example, the context class can serve as a bound-
ary within the object class, and therefore influence how to best
subdivide the object class.

An example of how a context class can affect the partitioning is
shown in Fig. 1. Data points for the object class marked ‘‘+’’ were
generated from a single Gaussian distribution (see Fig. 1 caption
for details). Without the context data the distribution is best
grouped into a single cluster as shown by the ellipse in Fig. 1(a).
However, in the presence of intervening context data (marked
‘‘�’’), a different strategy is needed (Fig. 1(b)). Namely, when the
context class is present, the object class can be split into two
clusters: one to the lower left and the other to the upper right.
The intra-class clustering algorithm in this paper is designed
specifically to account for the presence of such intervening context
classes.

Unlike other clustering algorithms that partition data into clus-
ters exclusively based on intrinsic information (Jain, 2010), our
context-sensitive clustering method operates in a semi-supervised
mode by utilizing external information from context classes in
addition to intrinsic information from the object class. As defined
by Chapelle et al. (2006), ‘‘semi-supervised’’ clustering algorithms
make use of external information, or ‘‘side-information’’. This
semi-supervised learning method of context-sensitive clustering
can lead to improvements in classification performance, as we will
see shortly.

As an example, Fisher’s linear discriminant analysis (LDA)
(Duda et al., 2001) can find an optimal projection to discriminate
data from different classes under the assumption that each class
is a unimodal Gaussian with the same covariance matrix. However,
LDA can significantly underperform in two situations (Zhao, 2000):
(1) when the class discriminant information is in the variance of
the data set, not just in the mean (Wang et al., 2004) or (2) when
the class data is markedly non-Gaussian. For the first problem,
one approach is to use the combined distribution of all other clas-
ses to split the object class in a context-sensitive manner. For the
second problem we can require that the intra-class clustering
method generates unimodal sub-clusters that are Gaussian.

Expectation Maximization (EM) (Dempster et al., 1977) based
algorithms can divide non-Gaussian data into unimodal clusters,
but EM is not context-sensitive, so the resulting clusters may have
overlapping distributions. This problem is related to the first
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Fig. 1. Illustration of how object class and context class can interact. (a) The data points of the object class (marked ‘‘þ’’) in the plot can be best modeled by a single Gaussian

(mean at ð8;10Þ, with covariance 10 30
30 30

� �
) when no context data are present. (b) Data in the object class (marked ‘‘þ’’) are those in (a), but whenthe context data are present

(marked ‘‘�’’) with mean at ð8;10Þ, and covariance 6 �3
�3 2

� �
, the object class splits into two sub-clusters.
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problem of LDA we discussed earlier. For example, the illustration
in Fig. 2(a) shows data points from two Gaussian distributions
(see figure caption for details). When EM is applied blindly, three
of the resulting clusters significantly overlap. A better approach
would be one that minimizes overlap among the clusters (see
Fig. 2(b)).

To address these issues, this paper proposes an intra-class clus-
tering algorithm that can generate non-overlapping unimodal clus-
ters (e.g., as those in Fig. 2(b)). To achieve this, we propose a new
semi-supervised learning algorithm called context-sensitive intra-
class clustering algorithm (ICC). ICC can be used in unsupervised
mode to cluster data as shown in Fig. 2(b) when there is no context
class. Or, in semi-supervised mode, it can identify unimodal
sub-clusters that reduce overlap within and across classes. The
separation of data into single unimodal clusters makes the result-
ing distribution suitable for LDA as well as for low-cost Gaussian
classifiers (e.g., the quadratic classifier). Our context-sensitive clus-
tering algorithm is novel compared to other clustering algorithms
in that it can not only cluster the object data based on the distance
between samples, but also take into account the intervening nature
of the context class.
Fig. 2. EM vs. ICC in unsupervised mode. (a) The data are generated by two overlapping G

covariance 10 0
0 40

� �
, while the second one 60 0

0 10

� �
. Each Gaussian has 500 data poi

guessed that there are five. Using the EM algorithm, we can fit five Gaussian distribution
center. (b) The intra-class clustering method clusters the data into five non-overlapping
and reduces the unnecessary overlap between the clusters.
The rest of the paper is organized as follows. In Section 2, we
describe in detail our intra-class clustering algorithm. Section 3
presents experimental results of the proposed method on synthetic
data and real-world data. Finally, Section 4 presents a brief
discussion of our algorithm, followed by the conclusion.

