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Abstract

Children with developmental disabilities such as childhood apraxia of speech (CAS) require repeated intervention sessions with a
speech therapist, sometimes extending over several years. Technology-based therapy tools offer the potential to reduce the demanding
workload of speech therapists as well as time and cost for families. In response to this need, we have developed “Tabby Talks,” a
multi-tier system for remote administration of speech therapy. This paper describes the speech processing pipeline to automatically detect
common errors associated with CAS. The pipeline contains modules for voice activity detection, pronunciation verification, and lexical
stress verification. The voice activity detector evaluates the intensity contour of an utterance and compares it against an adaptive thresh-
old to detect silence segments and measure voicing delays and total production time. The pronunciation verification module uses a gen-
eric search lattice structure with multiple internal paths that covers all possible pronunciation errors (substitutions, insertions and
deletions) in the child’s production. Finally, the lexical stress verification module classifies the lexical stress across consecutive syllables
into strong–weak or weak-strong patterns using a combination of prosodic and spectral measures. These error measures can be provided
to the therapist through a web interface, to enable them to adapt the child’s therapy program remotely. When evaluated on a dataset of
typically developing and disordered speech from children ages 4–16 years, the system achieves a pronunciation verification accuracy of
88.2% at the phoneme level and 80.7% at the utterance level, and lexical stress classification rate of 83.3%.
� 2015 Elsevier B.V. All rights reserved.

Keywords: Speech therapy; Automatic speech recognition; Pronunciation verification; Computer aided pronunciation learning; Prosody
1. Introduction

Language production and speech articulation can be
delayed in children due to developmental disabilities and
http://dx.doi.org/10.1016/j.specom.2015.04.002

0167-6393/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +974 3365 8817.
E-mail addresses: mostafa.shahin@qatar.tamu.edu (M. Shahin), beena.

ahmed@qatar.tamu.edu (B. Ahmed), parnandi@tamu.edu (A. Parnandi),
vkarappa1@tamu.edu (V. Karappa), jacqueline.mckechnie@sydney.edu.
au (J. McKechnie), kirrie.ballard@sydney.edu.au (K.J. Ballard), rgutier@
tamu.edu (R. Gutierrez-Osuna).
neuromotor disorders such as childhood apraxia of speech
(CAS) (Dodd, 2005). Treatment for CAS involves extended
one-on-one therapy with a speech language pathologist
(SLP), which can be difficult to manage due to time con-
straints and expenses (Adhoc Committee on CAS,
2007b). Children often have difficulty monitoring their
own speech and self-correcting their errors; for this reason,
they benefit from repeated practice with producing the
sounds as well as listening and evaluating their attempts
(Ballard et al., 2010). Early intervention can reduce the
negative effects of childhood speech-language disorders
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such as academic difficulties (Adhoc Committee on CAS,
2007b). Unfortunately publicly-funded services are often
under-resourced. This leads to long wait periods for ses-
sions, which rarely are comprehensive, more often than
not are cursory and provide limited interaction with the
therapist (Theodoros and Russell, 2008). Private services
are expensive, forcing parents to budget the amount of
therapy sessions delivered to the child. Children with
speech disorders in rural and remote areas or underdevel-
oped countries may be at a disadvantage because of poor
access to speech therapy services, which tend to be concen-
trated in major cities (Theodoros, 2008). Children with
CAS benefit from both phonetic- and linguistic-based
treatment approaches (Ballard et al., 2010; Gillon and
Moriarty, 2007; Strand et al., 2006). As these children gen-
erally require intensive treatment that starts early and con-
tinues throughout childhood (Forrest, 2003), their
treatment protocol benefits significantly from technology
aids. Interactive and automatic speech monitoring tools,
which can be used remotely at the child’s home, offer a
practical, adaptive and cost-effective alternative to face-
to-face intervention sessions for children with CAS.

In previous work (Parnandi et al., 2013) we described
the system architecture of an automated therapy tool for
CAS. The proposed system, “Tabby Talks,” consists of
(1) a clinician interface where the therapist can create and
assign exercises to different children and monitor each
child’s progress, (2) a tablet-based mobile application
which prompts the child with the assigned exercises and
records the child speech; and (3) a speech recognition
engine running on a server that receives the recorded
speech, analyzes it and provides the assessment results to
the clinician. This paper describes the speech processing
engine within “Tabby Talks,” which was designed to iden-
tify the three main types of errors commonly associated
with CAS: groping errors (delay in sound production),
articulation errors (incorrect pronunciation of phones)
and prosodic errors (inconsistent lexical stress) (Crary
et al., 1984; Nijland et al., 2002; Stackhouse, 1992). The
module consists of three components, Voice Activity
Detection (VAD), Pronunciation Verification (PV), and
Lexical Stress pattern Verification (LSV) (Shahin et al.,
2012). VAD uses an energy-based algorithm with a silence
threshold to identify non-speech frames at the start of the
recording and determine delays in production. The PV
algorithm generates a search lattice for each prompted
utterance with alternative paths for likely insertion, dele-
tion or substitution errors. A speech recognizer uses the
generated lattice for decoding. Finally, the LSV algorithm
classifies lexical stress patterns in multisyllabic words into
two categories: strong–weak (SW) and weak–strong
(WS), and compares them against the expected pattern.

