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Various visual tracking approaches have been proposed for robust target tracking, among which using sparse
representation of the tracking target yields promising performance. Some earlier works in this line used a fixed
subset of features to compress the target's appearance, which has limited modeling capacity between the target
and the background, and could not accommodate their appearance change over long period of time. In this
paper, we propose a visual tracking method by modeling targets with online-learned sparse features. We first
extract high dimensional Haar-like features as an over-completed basis set, and then solve the feature selection
problem in an efficient L1-regularized sparse-coding process. The selected low-dimensional representation best
discriminates the target from its neighboring background. Next we use a naive Bayesian classifier to select the
most-likely target candidate by a binary classification process. The online feature selection process happens
when there are significant appearance changes identified by a thresholding strategy. In this way, our proposed
method could work for long tracking tasks. At the same time, our comprehensive experimental evaluation has
shown that the proposed methods achieve excellent running speed and higher accuracy over many state-of-the-
art approaches.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Visual tracking is currently one of the most important research
topics in the field of computer vision, especially for the application of
video surveillance, vehicle navigation, and human computer interac-
tion. In practical problems, analyzing video sequences by human labor
force can be impractical due to the explosive growth of video volume.
Although many tracking algorithms have been proposed, it remains a
challenging problem due to factors such as occlusions, illumination
changes, pose changes, view point variations, etc. One of the key issues
to separate the foreground targets from the background is to propose
suitable appearance models. A model with high dimensional features
is effective because it can preserve adequate information of the target,
but these features are often redundant and often limit the speed for pro-
cessing. Several methods have been proposed to find the compressive
features out of the high dimensional features as sparse representation.
These compressive features are low-dimensional and can preserve
most information of the targets. Several tracking methods based on
sparse representation have been proposed. Zhang et al. [1] introduced
in their compressive tracking method a non-adaptive random matrix
to project high dimensional features to a low-dimensional space.
The data-independent projection matrix can achieve high processing
speed and low computational cost on one hand, but on the other
Ming-Hsuan Yang.
hand, its performance can be unstable due to the random characteristic
of the matrix. Mei et al. [2] proposed a method by casting tracking as a
sparse approximation problem in a particle filter framework, in which
the target is represented in the space spanned by target templates
and trivial templates, and the sparsity is achieved by solving an
L1-regularized least squares problem. Jia et al. [3] introduced a structural
local sparse appearance model which used sparse codes of local image
patches with spatial layout in an object, and employed a template
update strategy which combines incremental subspace learning and
sparse representation. However, these methods require to discover
basis functions from the unlabeled data and can be computationally
expensive.

In this paper, wemodel the targetswith sparse Haar-like features. At
the beginning, high dimensional Haar-like features are extracted in
order to preserve sufficient information of the target. Since these
features might be redundant and may hinder the speed for tracking,
we next introduce sparse coding into the tracking process for dimen-
sionality reduction. Every dimension of the feature can be viewed as a
basis function, thus we would only need to solve an L1-regularized
least squares problem to get the sparse coefficients [4]. The process is
a ranking mechanism that evaluates the large set of Haar-like features,
and all of the coefficients corresponding to the basis functions should
vanish except for a few. With the sparse features, we construct a naive
Bayesian classifier to evaluate the target candidates [5] selected from
near the current target. Positive and negative features extracted from
the neighborhood of the target are used to update the classifier online.
This approach can be viewed as a combination of a generative tracker
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Fig. 1. Sparse feature selection.
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and a discriminative tracker. Furthermore, since the appearance of the
target changes through the video sequences, we also introduce an
adaptive feature update schemewhich compares the latest observation
with previous target template, i.e., sparse coding is carried out again
when target appearance changes significantly. During the tracking
process, this method guarantees that the selected features are the
most discriminative one. Experiments on several public datasets
demonstrate that the proposed tracking method performs favorably
against several state-of-the-art methods, and at the same time achieves
high tracking speed.

The main contributions of this paper include:

• An online sparse feature selection method for modeling tracking
target from its neighboring background,

• An automatically feature updating strategy to accommodate signifi-
cant appearance changes of the target,

• More stable and accurate tracking results compared to several state-
of-the-art methods, as well as real-time processing speed

The rest of the paper is organized as follows. First we review some
most relevant works on target tracking in Section 2. Then we introduce
the sparse feature selection process in Section 3. We elaborate the con-
struction and updating of the naive Bayesian classifier in Section 4 and
next we introduce the tracking process and the online feature selection
strategy in Section 5. In Section 6, we list the evaluation results of our
algorithm on 7 public dataset, and finally in Section 7, we conclude
our work.