2. Proposed algorithm: intra-class clustering

In most pattern recognition problems, the input space is very
high dimensional which leads to serious problems due to curse
of dimensionality as well as high computational cost. These issues
can in part be overcome by applying dimensionality reduction
algorithms. However, low-dimensional projections of the data are
not guaranteed to minimize the overlap among different classes.
If such overlap in low dimensional mapping can be alleviated by
breaking down the classes into non-overlapping sub-classes, a
highly efficient and accurate algorithm can be derived.

Our method starts by projecting the data in 2D space (or in 3D).
Next, from these projections, density maps are generated for both
the object class and the context class. Finally, the difference of the
densities is calculated. A number of dimensionality reduction
aussian distributions where both of their means are at ð0;0Þ. The first Gaussian has

nts. Assume that we do not know the true number of underlying distributions and

s to the data. There is obvious overlap between the resulting distributions near the
unimodal Gaussians. This method ensures that the resulting clusters are unimodal



Fig. 3. Difference of density (DoD) map and context-sensitive intra-class clustering result. (a) The difference of density (DoD) map of an object class and a context class is
shown (color key: red > yellow > green > cyan > blue). The object class has the same distribution as the random dots in Fig. 2 in red, green, cyan, black, and pink. The context
class is the two vertical distributions of data points marked ‘‘+’’ in (b) and in dark blue. (
context class data is represented by ‘‘+’’. Note that the resulting sub-cluster distribution is
the left, and the boundary between 3 and the subclusters 4 and 5 to the right. We can see
sub-clusters. (c) The gradient of the object class data only. Without the interference of t
gradient on DoD. The context class data exerts a strong influence, thus separating the obj
reader is referred to the web version of this article.)
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techniques may be used for the first step, such as PCA or manifold
learning methods such as ISOMAP (Tenenbaum et al., 2000) or Lo-
cally Linear Embedding (Roweis and Saul, 2000). However, dis-
criminatory information may be hidden in higher dimension than
the projected low dimension, resulting in overlaps in the data from
different classes after dimensionality reduction. Even though there
can be inevitable overlap, ICC can effectively deal with the prob-
lem, by generating non-overlapping sub-clusters using context
class data as a boundary.

2.1. Main algorithm

The main routine in intra-class clustering (or ICC) is shown in
Algorithm 1. The sub-routines GetDoDMap and GetClustersByGradi-
entAscent used in the main algorithm will be defined in Algorithms
2 and 3 in the following subsections. The main steps of the algo-
rithm are as follows:

1. PCA step:
(a) Project data points into low-dimensional space using PCA.

2. Difference-of-density estimation step:
(a) Perform Gaussian kernel density estimation on both the

object class and the context class, then
(b) Find the differenece between the two (Difference-of-Den-

sity, DoD).
3. Gradient Ascent Step:
(a) Calculate the gradient of DoD and perform gradient ascent
ect class data. (For interpretation of the references to color in this figure legend, the
to locate the local maxima.

Algorithm 1. Intra-class Clustering Algorithm – Main

1: function ICC ðW;n;u;v ; z; sÞ. W: the input data set
containing n classes, ðu;vÞ: the resolution of the DoD map, z
and s: the filter size and standard deviation of Gaussian for
calculating the DoD map.