The main contributions in this paper include: (1) the

application of automatic speech recognition (ASR) tools to
assess errors occurring in pediatric speech sound disorders,

(2) a detailed modeling of errors associated with CAS using
speech processing modules and algorithms, (3) a generic

phoneme level lattice structure for use in identifying

pronunciation errors and (4) a speaker independent, multi-

syllabic lexical stress classifier.

The remainder of this paper is structured as follows.
Section 2 provides background material on childhood
apraxia of speech and reviews previous work on speech
recognition based speech therapy tools. Section 3 describes
the system architecture of ‘Tabby Talks’. The speech cor-
pus used is presented in Section 4. Sections 5–7 illustrate
the method, experiments and evaluation of the three main
components of the system (VAD, PV and LSV). Finally,
Section 8 draws conclusions from the study and provides
directions for future work.
2. Background

2.1. Childhood apraxia of speech

Developmental communication disorders, including
speech sound disorders, are one of the most common rea-
sons for pediatric referrals (Harel et al., 1996). These disor-
ders are difficult to diagnose since they are highly co-
morbid, with many children not falling within a single
diagnostic cluster (Newbury and Monaco, 2010). Among
these disorders, childhood apraxia of speech (CAS), also
known as developmental verbal dyspraxia, can lead to a
serious communicative disability (Adhoc Committee on
CAS, 2007b). Current estimates of children suffering from
CAS range from 3.4% to 4.3% in the US (Delaney and
Kent, 2004). Starting appropriate intervention at an early
age is critical to develop intelligible speech and lay the
foundations for the development of language and literacy
(Forrest, 2003).

CAS is a neurological disorder that interferes with an
individual’s ability to correctly pronounce sounds, syllables
and words; the area of the brain responsible for sending
motor commands is damaged or not fully developed, which
affects the planning or specification of movements for accu-
rate speech production. CAS represents a loss in the ability
to consistently position and coordinate speech articulators
(face, tongue, lips, jaw) and sequence those sounds into syl-
lables or words (Shriberg et al., 1997). In a 2007 position
statement (Adhoc Committee on CAS, 2007a), the
American Speech Language Hearing Association (ASHA)
specified three key behaviors associated with CAS:

(1) inconsistency in production of speech sounds in
words across repeated attempts,

(2) difficulty transitioning between sounds and syllables
to form a fluently and accurately produced word
(articulatory struggle), and

(3) inappropriate prosody (lexical stress patterns) result-
ing in robotic-like speech, with each syllable pro-
duced with equal stress.
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2.2. Speech technology tools in disordered voice and speech

therapy

To the best of our knowledge, despite the extensive work on

ASR, limited work has been reported on the development of

speech therapy tools incorporating ASR capabilities for use
in pediatric speech sound disorders such as CAS. This can
be partly attributed to the fact that ASR still exhibits higher
error rates for typically developing children due to varia-
tions in vocal tract length, formant frequency, pronuncia-
tion and grammar. The limited work with CAS includes
an ASR system for the automatic assessment of CAS pro-
posed in Hosom et al. (2004), which was tested on two par-
ticipants. The system automatically computes two
diagnostic markers of suspected CAS: (1) Lexical Stress
Ratio, a weighted composite of amplitude area, frequency
area, and duration in the stressed compared to the
unstressed vowel, and (2) Coefficient of Variation Ratio,
the average normalized variability of durations of pause
and speech events in conversational speech. There has how-
ever been interest in the use of ASR to assist with a range of
other difficulties including (1) pathological voice, (2) dysar-
thria and recently (3) learning and/or hearing difficulties.

Automated systems have been used to detect the pres-
ence of pathological voice, specifically vocal fold (i.e.,
laryngeal) disorders (Arias-Londoño et al., 2010; Fraile
et al., 2009; Szaleniec et al., 2007; Wielgat et al., 2008),
and assess the intelligibility of subjects with dysglossia
and dysphonia to assist in rehabilitation (Maier et al.,
2010). In these disorders, the speech production organs
are affected, which results in atypicalities in the voice.
Thus, the focus has been on automatically detecting voice
alterations by averaging local perturbations. Jitter (per-
turbations in pitch) and shimmer (perturbations in ampli-
tude) are used to assess the severity of voice pathologies
(Gelzinis et al., 2008; Manfredi et al., 2000). Good results
have been obtained using the differential Teager energy
operator (Hansen et al., 1998) and Mel frequency cepstral
coefficients (Dibazar et al., 2006; Godino-Llorente and
Gomez-Vilda, 2004) as well as time–frequency decom-
positions (Umapathy et al., 2005) and nonlinear dynamics
(Henriquez et al., 2009). The autocorrelation method was
found to perform the best in tracking pitch perturbations
in different pathological voices as it resulted in the least
amount of errors (Seung-Jin et al., 2007).