2. Related work

According to the type of the adopted appearance model, visual
tracking algorithms can be categorized into generative, discriminative,
or hybrid approaches. Generative trackers locate the targets using a
maximum-likelihood or maximum-a-posterior formulation relying
only on the target appearance model. These appearance models repre-
sent object appearance without considering its discriminative power
with respect to the appearance of the background or other targets.
Jepson et al. [6] introduced anappearancemodel that involves amixture
of stable image structure, learned over long time courses, along with
2-frame motion information and an outlier process. In [7], Matthews
et al. introduced a template update method that can reduce the drifting
Fig. 2. Target search and
problem by aligning with the first template to reduce drifts. Kwon et al.
[8] proposed a method that decomposed the observation model and
motion model into multiple basic observation models and basic motion
models that are constructed by sparse principle component analysis
(SPCA) of a set of templates. In [9], Ross et al. presented a tracking
method that incrementally learns a low-dimensional subspace represen-
tation and adapt online to the changes in the appearance of the target.

Discriminative trackers aim to distinguish the targets from the back-
ground using a classifier that learns a decision boundary between the
appearance of the target and that of the background or other targets.
Avidan proposed [10] an ensemble trackingmethod that constantly up-
dates a collection of weak classifiers to separate the foreground object
from the background. Tang et al. [11] introduced a semi-supervised
learning approach that built an online support vector machine (SVM)
for each independent feature and fuses the classifiers by combining
the confidence map from each classifier. Babenko et al. [12] introduced
a discriminative learning paradigm called multiple instance learning
(MIL) that puts all ambiguous positive and negative samples into bags
to learn a discriminative model for tracking. Grabner and Bischof
proposed [13] an online boosting based feature selection framework.

Hybrid trackers use a combination of the previous two approaches,
in which a generative model and a discriminative classifier are
combined to capture appearance changes and allow reacquisition of
an object after total occlusion. Yu et al. [14] proposed a generative
model using a number of low dimension linear subspaces to describe
the target appearance, as well as a discriminative classifier using an on-
line support vector machine which is trained to focus on recent appear-
ance variations. In [15], Zhang et al. proposed a hybrid compressive
tracking algorithm. The targets are represented by amultiscale convolu-
tion with rectangle filters. Then they employed non-adaptive random
projections over filtered images using a very sparse measurement ma-
trix, and then used the projected features to formulate the tracking
task as a binary classification via a naive Bayesian classifier. They also
introduced a coarse-to-fine target search algorithm, which reduces the
computational complexity. In [16], Zhong et al. developed a sparsity-
based discriminative classifier (SDC) and a sparsity-based generative
model (SGM) that exploited both holistic templates and local represen-
tations. Notice that Zhong's objective function for SDC is very similar to
ours. However, the entire workflows are significantly different. In [16],
the SDC learns a sparse classification model while in our work, Eq. (3)
is only used for feature selectionwhile a more robust Bayesian classifier
feature updating.



Table 1
Success rate (%), the higher the better. Bold font indicates the best performance.

Video clip OSF FCT CT MIL OAB semiB Frag l1-track TLD Struck

David indoor 100 98 89 68 31 46 8 41 98 98
Girl 97 31 78 50 71 50 68 90 57 99
Twinnings 98 98 89 72 98 23 69 83 46 98
Occluded face 100 99 89 97 49 41 54 96 87 97
Tiger1 93 52 78 39 24 28 19 13 65 73
Tiger2 95 72 60 45 37 17 13 12 41 22
Cliffbar 100 99 89 65 23 65 22 38 67 70
Sylvester 100 77 75 80 70 68 34 46 94 87

Fig. 3. The success rate (SR) changes according to γ.
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is used for recognizing the foreground. In fact, our system is implicitly
both generative and discriminative in that, the Bayesian classifier is
discriminative while the feature selection process is generative.