2: D  PCA (W) . Dimensionality reduction by PCA to a
2D point set D

3: for i ¼ 1 to n do
4: B  Di . Set the object class to be Di, the

ith class in D.
5: C  Di . Set the context class to be all other

classes except Di

6: M  GetDoDMap (B; C;u;v ; z; s) . Get
DoD map

7: Li  GetClustersByGradientAscent (M;B) . Get
cluster labels L

8: end for
9: return L
10: end function

b) The object class is partitioned into five clusters and labeled by numbers 1–5. The
sensitive to the location of the context class: the boundary between label 1 and 3 to
that the context class data (marked ‘‘+’’) serve as the boundary between object class
he context class, there are no local maxima at the left and the right wings. (d) The
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2.2. Difference of density (DoD) function

One of the motivations of our algorithm comes from ‘‘semi-
supervised’’ learning. Following Chapelle et al. (2006), we repre-
sent side information in the data by means of pair-wise constraints.
As an example, a must-link constraint may be used to specify that a
pair of points must belong to the same cluster. Likewise, a cannot-
link constraint may be used to specify that a pair of points should
not belong to the same cluster. In our case, a cannot-link constraint
may be used to push apart data points that are separated by exam-
ples from the context class. To implement this idea computation-
ally, we compared the difference of density (DoD) between the
object and the context class data. (The density can be estimated
using Gaussian kernel methods (Parzen, 1962).) DoD is able to ad-
dress the cannot-link property enforced by the context class, be-
cause the density of the context class data has a separating effect
on the grouping of data points in the object class: The context class
density appears as valleys that separate the mountains (the object
class distribution) in the DoD map. Likewise, gradient ascent on the
DoD identifies groups of data points that belong to the same clus-
ter, which is equivalent to establishing must-link constraints.

The density diðxÞ for a data point x 2 Rp (p-dimensional real
space) in class xi can be estimated by means of kernel density
estimation (Parzen, 1962):

diðxÞ ¼
1
n

X
xe2xi

Gðx;xe;KÞ ð1Þ

where n is the total number of examples, xe is a sample from the ob-
ject class, and K is a constant covariance matrix for the Gaussian
kernel G. The Gaussian centered at y in p dimensions is defined as:

Gðx; y;KÞ ¼ 1

ð2pdetKÞ
p
2

exp �ðx� yÞTK�1ðx� yÞ
2

 !
ð2Þ

This kernel density estimation step can be a very expensive opera-
tion when conducted in high dimension, but in our case it is done in
a very low-dimensional space, so it is computationally efficient
(Algorithm 1, line 2). Similarly, the density diðxÞ of the context class
xi (all classes except xi) with respect to object class xi can be
defined as:

diðxÞ ¼
1
n

X
xi2xi

Gðx;xi;KÞ; ð3Þ

The difference of density function (DoD) for object class i can then
be defined as:

DoDiðxÞ ¼ diðxÞ � diðxÞ: ð4Þ

The routine that calculates the DoD map is defined in Algorithm 2.
Fig. 3(a) illustrates the DoD function of the object class (same as

the distribution in Fig. 2(b)); the added context class is marked ‘‘+’’
in Fig. 3(b). Note that the resulting cluster distribution is sensitive
to the position of the context class. As shown in Fig. 3(b), the
boundary between labels 1 and 3 on the left, and the boundary be-
tween sub-cluster 3 and sub-clusters 4 and 5 on the right are dic-
tated by the region occupied by the context data ‘‘+’’. The gradient
of the object class density is shown in Fig. 3(c). Note that without
the interference of the context class, there are no local maxima at
the left and the right wings. The gradient of the DoD map is shown
in Fig. 3(d). The context class data exerts a strong influence on the
gradient vectors of the object class, and as a result, they separate
the object class data into multiple subclusters.

The covariance matrix K in Eq. (2) is a user-adjustable parame-
ter, which can be treated in a manner akin to the kernel bandwidth
in non-parametric density estimation. Intuitively, K can be used to
control the number of local maxima in the DoD map.
Algorithm 2. Generating the DoD Map

1: function GETDODMAPðB;C;u;v ; z; sÞ . B: PCA-
projected object class data set, C: PCA-projected context
class data set, ðu;vÞ: the resolution of the DoD map, z and s:
the filter size and standard deviation of Gaussian in
calculating the DoD map.