ASR systems have been developed for dysarthria, a
motor speech disorder characterized by weakness, paraly-
sis, or poor coordination of the muscles responsible for
producing speech resulting from neurological injury
(Morales and Cox, 2009). Speech technology has been
implemented to detect the disorder (DiCicco and Patel,
2008), assess speech intelligibility (Falk et al., 2012;
Middag et al., 2011) and control assistive technology
(Hasegawa-Johnson et al., 2006; Rudzicz, 2010). In
DiCicco and Patel (2008), the authors present a system to
automatically detect different acoustic landmarks in dys-
arthric speech to differentiate it from unimpaired speech.
Kim et al. (2015) proposes sentence-level features that cap-
ture abnormal variation in the prosodic, voice quality and
pronunciation aspects of pathological speech to improve
intelligibility classification. In DiCicco and Patel (2010), 3
machine learning classifiers were used to recognize the pro-
sodic manipulations in dysarthria to control assistive tech-
nology using voice. Ortho-Logo-Paedia (OLP) (Öster et al.,
2002) uses ASR to provide immediate word-error-rate
feedback and assist in identifying any confusability pat-
terns in its training program to allow severely dysarthric
people with motor disabilities to control assistive technol-
ogy (Green et al., 2003; Hawley et al., 2003).

Due to factors such as low intelligibility, limited phone-
mic repertoire and high variability in speech within and
across patients, conventional speaker adaptation algo-
rithms perform poorly on dysarthric speakers. Baseline
word accuracy rates for the ASR used in the
STARDUST project dropped from 100% with typically
developing speech down to 87% when used with speech
from severely dysarthric adults (Green et al., 2003).
Similar (if not worse) findings were reported with
Vocaliza, a Spanish speech therapy application, that uses
ASR to decode user utterances, decide which word
sequence has been pronounced, and provide feedback to
the user (Rodrı́guez Dueñas et al., 2008; Saz et al., 2009).
When tested on children and young adults with different
levels of dysarthria, Vocaliza’s word accuracy rate drops
from 96.7% for typically developing speech to 66.8% for
disordered productions (Saz et al., 2009). The Speech
Training, Assessment, and Remediation system (STAR)
uses ASR to identify single letter utterances to assist in
treating children with articulation problems (Bunnell
et al., 2000). Testing this system on Consonant–Vowel–
Consonant (CVC) words from dysarthric speakers showed
a strong correlation between perceptual and ASR ratings
for utterances containing substitution errors, but low cor-
relation for correctly articulated utterances (Van Nuffelen
et al., 2009). To improve speech recognition rates, given
the difficulties in collecting sufficient amounts of impaired
speech recordings, speaker adaptation techniques targeting
dysarthric speech are being employed. Sharma and
Hasegawa-Johnson (2013) extracts a ‘background’ model
of the dysarthric speaker’s general speech characteristics
whereas (Rudzicz, 2012) implements acoustic-to-artic-
ulatory inversion to estimate positions of the vocal tract
in dysarthric speakers to adapt unimpaired speech used
in the ASR training.

Learning tools for children are also now using ASR in a
similar approach to that used in the speech therapy systems
described above. An interactive literacy tutor developed at
the University of Colorado uses an ASR to recognize chil-
dren’s speech during oral reading. The tool exploits the
reduced language uncertainty in the read-aloud task (i.e.,
the prompts are known) to improve the language modeling
(Hagen et al., 2007). ASR has also found application for
use in a teaching system (SPECO) for hearing-impaired
children (Vicsi et al., 1999).



Fig. 2. Description of the speech analysis process and its three main
assessment blocks: voice activity detection, pronunciation verification, and
lexical stress verification.
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3. System description

As illustrated in Fig. 1, Tabby Talks consists of three
major components: a fleet of mobile clients running on
tablets, a clinician’s therapy management interface, and a
server running the speech analysis engine. The system (1)
prompts the child to complete predetermined exercises on
the tablet; (2) records speech productions and uploads
them into the server; (3) applies speech analysis algorithms
to identify production errors; (4) provides feedback to the
child and reports to the therapist detailing the child’s pro-
gress, and (5) allows the therapist to remotely create or
modify exercises individually based on each child’s perfor-
mance. Details of the system implementation have been
published elsewhere (Parnandi et al., 2013); in this paper
we focus on the speech analysis engine.

The goal of the speech analysis module is to identify
errors in the child’s speech associated with the key behav-
iors observed in CAS: articulatory struggle, inconsistent
productions and inappropriate prosody; see Table 1. For
this purpose, the speech analysis module contains three
main components, a Voice Activity Detector (VAD), a
Pronunciation Verification (PV) component and a Lexical
Stress pattern Verification component (LSV).