Sparse representation of targets has received more and more atten-
tion. In [17], Zhang et al. formulated object tracking in a particle filter
framework as a multi-task sparse learning problem, and particles are
modeled as linear combinations of dictionary templates. Liu et al. [18]
proposed a method that is based on L1 trackers. It also uses a sparse
approximation over a template set, and adds an l2 norm regularization
on the coefficients associated with the trivial templates. Liu et al. pro-
posed a local sparse appearance model [19], which models the target
with a static sparse dictionary and a dynamically online updated basis
distribution. A dictionary learning algorithm called K-Selection is also
introduced. In [20], Wang et al. introduced a generative tracking
algorithm which adopts l1 regularization into the principal component
analysis (PCA) reconstruction, and represents an object by sparse proto-
types that explicitly take occlusion and motion blur into account for
appearance updates. Furthermore, Wang et al. [21] introduced a gener-
ative tracking algorithm based on linear regression, which models the
error term with the Gaussian–Laplacian distribution. They also intro-
duced an update scheme to capture the appearance change of targets.
Mei et al. [22] proposed a bounded particle resampling-L1 tracker
which employs a two-stage sample probability scheme. The more
comprehensive surveys and evaluation about recent tracking algorithms
can be found in [23–25].

3. Sparse feature representation

The framework of the feature selection process is illustrated in Fig. 1.
First, we initialize the position and scale of the target manually or by

a detector at thefirst frame of a video sequence, and represent the target
Fig. 4. The success rate (SR) and the times for sparse coding (SC_times) change according
to r0.
with z0 ∈ ℝw × h, where w and h represent the width and height of the
target, and the location of z0 with l(z0). z0 is saved as the initial target
template. We then model the target with high-dimensional features.
In order to do this, a bunch of training samples are automatically
extracted from the current frame. We first extract a set of samples
from a small neighborhood around the current target as a positive
bag:Dα={z‖l(z)− lT‖ b a} (red bounding boxes in Fig. 1), and then ex-
tract a set of samples far away from the target center as the negative
bag: Dζ,β = {z|ζ b ‖l(z) − lT‖ b β} with α b ζ b β (yellow bounding
boxes in Fig. 1).

Then we extract high dimensional Haar-like features, denoted as B
!
,

from these samples to learn the appearancemodel, where every dimen-

sion of the Haar-like feature bi∈ B
!

is selected randomly at the first time.
From each of these samples, we extract a high dimensional Haar-like

feature vector b
!

i∈ℝm , and a corresponding label yi ∈ {−1, 1} (+1
corresponds to a positive sample and−1 corresponds to a negative sam-

ple). The extracted features can be denoted as amatrix B
!¼ b1; ⋯; bp

� �T∈
ℝp�m, in whichm is the dimension of the features and p is the number of

samples. The corresponding label vector can be denoted as Y
!∈ℝp�1 .

Each element bi∈ B
!

is a weighted linear combination of 2 to 4 spatially
distributed rectangle features at different scales:

bi ¼
X
j

ri jSi j ð1Þ

where j∈ {2, 3, 4}, rij∈ℝ is a random number between [−1, 1], and Sij is
the sumof pixels to a random rectangle. Sij can be calculated efficiently by
the integral image trick introduced in [26].

The high dimension feature can preserve adequate appearance in-
formation of the target. However, dealing with high dimension features
requires high computational cost. In fact the features are always redun-
dant and compressible. Thus, we adopt the sparse coding algorithm to
help reducing the dimension and select only the most discriminative
features. Assuming the use of L1 penalty as the sparsity function, this
problem can be formulated as an L1-regularized least squares problem.

Specifically, the high dimensional features B
!

are used as known bases

and Y
!

as the input vector. Each element yi∈Y
!

is succinctly represented
Table 2
Center location error (in pixels), the lower the better. Bold font indicates the best
performance.

Video Clip OSF FCT CT MIL OAB semiB Frag l1-track TLD Struck

David indoor 7 11 16 19 57 37 73 42 12 9
Girl 16 40 21 25 23 50 26 13 – 10
Twinnings 9 10 9 14 7 70 15 10 15 7
Occluded face 12 12 19 17 36 39 57 17 24 15
Tiger1 6 23 10 27 42 39 39 48 24 12
Tiger2 6 10 13 18 22 29 37 57 40 22
Cliffbar 5 6 7 14 33 56 34 35 70 20
Sylvester 6 9 9 10 12 14 47 42 7 9



Table 3
Speed evaluation. FPS refers to frameper second. SC_Times refers to the number of times of
doing sparse coding in a video sequence.