2: M  Zeros (u; v) . Zero matrix of size u� v
3: B NormalizeðB; ½1;u�Þ . Fit data points into

range ½1;u�
4: C  NormalizeðC; ½1;u�Þ . Fit data points into

range ½1;u�
5: for each data point r ¼ ðr1; r2Þ in data sets B do
6: Mðr1; r2Þ  Mðr1; r2Þ þ 1 . object

class: add 1
7: end for
8: for each data point r ¼ ðr1; r2Þ in data sets C do
9: Mðr1; r2Þ  Mðr1; r2Þ � 1 . context class:

subtract 1
10: end for
11: M  M � Gaussianðz; sÞ . Convolve M with a z� z

Gaussian, std s
12: return M
13: end function
2.3. Clustering by finding local maxima

A number of density clustering algorithms (Kowalewski, 1995;
Hader and Hamprecht, 2003) use the density function as a map,
and assign examples on the same ‘‘mountain’’ (local peak) to the
same cluster. Mean shift also takes a similar approach (Fukunaga
and Hostetler, 1975). Our algorithm can be thought of as a density
clustering algorithm with the exception that we use the difference
of density (DoD) rather than the plain density. Once the density clus-
tering step is complete, the data in each new cluster will share one
local maximum on the DoD map. To search for the local maximum
of sample x in the object class, we use the gradient of the DoD
map (calculated through finite difference as shown in Fig. 3(d)). This
gradient can be used to iteratively find the position of the local max-
imum y as follows (y is initialized to x’s position on the DoD map):

y y þ grDoDi; ð5Þ

where y is initialized to x, and g is the learning rate (see, e.g., Press
et al., 1992, p. 421).

Once a local maximum for each example is found, all examples
sharing the same local maximum are assigned to the same sub-
class label (Hader and Hamprecht, 2003). The procedure is summa-
rized in Algorithm 3.

Algorithm 3. Density Clustering by Gradient Ascent

1: function GETCLUSTERSBYGRADIENTASCENTM;B . M: DoD map,
B: the projected object class data set in 2-D.

2: G Gradient (M) . Get the gradient
vectors of M

3: Create an empty list L
4: Create an empty list T
5: for each data point r in data set B do . Local

gradient ascent loop
6: y r
7: y0  ð0;0Þ
8: while y is different from y0 do
9: y yþ gGðyÞ .

g: step size
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Algorithm 3. Density Clustering by Gradient Ascent

10: y0  y
11: end while
12: L Enqueue (y; L)
13: if y not in T then
14: T  Enqueue (y; T)
15: end if
16: end for
17: for each item y in L do
18: i  Search (y; T) . Get the index i of

item y in table T
19: Replace item y in L with the index i
20: end for
21: return L
22: end function

2.4. ICC as a preprocessing step for a classifier

For actual classification tasks, the proposed ICC algorithm is
employed as a data pre-processing step before the application of a
proper pattern classifier. The general procedure of applying intra-
class clustering for classification is described in Algorithm 4.

Algorithm 4. Classifier with ICC-Preprocessing

1: function CLASSIFY(Training data set:W, Testing data set:S)
2: ðu;vÞ  DoD map resolution
3: z  Gaussian filter size for DoD map calculation
4: s  Gaussian filter’s standard deviation for DoD map

calculation
5: n  number of classes in W
6: L  ICCðW;n;u;v ; z; sÞ
7: Create a Map P to map sub-classes labels L to their

original class labels
8: ½D;v �  LDAðW; LÞ . D: projected data points,

v: LDA vectors
9: S0  Sv . Project test set using

LDA vectors
10: R  QuadraticClassifierðD; L; S0Þ . Standard

quadratic classifier
11: Y  LookUpðR; PÞ . Recover original

labels from map P
12: return Y
13: end function
3. Experiments

We tested the ICC algorithm in supervised mode (Algorithm 4)
for classification on both synthetic data (experiment 1) and real
data (experiments 2 and 3). The specific parameters were as fol-
lows: the grid size u ¼ 600; v ¼ 200 for the first experiment (syn-
thetic data), while u ¼ 120; v ¼ 500 for the second experiment
(real world data). For the Gaussian filter, we chose window size
z ¼ 100, and standard deviation s ¼ 25. In the third experiment,
we tested ICC with different ðu;vÞ configurations, and observed
the effects of changing grid size (u� v). In all of our experiments,
we set the learning rate g to 1.