Fig. 2 presents a block diagram of the complete speech
analysis process. The speech signal is first passed through
the VAD module to detect silence segments and then calcu-
late voicing delays and total production time. The PV com-
ponent compares the speech signal against the prompt to
verify the correctness of the production. Only correct pro-
nounced words are passed to the LSV component to assess
if the child’s stress pattern matches the desired pattern for
the prompted word. A report generator collates outputs of
all these components and generates a report to be sent back
to the therapist.
Fig. 1. General overview of the remote speech therapy system showing the
server, mobile clients, and remote therapy management system.

Table 1
Summary of errors associated with CAS behavior.

CAS behavior Observed errors

Articulatory struggle Delay in onset of sound production,
Inconsistent production Number of incorrect productions in
Inappropriate prosody Mismatch in lexical stress pattern
4. Speech corpora

We trained and evaluated the algorithms in our speech
processing engine using two separate speech datasets. Our
training and development corpus (OGI) was collected at
the Oregon Graduate Institute of Science & Technology.
This marked corpus contains prompted speech for 205 iso-
lated words, 100 general sentences, and 10 digit strings
from 1100 typically developing children ranging from ages
4 to 16 years (around 60 h). Two individuals at the Oregon
Graduate Institute of Science & Technology subsequently
verified each utterance independently during data collec-
tion (Shobaki et al., 2000).

Our testing dataset (DOH) was collected from a speech
therapy clinic in Doha, Qatar from 4 typically developing
children and 2 children with disordered speech. Each child
pronounced the 205 isolated words from the OGI corpus;
each pronounced word was then marked as correct or
incorrect by a speech therapist. The DOH data set was used
to evaluate all three speech processing modules.
5. Voice Activity Detection (VAD)

5.1. Method

The goal of this module is to calculate two important
measures used in the assessment of CAS: delay in voice,
and absence of voice, both of which indicate the presence
of “articulatory struggle”. The VAD module is used to dis-
criminate between speech and silence segments in the
child’s production for use in computing both of these mea-
sures. Outputs from the VAD module are also used to com-
pute the total speech production time.

A significant amount of work has been done on VAD,
including algorithms based on zero crossing rate (Rabiner
Speech module component

absence of production Voice activity detector
utterance Pronunciation verification

Lexical stress pattern verification



Fig. 3. The accuracy of delay in voice and total production time as a
function of r value.
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and Sambur, 1975), pitch estimation (Tucker, 1992), auto-
correlation (Wu and Wang, 2006) and full-band and sub-
band energies (Woo et al., 2000). Most of these techniques
focus on identifying speech in the presence of high levels of
background noise. In our context, however, the child
records speech either in the clinic or at home, so we can
assume a high signal–noise ratio. Under these conditions,
intensity-based VADs have been found to achieve good
results (Kristjansson et al., 2005). We therefore imple-
mented a simple intensity-based VAD algorithm controlled
by three parameters: the minimum silence duration, the
minimum speech duration and the silence threshold. The
minimum silence duration is used to eliminate short silence
segments that can naturally occur during speech, e.g. clo-
sure duration in the production of plosive phonemes
(Crystal and House, 1988). The minimum speech duration
is used to eliminate short noise bursts during silence inter-
vals (e.g. microphone noise, door closing, knocking), which
would otherwise be misidentified as speech. Finally, the
silence threshold is used to perform the silence/speech clas-
sification of each segment. The minimum silence duration
and minimum speech duration are fixed and have typical
values of 0.3 s and 0.1 s, respectively. In contrast, the
silence threshold differs for each recording and is estimated
individually for each speech file. The silence threshold (ST)
is calculated by adding a percentage of the intensity
dynamic range (to account for any unexpected increase in
background noise) to the minimum intensity value (which
represents the minimum silence intensity value) over the
speech file. ST is thus given by

ST ¼ P ð05Þ þ r � ½P ð95Þ � Pð05Þ� ð1Þ

where r is a percentage while P(05) and P(95) are the 5th
and 95th percentile intensity values, respectively. The 5th
and 95th percentile intensity values were used instead of
the minimum and maximum intensity values to reduce
sensitivity to outliers. The value of r was determined
experimentally using a development dataset.

The VAD algorithm works as follows. First, the speech
file is divided into 10 ms non-overlapped frames and the
intensity of each frame is calculated to estimate the silence
threshold value according to Eq. (1). The intensity of each
frame is then compared against the silence threshold.
Frames above and below this threshold are marked as
speech and silence, respectively. Speech intervals shorter
than the minimum speech duration are removed and their
neighboring silence intervals merged. In a final step, silence
intervals shorter than the minimum silence duration are
removed and their neighboring speech intervals joined
together. The delay in voicing is given by the time elapsed
between the start of the utterance and the start of the first
speech interval (Boersma, 2001).