Video clip FPS SC_Times Frame number

David indoor 20 11 462
Girl 24 8 502
Twinnings 28 4 472
Occluded face 27 14 888
Tiger1 24 24 354
Tiger2 13 26 365
Cliffbar 15 40 472
Sylvester 28 48 1345
Average 22.4 27 frames → 1 sparse coding
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using basis vector b
!

1; ⋯; b
!

p , and a sparse vector of weights or

“coefficients” S
!∈ℝm such that

yi ≈
Xm
j¼1

b ið Þ
j s j; ð2Þ

where s j∈ S
!

and b ið Þ
j ∈ b

!
i. With such an assumption, we can model the

problem as the following convex optimization problem:

minimize s!
1
2

Y
!−

��� B
!

S
!���2 þ γ S

!��� ���: ð3Þ

Eq. (3) can be solved efficiently by the feature-sign search algorithm
proposed in [4].

The solution vector S
!

contains sparse coefficients, which enables
itself to be used as a classifier. However, it may fail when there exist
similar objects or occlusions in the scene, because it is unable to utilize
the information from the former frames. An incremental naive Bayesian
classifier, fortunately, can properly handle this problem, as elaborated in

Section 4. Notice that each column in B
!

denotes the same Haar-like
features (extracted in the same way but from different samples), and

corresponds to one item in S
!

. The columns that correspond to the

non-zero items in S
!

are the most discriminative features. We thus

delete the columns in B
!

where the corresponding item in S
!

is zero.

We denote the remained features as V
!

S
!� �

∈ℝp�n , where n is the di-

mension of the sparse features. Although the dimension is low, these
features are rather salient and can almost reconstruct the original
features.
Fig. 5. Feature updating strategy. (a), (b), (c), and (d) are the same target in different frames. T
respectively. Sparse coding is only needed at frame 130 and frame 155, when the correlation i
4. Bayesian classifier

The sparse featurematrix V
!

S
!� �

¼ v!1; ⋯; v!p

h iT
is used for classifier

construction and updating. We assume that every element in v!i∈ℝn is
independently distributed and is Gaussian, so we can model them with
a naive Bayesian classifier,

H V
!� �

¼ log
Πn

i¼1p vijy ¼ 1ð Þp y ¼ 1ð Þ
Πn

i¼1p vijy ¼ −1ð Þp y ¼ −1ð Þ
� �

¼
Xn
i¼1

log
p vijy ¼ 1ð Þ
p vijy ¼ −1ð Þ

� �
;

ð4Þ

where we assume uniform prior, i.e., p(y = 1) = p(y = −1),
and y∈ {1,− 1} is the sample label. Sincewe assume that every element
is Gaussian, the conditional distributions p(vi|y= 1) and p(vi|y=−1)
can be denoted by four parameters μ i1, σ i

1, μ i
0, σ i

0,

p vijy ¼ 1ð Þ∼N μ1
i ;σ

1
i

	 

;p vijy ¼ −1ð Þ∼N μ0

i ;σ
0
i

	 

; ð5Þ

where μ i
1 (μ i

0) and σ i
1 (σ i

0) are mean and standard deviation of the
positive (negative) bag, respectively. The scalar parameter in Eq. (5) is
incrementally updated by

μ1
i ← λμ1

i þ 1−λð Þμ1

σ1
i ←

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ σ1

i

	 
2 þ 1−λð Þ σ1ð Þ2 þ λ 1−λð Þ μ1
i −μ1

	 
2q
;

ð6Þ

where λ N 0 is a learning parameter, σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p∑

p−1
k¼0jy¼1 vi kð Þ−μ1ð Þ2

q
and

μ1 ¼ 1
p∑

p−1
k¼0jy¼1vi kð Þ. Parameters μ i

0 and σ i
0 are updated with similar

rules. Since we assume the variables to be independent, the
n-dimensional multivariate problem is reduced to the n univariate
estimation problem, and thus requires fewer tracking samples to obtain
accurate estimation than estimating the covariancematrix in themulti-
variate estimation. Also, since we use a scheme of positive and negative
bags, the distribution parameters can be updated more robustly.