3.1. Experiment 1: test on synthetic data

In this experiment, we evaluated ICC on a synthetic data set
containing 3 classes in 30 dimensions. The data were generated
as follows. First, we drew random samples from three-dimensional
Gaussian distributions, one Gaussian per class. The means were
ð8;10;0Þ; ð8;10;0Þ; ð0;4;0Þ; and the covariances were as follows:

2 3 0
3 6 0
0 0 1

0
B@

1
CA;

6 �3 0
�3 2 0
0 0 1

0
B@

1
CA;

2 0 0
0 2 0
0 0 1

0
B@

1
CA

respectively. Then, we added 27 noisy dimensions (uniformly ran-
dom values in the range [0.0, 0.2]). Finally, we rotated the data
using a randomly generated matrix (uniformly random values in
the range [0.0, 0.5]). As a result, each feature dimension consisted
of a weighted sum of three signal channels and 27 noise channels.

We generated 700 data points, and split them into a training set
with 650 data points and a test set 50 data points. As shown in
Fig. 4(a), PCA of the training set reveals a high level of overlap be-
tween classes 1 and 2. The particular structure of the data poses
significant difficulty for LDA, as shown in Fig. 4(b), because classes
1 and 2 are largely overlapping. However, by using the context-
sensitive clustering algorithm (ICC), the two overlapping Gaussians
of class 1 and 2 can be separated into 4 sub-classes (each class
has two local maxima in their DoD map). The final results from
ICC + LDA (Fig. 4(d)) show markedly better separability.

Results on the test set are summarized in Table 1. ICC + LDA
outperformed all other methods (p < 10�4, t-test, n ¼ 20), whereas
EM + LDA was not significantly better than LDA (for EM, we al-
lowed up to 2 sub-clusters per class). This is because the con-
text-sensitive approach can preserve the information from the
context class, and reduce the overlap between all clusters.

To guard against the possibility that ICC is better merely due to
the fact that ICC can use arbitrarily many sub-clusters, we allowed
EM to subdivide each class into even more sub-classes. ICC’s per-
formance was still significantly better than EM: for 3 sub-classes,
4.0% higher in accuracy (ICC + LDA = 87.4% vs. EM + LDA = 83.4%,
p ¼ 0:047, t-test, n ¼ 20). (Note: accuracies are slightly different
from the original experiment since these were fresh new random
trials albeit with the same Gaussian parameters Table 1.) ICC + LDA
and EM + LDA achieve similar accuracy only when the number of
sub-class was increased to 5 (ICC = 87.4% vs. EM = 86.0%,
p ¼ 0:24, t-test, n ¼ 20).

3.2. Experiment 2: test on real data – olfactory database

To evaluate the efficiency of our algorithm on a realistic task,
we tested ICC on experimental data from an olfactory database.
The data were generated by a gas sensor array containing 60 fea-
tures (Gutierrez-Osuna and Nagle, 1999). The data contained five
classes, each class consisting of various cola flavors from a different
manufacturer: (1) Coca-Cola Co. (Coke, Diet Coke, and Cherry
Coke), (2) Pepsi Cola Co. (Pepsi, Cherry Pepsi), (3) Dr. Pepper Snap-
ple Grp. (Dr. Pepper), (4) Carolina Beverage Corp. (Cheerwine), and
(5) other (RC Cola, Eckerd Cola, Eckerd Dr. Riffic). The data set was
split into a training set with 150 examples, and a test set with 25
examples. Fig. 5(a) shows the PCA plot of the training set projected
onto the first and the second eigenvectors, whereas Fig. 5(b) shows
the projection of the data onto the first and the second LDA
dimensions.