5.2. Speech datasets

10% of the DOH files were randomly selected as a devel-
opment set to tune the parameter r. The system was then
evaluated using the rest 90% of the DOH data set. Each file
in both the development and test sets was manually labeled
into silence and speech segments to generate ground truth
of voicing delay and accurate speech production time.
5.3. Experiments and evaluation

As the VAD is used to assess voicing delay and the total
production time in the child’s speech, we chose evaluation
criteria for the VAD that corresponded to these two mea-
sures. The calculated voicing delay and total production
time were thus marked as correct if the difference with
ground truth was less than 0.1 s to account for human
error in perceptually marking the data (Reichardt and
Niese, 1970). We first used the OGI development set to
determine the value of r in (1) that resulted in the highest
accuracy in voicing delay and the total production time.
As shown in Fig. 3 the highest accuracy of both the delay
in voice and total production time measurements was
obtained at r of 0.2. The system was then evaluated with
the DOH test set where the system correctly calculated
voicing delays in 96.6% of the test files and total produc-
tion time correctly in 94.8% of the test files.
6. Pronunciation Verification (PV)

6.1. Method

The PV module determines whether the child’s utterance
matches the prompt given in the therapy exercise and esti-
mates the number of incorrect productions (i.e., phones).
Errors made by the child are marked on the phoneme level.
There are two main approaches for phone-level pronuncia-
tion verification. The first approach, the posterior proba-
bility PV, computes a confidence score for each phone in
the expected phone sequence and accepts or rejects it
according to certain threshold. The other method, the lat-
tice-based PV creates a mispronunciation lattice and/or



Fig. 4. Block diagram of the posterior-based Pronunciation Verification
module (PPV).
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dictionary and aligns the produced speech to the best pho-
neme sequence in the lattice. Most lattice based PV algo-
rithms need pre-defined mispronunciations rules that
depend on the application (Duan et al., 2014; Harrison
et al., 2009; Meng et al., 2010). Although this method
has been used successfully in different applications espe-
cially for second language learning, creating similar rules
in speech therapy applications is non-trivial. The develop-
ment of these rules requires analysis of extensive recordings
to develop a list of expected mispronunciations; currently
there are limited recordings of the required duration for
disorder-specific impaired speech. Hence, the generic pos-
terior probability is still used widely, specifically in measur-
ing quality and mispronunciation detection in impaired
speech (Bone et al., 2013; Le and Provost, 2014;
Pellegrini et al., 2014). In our algorithm we modify the lat-
tice-based phone-level pronunciation verification to make
it generic, thus precluding the need for any predefined rules
of the custom language model. For comparison, we also
implemented the posterior-based PV algorithm employed
in Vocaliza (Rodrı́guez Dueñas et al., 2008), which com-
putes the posterior probability for each phoneme and com-
pares it against a decision threshold. Details of both
algorithms are provided next.

6.1.1. Posterior based PV (PPV)

Several confidence measure techniques are used in ASR
systems (Jiang, 2005), with those based on posterior
probability being the most widely used for pronunciation
verification (Franco and Neumeyer, 1996; Jing et al.,
2007; Saz et al., 2009; Witt and Young, 2000). There are
different methods to estimate the posterior probability, in
Witt and Young (2000) the posterior probability is
approximated from the likelihood ratio between the target
phoneme obtained from the force alignment and the maxi-
mum likelihood phoneme obtained from phoneme loop
recognition. For an accurate estimation of the posterior
probability we implemented the method proposed by
Wessel et al. (2001), which is similar to the method later
used in Vocaliza (Yin et al., 2009). Here the posteriors
are estimated using a word graph generated at recognition
time; in our case, the word graph is replaced with a phone
graph v constructed from a bi-gram phone language model.
The phone graph is a directed, acyclic, weighted graph
where each arc ai is defined by the tuple ðpi; si; ei;AiÞ, pi is
the hypothesized phone attached to ai, si and ei are the
starting and ending time of ai, respectively, and Ai is
the acoustic score calculated from the decoder. Each
graph has two nodes to denote the start (SENT-START)
and the end (SENT-END) of the utterance. The complete
path Q is defined between the SENT-START and
SENT-END nodes, and consists of n connected arcs as
Q ¼ f½p1�

e1

s1
; ½p2�

e2

s2
; . . . ; ½pn�

en
sn
g. The probability of any com-

plete path Q given the phone graph v can be calculated as:

P ðQjvÞ ¼
Yn

i¼1

Ai � pðpijpi�1Þ ð2Þ
where pðpijpi�1Þ is the score from the bi-gram language
model. Given the phone graph v, the posterior probability
of any arc a can be calculated as:

PðajvÞ ¼
P
8Q;a�QP ðQjvÞ
P
8QPðQjvÞ ð3Þ

where the numerator represents the total probability of all
complete paths passing through a, and the denominator
represents the total probability of all complete paths in
the graph.