5. Tracking and feature updating

Fig. 2 shows the framework of our tracking process and feature
updating strategy. Since the motion of a target is always continuous in
a video sequence, the position of the target in frame T + 1 is always
close to the position in frame T.We thus adopt awindow search strategy
that extracts a set of target candidates Z from Dδ = {z‖|l(z)− lT‖ b δ} in
frame T+1,where δ is the search radius. We extract directly the sparse
features vi ∈ ℝn from each of these candidates, and evaluate them with
the Bayesian classifier respectively. The tracking is thus treated as a bi-
nary classification problem, i.e., the candidate with the highest score
he correlations between (a) and (b), (a) and (c), and (c) and (d) are 0.37, 0.28, and 0.15
s below 0.3.



Fig. 6. Feature response to sparse coding. Two thousand features are displayed on the horizontal axis. The vertical axis shows the corresponding response values. A total of 175 out of the
2000 features have non-zero weights.
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will be separated from the background as the foreground target in the
frame T + 1, denoted as z1 ∈ Z.

At this point, we adopt an adaptive updating strategy which
determines whether to update the sparse features or not. We would
use the correlation between the current target z1 and the target
template z0 as a measurement of similarity:

r ¼ z1
z1k k �

z0
z0k k : ð7Þ

Higher correlation r indicates higher similarity, and vice versa. The
correlation value may vary to image densities. To deal with this, we
Fig. 7. Reconstructed label values. There are 195 red points in the figure. Each point represents
“+1”. For precise observation, the figure only shows the positive part. The reconstructed nega
normalize the target and template before computing their correlation.
In this way, the correlation value can give us a coherent measurement
of similarity. If r is higher than a threshold r0, i.e., z1 and z0 are similar
enough, it would not be necessary to update the sparse features. We
would only need to extract positive and negative bags around the target

location l(z1) and extract the sparse features V
!

S
!� �

to update the

parameters of the classifier. However, if r is lower than the threshold,
we need to do the sparse feature selection process again. Specifically,
we should extract positive and negative bags around l(z1) and extract

high dimensional Haar-like features B
!

from them. Then we should
carry out the sparse coding algorithm again, gain a new sparse
a positive label value reconstructed by the salient features. The values are all very close to
tive label values, similarly, are all very close to “−1”.
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coefficients vector S
!

new , and extract a new set of sparse features V
!

S
!

new

� �
, which is themost salient in the current frame. The old classifier

should be discarded and a new classifier should be initialized based on

the new sparse features V
!

S
!

new

� �
. Also, the target template should be

replaced with the current target (z1 → z0).
Notice that since the parameters of the Bayesian classifier are

updated continuously at a learning rate of λ, the information from the
former frames is properly utilized. However, when the correlation r is
low and the sparse features are replaced with new ones, we would
need to retrain the parameters for the new classifier. In order to utilize
the former information, we keep a feature window which contains
some of the positive and negative high-dimensional Haar-like features
from several former frames, and use them to retrain the new classifier
whenever sparse coding is carried out.

6. Experiment results

In this section, we perform experiments with our proposed method
(OSF) on 8 challenging public datasets: David indoor, Girl, Twinnings,
Occluded face, Tiger1, Tiger2, Cliffbar, and Sylvester. These sequences
cover most challenging situations in object tracking: heavy occlusion,
motion blur, in-plane and out-of-plane rotation, large illumination
change, scale variation and complex background. We compare our
tracking algorithm against 9 state-of-the-art methods: FCT [15], CT [1],
MIL [12], OAB [27], semiB [28], Frag [29], l1-track [30], TLD [31], and
Struck [32]. The results from these methods are already reported in [1]
and [15]. Each tracking task has been initialized by manually marking
the target object in the first frame. Tracking has been applied to se-
quences consisting of 4717 frames. Some visual results of the 8 datasets
are displayed in Fig. 3. All experiments are performed with a MATLAB
implementation on a common PC with an Intel Core i7, 3.40 GHz CPU
and 16 GB RAM, where we achieve 22.4 fps tracking speed on average.

The following parameters are fixed throughout our experiment and
are presented as follows. The dimension of the high dimensional
Haar-like features m = 2000, the threshold for the correlation r0 =
0.3, and γ in Eq. (3) is set to 0.1. The learning rate λ is a critical param-
eter and is typically set to 0.85, but is adjusted in the experiment for
different datasets. For example, if the appearance of targets changes
fast, a smaller λ is needed.