As shown in Fig. 5(a), the structure of the data poses a problem
for LDA: nearly all classes are multimodal (e.g. class 5). Therefore,
breaking these classes into sub-classes is likely to improve the sep-
arability in LDA. Following application of ICC (with around 8–10
clusters in each trial), class boundaries become quite clear (fig.
5(d)). EM (with 10 clusters) improves matters but there is a major
overlap between class 1 and class 5. As shown in Table 2, both
methods outperform LDA: ICC + LDA outperforms LDA by 16.0%, a
statistically significant difference (p ¼ 6:05� 10�7, t-test,n ¼ 20),



Fig. 4. Experiment 1 results. (a) The PCA plot of the synthetic data set shows that each class has a unimodal Gaussian distribution, and class 1 and class 2 have a large degree
of overlap. Such a structure poses significant difficulty for LDA as shown in (b), even with the EM step (c). Using our context sensitive intra-class clustering algorithm (ICC),
classes 1 and 2 can be separated into four sub-clusters. (d) With more detailed cluster information, the resulting LDA maximally separates the three classes.

Table 1
Experiment 1 classification accuracy (Test set).

Pre-processing method Accuracy (%) Std.

PCA only 54.3 0.0684
LDA only 70.6 0.0602
EM + LDA 78.7 0.0852
ICC + LDA 88.0 0.0426
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whereas EM + LDA outperforms LDA by 3.4%, a difference that was
not statistically significant (p ¼ 0:154, t-test, n ¼ 20).

3.3. Experiment 3: test on real data – North Texas vowel database

We further tested with a larger dataset, the North Texas vowel
database with 3434 samples (Assmann et al., 2008). The dataset
was obtained by recording the acoustic signals of 12 vowels from
5 groups of subjects, which include adult males and females, and
children of 3, 5, and 7 years of age. Up to 10 speakers were re-
corded in each group. This is a challenging dataset where each sin-
gle class (each vowel) includes samples from different age and sex
groups. Thus, intra-class clustering can help delineate such internal
structure. The dataset contains 8 features that were extracted from
the sound recordings with the following features: (1) F0 (mean
fundamental frequency over all voiced frames), (2) F1i (initial F1
estimate, 20% point), (3) F2i (initial F2 estimate, 20% point), (4)
F3i (initial F3 estimate, 20% point), (5) F1f (final F1 estimate, 80%
point), (6) F2f (final F2 estimate, 80% point), (7) F3f (final F3 esti-
mate, 80% point), and (8) DUR (vowel duration in milliseconds).
Our task was to predict the index of the vowels: from 1 to 12. In
each trial, we randomly selected 90% of the samples from the data-
set as training data and the other 10% as testing data. In each test,
we ran 20 trials to get the average result.

We performed two groups of tests with this dataset. The first
group was aimed at testing the effect of the ICC DoD grid size.
The second group compared the ICC algorithm with other methods.
3.3.1. Tests with different grid size
In the first group of tests, we applied ICC on two dimensional

PCA space. To test the effect of varying DoD grid size, we tested
grid sizes of 100� 100; 150� 150; 200� 200; 250� 250, and
300� 300 (the filter size was fixed at 60� 60). Fig. 6 compares
the results of these grid configurations, the number of total subcl-
usters in the 12 classes found by ICC, as well as the average run-
ning time of each configuration.

Fig. 6(b) shows that when the filter size is fixed, larger grid size
results in more clusters. We observed that the total number of sub-
clusters increases from 15 to 108 when the grid size changes from
100� 100 to 300� 300. The grid size of 200� 200 gave the best
accuracy of 78.5% as shown in Fig. 6(a), and with this configuration
each class contained 3 to 4 clusters on average. Even though there
are small variations in the accuracy with different grid sizes, we
can observe that ICC is not too sensitive to these parameters: the
results are within the range of 76% to 79% when the grid becomes
9 times larger in area.