Fig. 4 illustrates how the confidence measure is used to
verify the correct pronunciation of any phone in the
prompt word. First, the phone sequence of the prompt
word is extracted using the CMU pronunciation dic-
tionary, and then forced alignment is performed on the
speech signal. The output is a set of segments, each segment
labeled with the phone symbol and the starting and ending
time. A bi-gram phone decoder is then used to generate a
phone graph. The speech signal is divided into frames of
25 ms with 15 ms overlap and 12 Mel Frequency Cepstral
Coefficients (MFCC) plus energy component along with
delta and delta-delta features extracted for each frame to
produce a 39-dimensional feature vector per frame. The
acoustic models are Context Dependent (CD) HMMs con-
sisting of multi-mixture tied-state tri-phones and were used
in both the forced alignment and phone decoding.

To compute the confidence score of each phone, the
algorithm accumulates the posterior probability of all the
arcs in the phone graph with the same phone symbol p that
intersect with the median time frame of the given segment.
The confidence score is then compared to an empirically-
determined decision threshold, and all the phones with a
score below the threshold are rejected. If one or more of
the utterance phones are rejected, the whole utterance is
considered to be incorrect.

Though this method works efficiently for substitution
errors, it is unable to detect insertion or deletion errors
since the speech signal is aligned to the expected phone
sequence of the prompt. As an example, if the child inserts
a phone between two correctly pronounced phones, the
aligner will assign the inserted phone frames to one of
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the neighboring phones or share it between them; these
inserted frames may lower the confidence score of one or
both of the neighboring phones below the decision thresh-
old and lead to a false rejection. On the contrary, if the
confidence score of these phones is still above the decision
threshold, the utterance will result in false acceptance.
Likewise, if the child does not pronounce one of the
expected phones, the aligner will assign some of the neigh-
boring pronounced phone frames to the deleted phone; this
also may affect the confidence score of these phones and
cause correctly produced phones to be rejected.

6.1.2. Lattice-based PV (LPV)

To address the limitation of posterior-based PV and
detect insertions and deletions of phones, our proposed
PV uses a search lattice that considers different competing
paths. Pronunciation verification by decoding a generated
lattice has been used in some previous works such as in
Hafss (Abdou et al., 2006) where a search lattice was gen-
erated according to previously determined probable mis-
pronunciation rules to identify errors in Quranic Arabic
recitation. In Black et al. (2007), a disfluency detector, a
word-level search lattice was created based on a pronuncia-
tion variant dictionary constructed by expert linguists that
used a garbage model at the start and end of the whole lat-
tice to collect any insertions made before or after the word.
Our proposed system differs from these existing systems due

to three enhancements. First, both of these approaches

require prior information about the expected pronunciation

errors whereas our proposed lattice structure is generic and
no prior information is needed. Second, we introduced the

garbage model between and parallel to phonemes to detect

insertion or substitution errors made by the child at the phone

level, instead of adding it at the word level. Lastly, we used

penalty values to control the acceptance/rejection rate of

the garbage model in the system.
Our proposed approach is illustrated in Fig. 5. In the

first step, the prompted word is phonetically transcribed
to obtain the expected phone sequence. Next, the lattice
generator uses the phone sequence to generate a search lat-
tice, which is then fed to the ASR engine. The generated
lattice is then fed to the speech recognizer together with
the extracted feature vector from the utterance. Finally
the speech recognizer output is matched against the
Fig. 5. Block diagram of the Lattice-based Pr
expected phone sequence to give a decision on each phone
and on the whole utterance as well.

The generated lattice is flexible enough to cover all pos-
sible pronunciation errors (insertion, deletion and sub-
stitution) by adding alternative paths to the correct path
for each of the expected errors. The deletion path can be
represented by a null arc to allow the recognizer to skip
phone nodes during decoding, while the garbage node is
used as an alternative to collect phones other than the
expected one (substitution errors). A garbage loop is also
added between two consecutive phones to collect inserted
phones frames. Fig. 6(a) shows an example of the lattice
for the word “chair.” The terms PG and PD denote the
penalties attached to the garbage and deletion arcs, respec-
tively; these penalties are added to prevent the recognizer
from skipping phones or aligning speech to the garbage
node unless the fit is better than the correct path. The gar-
bage node is composed of all the phones, connected in par-
allel, as shown in Fig. 6(b).

Here also the 39-dimension MFCC feature vector is
extracted for each frame. The feature vector is then fed
to the ASR engine along with the created lattice and the
acoustic models to generate a sequence of phones. The
acoustic models used are typical to the ones used in the
PPV method, whereas the garbage model consists of single
mixture mono-phones to reduce the complexity and speed
up the recognition process. We used a phone-loop instead
of an n-gram phone language model trained on correct
words as the children with disorder most probably produc-
ing inconsistent phone sequence. The output phone
sequence is then compared to the expected phone sequence:
if matched, the utterance is marked as correct; otherwise it
is marked as incorrect. Thus an utterance is marked as
incorrect even if one phoneme is recognized as being
incorrect.