We did some investigation into the effect of the two parameters γ
and r0. These experiments are performed on the David indoor dataset.
From Fig. 3, we find that when γ = 0.1, the success rate is high, and
the selected features are sparse at this point. Fig. 4 shows that a higher
r0 leads to a higher success rate. This is because more feature updating
is performed, which demonstrate the effectiveness of our feature
updating strategy. However, this requires more sparse coding and can
significantly lower down the speed. We set r0 to 0.3, which improves
the performance and remains high processing speed at the same time.

6.1. Quantitative comparison

We evaluate our algorithm and 9 other approaches with two
evaluation metrics: center location error and success rate [33]. Success

rate is defined as, score ¼ area ROIT∩ROIGð Þ
area ROIT∪ROIGð Þ , where ROIT is the bounding

box of tracking and ROIG is the bounding box of ground truth. A tracking
result is considered success only when score N 0.5. Center location error
(CLE) is defined as the Euclidean distance between the central locations
Fig. 8. Tracking examples on the 8 data sets. Red bounding boxes denote our tracking results.
appearance change.(b) Tracking results on sequence Girl with rotations, pose change and hea
blur and rotations.(d) Tracking results on sequence Tiger1 with heavy occlusions and
change.(f) Tracking results on sequence Occluded face with heavy occlusions.(g) Tracking resu
results on sequence Twinnings with rotations and size change.
of the bounding box of tracking and the bounding box of ground truth.
Tables 1 and 2 show the comparison results of success rate and center
location error respectively.

Table 1 shows that our approach has achieved 100% success rate on
David indoor, Occluded face, Cliffbar and Sylvester. None of the other 9
approaches have achieved 100% accuracy on these sequences. Also, the
success rate of our approach on Girl, Twinnings, Tiger1 and Tiger2 is all
above 90%. Table 2 shows that the CLE of our approach is the best on
David indoor, Occluded face, Tiger1, Tiger2, Cliffbar and Sylvester, and
is the third best on Girl and Twinnings. It is observed that the
performance of the proposed method is overall superior to the other 9
state-of-the-art methods.

6.2. Discussion

6.2.1. Tracking speed
An evaluation of tracking speed of our approach is listed in Table 3.

We achieve an average speed of 22.4 fps (frame per second), and sparse
coding is carried out every 27 frames on average. The speed varies
between the 8 video clips because of different target sizes and different
rates of appearance change. If the appearance changes drastically,
e.g., the target in Fig. 8(b), more sparse coding process is required
during tracking. Compared with the simple classifier updating process,
the sparse coding process requires more computational costs. However,
these costs are alleviated by our adaptive feature updating strategy,
which is demonstrated in Fig. 5. In frame 41, e.g., the target is similar
to the target template (the correlation r = 0.37), thus we would only
need to update the parameters in the classifier. This process lasts until
frame 130, when the correlation is below 0.3 (r = 0.28). At this time,
we do the sparse feature selection process again, train a new classifier,
and replace the templatewith current target. It does not last long before
another sparse coding process is required in frame 155 (when r=0.15),
because this is a period when the target undergoes a rotation and the
appearance changes very fast. This shows that with the help of sparse
coding, we can utilize the most salient features and successfully track
the target against the drastic appearance change.

6.2.2. Effectiveness of sparse features
Sparse coding provides us with a method to find succinct represen-

tations of the original high-dimensional features. We demonstrate the
effectiveness of this method by analyzing our implementation on the
David indoor dataset. The dimension of the original features is 2000.
At the first frame, there are 195 positive samples and 33 negative sam-

ples. The label vector Y
!∈ℝ228�1 (contains 195 “+1” and 33 “−1”) is

represented approximately as a weighted linear combination of a

small number of “salient features”, refer to Eq. (2). The weight vector S
!

is solved by the sparse coding process. Most items in S
!

are zero, which
indicates that the corresponding feature has no response. Otherwise,
the corresponding features have its response values and are considered
salient. This is shown in Fig. 6. The horizontal axis shows that there are
2000 features, but only 175 of them have response, and the response
values vary.