In this experiment, each class data was in a Gaussian-like distri-
bution, but there was a significant overlap among the classes,
which raised the difficulty for traditional classifiers. This type of
data with heavy overlap is suitable for ICC because it decomposes
each class into non-overlapping sub-clusters using the context



Fig. 5. Experiment 2 Results. (a) PCA of the olfactory data shows that several classes are multimodal non-Gaussian (e.g., classes 4 and 5). ICC separates each class data into
unimodal Gaussians, which leads to improvements in discrimination performance when LDA is applied, e.g., compare (b) and (d) Since ICC also takes into account the context
class distribution, ICC + LDA can reduce the overlap between classes as compared to EM + LDA in (c). See text for details and Table 2 for accuracies.

Table 2
Experiment 2 classification accuracy (Test set).

Pre-processing method Accuracy (%) Std.

PCA only 50.4 0.0815
LDA only 68.2 0.0779
EM + LDA 71.6 0.0788
ICC + LDA 84.2 0.0908

Fig. 6. Experiment 3A: effects of grid size (u� v) in ICC. (a) Accuracy as a function of grid size. The error bars are the standard deviations of each grid size configuration. (b)
The running time of ICC as a function of total sub-clusters. The grid size (u� v) is marked along the data point.

Table 3
Experiment 3B classification accuracy (test set).

Methods Accuracy (%) Std. Time (s)

ICC + LDA 79.2 0.027 10
EM + LDA 79.2 0.0183 120
LDA only 75.9 0.027 <1
PCA only 41.73 0.0254 <1
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class data as boundaries, and these sub-clusters help improve the
classification accuracy. As shown in the results, when each class
is divided into 3 or 4 clusters on average, best accuracy can be
achieved.

The running time shown in Fig. 6(b) was recorded on a com-
puter with AMD Phenom (tm) 9500 quad-core processor at
2.2 GHz and 8G memory. The running time of ICC grows nearly lin-
early as the grid size increases.
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Fig. 7. Computation time of ICC and EM as a function of the number of total class
samples. We tested the performance using a synthetic dataset with 2 attributes and
2 classes as in Fig. 3. In the test, the total number of samples was a variable, and the
running time of EM vs. ICC was compared. With ICC, the first class was divided into
three clusters, and the second one into two clusters. ICC was applied on 2D PCA
3.3.2. Tests with different methods
We compared ICC performance with other methods (EM + LDA,

LDA only, and PCA only) as in the two previous experiments. The
training samples were first projected onto the first two dimensions
on PCA, and then ICC applied. In ICC, we used grid size 130� 200
with filter size 60� 60, and it created about 43 total sub-clusters
on average. For the EM method, each class was divided into the
same number of sub-clusters as ICC.

As the results show in Table 3, ICC and EM have similar accura-
cies, and they both outperform all other methods. Due to smaller
overlap among the PCA 2D projections of the different classes in
this data set, and EM subdividing each class into 3 to 4 clusters
as ICC did, EM was able to achieve the accuracy as high as ICC.
However, EM took about 12 times longer to run than ICC.
projections, where the grid size was 100� 100, and the filter size was 50� 50. We
allow the same number of clusters to be generated for EM. The result shows that ICC
is orders of magnitude faster than EM. This test was performed on a computer with
AMD Phenom (tm) 9500 quad-core processor at 2.2 GHz, and 8G memory.
4. Discussion

Intra-class clustering was first used to improve facial feature
detection by Lucey et al. (2003). In this approach, a Gaussian mix-
ture model was employed to partition the data from each class into
several Gaussian distributions. The parameters of each Gaussian
model were estimated by EM. However, EM-based clustering algo-
rithms cannot overcome issues related to the presence of context
classes. Moreover, as shown in our experiments, context-sensitive
intra-class clustering outperformed EM in enhancing the separabil-
ity in subsequent LDA transform and classification.

A possible concern regarding our algorithm is that of computa-
tional cost. Kernel density estimation can be very expensive for
high-dimensional data. However, we circumvent this problem by
operating in projected low-dimensional space. Possible problems
due to class overlap introduced by dimensionality reduction are
overcome by generating non-overlapping sub-clusters. (Note: In
cases where a shallow valley in the object class distribution over-
laps with a deeper valley in the context class, a small local peak can
result in the DoD at the overlapping valley. However, this apparent
artifact is not a problem since it simply indicates the high local
‘‘contrast’’ of the object class in comparison to the surrounding
context class.).