6.2. Speech datasets

The PV algorithms were trained and developed using
705 speakers of age range 4–10 years (the target age of
our application) from the OGI dataset. The PV acoustic
models were trained using a training set of correctly-pro-
nounced utterances (isolated words and full sentences)
from 670 speakers (around 30 h). A development set of
onunciation Verification algorithm (LPV).



Fig. 6. (a) Example of the search lattice for the word “chair” /CH/ /EH/ /R/, where Garb denotes the garbage node, and PD and PG are the penalties
attached to the deletion and garbage arcs consecutively. (b) Construction of the garbage node.
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only correctly-pronounced isolated words from 35 different
speakers was used to tune and determine the different
parameters (the decision threshold used in the PPV model,
the insertion and deletion penalties in the LPV model). The
system was then evaluated using the DOH test set.

6.3. Experiments and evaluation

We performed three different experiments to compare
the two PV algorithms (posterior-based and lattice-based)
on a battery of performance measures. Verification labels
were categorized into 4 types.

– True Positive (TP): when correctly pronounced phones/
utterances were labeled as correct,

– True Negative (TN): when mispronounced phones/ut-
terances were labeled as incorrect,

– False Positive (FP): when mispronounced phones/utter-
ances were labeled as correct, and

– False Negatives (FN): when correctly pronounced
phones/utterances were labeled as incorrect.

Using these rates, we computed four different perfor-
mance measures: the overall classification rate (CR), preci-
sion, recall, and the F-measure:

CR ¼ TPþ TN

TPþ TNþ FPþ FN
ð4Þ

Precision ¼ TP

TPþ FP
ð5Þ

Recall ¼ TP

TPþ FN
ð6Þ

F ¼ 2� Precision�Recall

PrecisionþRecall
ð7Þ
Fig. 7. Example of error generation process for the word ‘Lifeboats.’
First, we generate a correct (expected) phone sequence through transcrip-
tion. In a second step, we amend the expected phone sequence by
introducing substitution errors with /L/ and /B/ replaced with /M/ and /P/,
respectively. Likewise, we insert /EY/ and /OY/ to generate deletion
errors; neither /EY/ nor /OY/ were present in the speech production but
are now added to the amended expected phone sequence. Finally, we
remove the pronounced phone /AY/ from the transcription and so its
production is now considered an insertion error (i.e. not expected but
pronounced).
6.3.1. Experiment 1

In the first experiment, we compared the performance of
both pronunciation-verification algorithms using the OGI
development set. All the words in this dataset had been cor-
rectly pronounced, so we generated different error types
(insertion/deletion/substitution) by randomly changing
30% of the expected phone sequence produced by the pho-
netic transcriptor (the front end of both systems). Fig. 7
illustrates the error generation process. We generated
errors from the words in the OGI development set and
tested the two PV algorithms using only generated
substitution errors (SUB) and then using generated
substitution, deletion and insertion errors (SDI). Results
for both algorithms are summarized in Table 2. The deci-
sion threshold for PPV and the penalties PG and PD in
the lattice of LPV were selected to balance TP and TN
rates in the OGI development set. The influence of these
values will be illustrated in the next experiment.

The results in Table 2 show that when only substitution
errors are considered, the performance of both algorithms
is comparable, with a marginal advantage for PPV.
However, when insertion and deletion errors are also con-
sidered, the accuracy of PPV decreases significantly for the
four performance measures; in contrast, the performance



Table 2
Performance of LPV and PPV using OGI development set with
substitution-only generated errors (SUB) and substitution, deletion and
insertion generated errors (SDI).

SUB (%) SDI (%)

LPV PPV LPV PPV

Classification rate 87.4 89.8 88.2 79.9
Precision 92.1 92.5 92.4 85.2
Recall 92.0 94.7 90.4 85.7
F-measure 92.0 93.6 91.4 85.5

Fig. 8. The effect of changing the decision threshold on the CR and the
Recall of both TP and TN in the PPV method.
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of LPV remains stable when allowing insertion and dele-
tion errors. The superior performance of LPV can be
attributed to the presence of alternate arcs in the lattice.

6.3.2. Experiment 2

In our second experiment, we analyzed the effect of the
PPV decision threshold and the LPV penalty terms (PG
and PD) on system performance, measured at the utter-
ance level instead of the phone level. In a TP utterance,
a correct utterance is marked correct if all the pronounced
phonemes are evaluated as correct, whereas in a FN utter-
ance, a correct utterance is marked incorrect if one or
more of the pronounced phonemes were evaluated as
incorrect. Similarly in a TN utterance, an incorrect utter-
ance is marked incorrect if one or more of the pro-
nounced phonemes of utterance were rejected, whereas
in a FP utterance, an incorrect utterance is marked cor-
rect if all the pronounced phonemes were evaluated as
correct. As the whole utterance is rejected even if only
one phoneme in it is rejected, it is possible that in a FN
utterance, the utterance is marked as incorrect because
only one phoneme in the whole utterance is misrecognized
as incorrect; this may lead to a higher error on the utter-
ance level than the phone level.