We only retain the features that have response to build the sparse
features. Fig. 7 demonstrates that the selected sparse features are salient
enough and can almost reconstruct the original features. Ideally, all
values of red points in Fig. 7 should be exactly “+1”. However, we
discard most of the original features, which would certainly lead to
reconstruct errors. The average reconstruct error is 0.0023, which is
(a) Tracking results on sequence David indoor with illumination change, size change and
vy occlusions.(c) Tracking results on sequence Cliffbar with complex background, motion
pose change.(e) Tracking results on sequence Tiger2 with fast motion and pose
lts on sequence Sylvester with drastic illumination change and pose change.(h) Tracking



(a) Tracking results on sequence David indoor with illumination change, size change and appearance change

(b) Tracking results on sequence Girl with rotations, pose change and heavy occlusions

(c) Tracking results on sequence Cliffbar with complex background, motion blur and rotations

(d) Tracking results on sequence Tiger1 with heavy occlusions and pose change

(e) Tracking results on sequence Tiger2 with fast motion and pose change

(f) Tracking results on sequence Occluded face with heavy occlusions

(g) Tracking results on sequence Sylvester with drastic illumination change and pose change

(h) Tracking results on sequence Twinnings with rotations and size change
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low enough for us to represent the high-dimensional features with the
sparse features.

6.2.3. Robustness

6.2.3.1. Occlusion. Occlusion is one of the primary problems in object
tracking. Several of our tested video clips contain heavy occluded situa-
tions. For example, in Fig. 8(b), a man's face appears in front of the
woman's face for several frames around frame 465. In Fig. 8(f), a
woman use a book to block her face frequently. These heavy occlusions
often lead to drifting problems. In our approach, however,we can detect
the significant appearance change when heavy occlusion occurs, and
sparse coding is carried out to update the sparse features and adapt to
the occlusion situations.

6.2.3.2. Motion blur. Fast motion of target often leads to blurred target
appearance which is difficult to deal with in object tracking. The book
on the man's left hand in Fig. 8(c) moves so fast that the characters on
the book are blurred and unable to recognize. Many trackers fail in
this situation because they are unable to distinguish the target from
the background, especially in this sequence with such a complex
background. The proposed method can handle this situation well by
selecting the most discriminative features so that our classifier can
better separate the target from the background.

6.2.3.3. Rotation. Rotation is a very challenging situation because the ap-
pearance of the target can totally change during the process. In Fig. 8(b),
the target is originally the girl's face. However, as she turns around, we
can only see her hair and her face is totally unobservable. In Fig. 8(h),
the man rotates the box frequently, while different sides of the box
are not similar at all. Our tracker is still able to track the target correctly
on such situations due to two facts: 1) our algorithmwould replace the
old features with new ones when appearance changes drastically,
2) negative samples are used to train the classifier, which helps prevent
drifting to the background.

6.2.3.4. Complex background. The sequence Cliffbar is challenging not
only because of the target rotation, but because of the complexity of
the background. From Fig. 8(c) we can see that the background is very
similar to the target.Many trackers fail because theymay consider back-
ground pixels as foreground object through straightforward update
schemes. Our tracker tracks the target accurately because the selected
sparse features are salient enough to discriminate the foreground target
from the background.

6.2.3.5. Other challenging situations. Besides the challenges mentioned
above, there also lie some other challenging problems in these datasets,
such as pose change, illumination change, and size change. For example,
pose change almost occurs in every datasets. Illumination change also
challenges the robustness of trackers. In Fig. 8(a), David walks from a
dark room to another room with a lamp. In Fig. 8(g), the Sylvester toy
moves right under a lamp, which causes severe illumination change.
Last but not least, the size of target changes constantly due to the
distance change between the target and the camera. Our tracker can
successfully track the targets throughout these sequences as it can
extract salient sparse features and update the classifier online.

7. Conclusions

In this paper, we propose and demonstrate an efficient and
robust tracking method based on online-learned sparse features. High-
dimensional Haar-like features are extracted from the target, and are
then reduced to low-dimensional discriminative features by sparse
coding. An adaptive feature updating strategy is also introduced to con-
trol the rate for sparse coding. Finally, the target search is formulated as
a binary classification via a naive Bayesian classifier. Experiment results
on several challenging video clips demonstrate the effectiveness of our
tracker.

Our future work will focus on the color information and scale prob-
lem. If necessary, we will also introduce more effective classifiers.
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