For n samples in d dimension (or number of attributes), the time

complexity of PCA transform to 2D space is Oðd2nÞ (Sharma and
Paliwal, 2007). Next, as shown in the main ICC algorithm (see Algo-
rithm 1), the convolution step and gradient search will be repeated
for each class. Assuming that the grid size is u� u, convolution
takes Oðu2 log uÞ, and the gradient ascent step for seeking the local
maxima is linear with respect to the diameter of the search region
(Kowalewski, 1995), i.e., OðunÞ. Therefore, the overall time com-

plexity is O ðd2 þ cuÞnþ cu2 log u
� �

, where c is the number of clas-

ses. Regarding space complexity, the algorithm is also very
efficient. Besides the space needed for the input data and its PCA

transform (Oðndþ d2Þ), the searching operations are carried out
on the DoD map, which is a matrix with size u� v as shown in
the Algorithm 1. In our experiments, the grid sizes u or v are within
a few hundreds. In sum, the space complexity is Oðndþ d2 þ uvÞ.

In order to test the computation time of ICC when the number
of samples grows, we conducted a test by using a synthetic dataset
with two classes as shown in Fig. 3. In the test, the total number of
samples ranged from 500 to 10 K. The first class contained 60% of
the samples, while the second class contained the other 40% of
the samples. The running time as a function of total sample num-
bers is shown as the Fig. 7. With ICC, the first class was divided into
3 clusters, and the second one was divided into two clusters. ICC
was applied on 2D PCA projections, and the grid size was
100� 100, and filter size was 50� 50. Our results show that as
the number of samples grows, the running time increases linearly.
We also compared the running time of EM vs. ICC. In the test, EM
was allowed to generate the same number of clusters as ICC. Our
results show that EM is orders of magnitude slower than ICC. This
test was performed on a computer with AMD Phenom (tm) 9500
quad-core processor at 2.2 GHz with 8G memory.

We can further improve the performance by evaluating the gra-
dient only along the path when searching for the subcluster cen-
ters. This method can be implemented by using Newton’s
method, which can iteratively and efficiently find the local max-
ima. One potential advantage of using this is that we do not need
to operate ICC on the PCA 2D space, and the searching can be done
directly on the original data in high dimension.

Our ICC algorithm is closely related to discriminative classifiers
(DC) (Ng and Jordan, 2001). DC shares many characteristics with
ICC: (1) DC is a density-based classification method, (2) DC is con-
text-sensitive, since it utilizes information from all non-target clas-
ses, and (3) it uses gradient-ascent to find the local maxima. ICC
extends DC in the following ways: (1) ICC operates in semi-super-
vised learning mode while DC does so in supervised learning mode
only. (2) ICC can reduce the overlap across distributions from dif-
ferent classes by decomposing a class into several sub-classes. (3)
ICC can be used as a data preprocessing method.

ICC can also be seen as an extension of mean-shift analysis
(MSA) (Fukunaga and Hostetler, 1975), an unsupervised mode
seeking algorithm. MSA looks for the local maxima in the space
of sample density. MSA is non-parametric just like ICC, but it does
not utilize any contextual information (side-information) to detect
the modes in the data distribution. In contrast, ICC searches for
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peaks in the space of the DoD, thus utilizing the constraints from
the context class.

5. Conclusion

In this paper, we proposed a computationally cheap algorithm
that can separate an arbitrary data distribution into non-overlap-
ping unimodal clusters, while utilizing intervening context data
distributions to further separate the clusters. Computational re-
sults with synthetic data and real-world data showed that the
method can help improve the performance of LDA and standard
classifiers such as the quadratic classifier. We expect our approach
to be applicable to a broader class of pattern recognition problems
where class-conditional densities are significantly non-Gaussian or
multi-modal.
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