As in this experiment we wanted to study the effect of
changing the decision threshold on both the acceptance
and rejection rate of the system, we calculated the recall
of both TP and TN separately. Varying the TP recall value
led to a change in the system’s true acceptance rate while
varying the TN recall value resulted in a corresponding
change in the true rejection rate. The recall of TP was calcu-
lated using Eq. (6) while the recall of TN was calculated as:

Recall of TN ¼ TN

TNþ FP
ð8Þ

We performed the experiment on the OGI development
set using two separate scenarios. In the first scenario, each
utterance was marked as being correctly pronounced and
matched with the corresponding PV output label. Thus
all utterances accepted by the PV system resulted in a count
of TP and all utterances rejected resulted in a count of FN.
In the second scenario, the marked labels of the OGI devel-
opment set were modified to generate different error types
(insertion, deletion and substitution) as explained in
Fig. 7 and re-matched with the corresponding PV output
label. Thus all the simulated wrong utterances rejected by
the PV system provided a count of TN and all accepted
utterances a count of FP.

Fig. 8 summarizes the results for the PPV method in
terms of recall of TP and TN and CR for different values
of the PPV decision threshold. As shown, increasing the
decision threshold makes the system more restrictive (pho-
nemes need a high confidence score for acceptance) and
leads to a decrease in TP rate and an increase in TN rate.

Fig. 9 summarizes the results for the LPV algorithm as a
function of the deletion and garbage penalties PD and PG.
Decreasing both penalty terms increases the probability of
the garbage and deletion paths in the search lattice and
decreases the acceptance rate of the system, thus increasing
TP and decreasing TN.

These results illustrate how the decision threshold (PPV
method) or the PG and PD parameters (LPV method) can
be used by the therapist to determine how strictly the sys-
tem should labels utterances. As an example, if the system
was to be used with a child who had severe speech impair-
ment, the therapist could reduce the threshold to provide
positive reinforcement instead of accurate verification. In
contrast, in the case of a child who has been performing
the exercises for a significant time, the therapist could
adjust the threshold to provide accurate verification to
track the child’s performance over time. This feature can
be controlled better in LPV than in PPV as we have 2
parameters which can be adjusted together to reach the
desired behavior without significant loss in CR.

6.3.3. Experiment 3
In a third experiment, we evaluated both PV algorithms

on the DOH test set. Here too the whole utterance was
evaluated and TP, FP, TN and FN labels were identified.
The decision threshold of PPV and PG and PD of the
LPV are fixed to the values that gave the best balance
between TP and TN in experiment 2. Results are summar-
ized in Table 3. These results indicate that LPV outper-
forms PPV across the four measures.



Fig. 9. The effect of changing the garbage penalty (PG) and deletion penalty (PD) on the CR and the recall of both the TP and TN where (a) PD = �4, (b)
PD = �3, (c) PD = �2 and (d) PD = �1.

Table 3
Utterance level accuracy of the LPV and PPV using DOH test set.

LPV (%) PPV (%)

TC 80.7 76.5
Precision 91.1 89.3
Recall 76.9 70.9
F-measure 83.4 79.1
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7. Lexical Stress Verification (LSV)

7.1. Method

The third major component in our architecture is
responsible for evaluating lexical stress patterns and com-
paring them against the correct stress pattern of the
prompt. Classifying lexical stress is important in second
language learning applications since it can affect intelligibil-
ity. Tepperman and Narayanan (2005), identified stressed
syllables in the speech of non-native English speakers using
prosodic features and features related to the fundamental
frequency slope and root mean square (RMS) energy
range, resulting in an 87–89% accuracy compared with
human-tagged stress labels. Zhao et al. (2011) presented
separate support vector machine (SVM) classifiers for each
vowel to classify each vowel as either stressed or
unstressed; they report an accuracy of around 88% when
tested with English speech from Taiwanese speakers. A
deep belief network (DBN) used for the assessment of
English speech recordings from both Mandarin and
Cantonese speakers in Li et al. (2013) had an accuracy of
around 80% when classifying each syllable as primary
stressed, secondary stressed or no stressed, which increased
to around 87% when classifying it as either primary
stressed or no stressed. Work done at AT&T Labs with
one adult female on classifying different lexical stress pat-
terns resulted in an accuracy of 83.3% for 3-syllable words
and 88.7% for 4-syllable words using 20 h of speech (Kim
and Beutnagel, 2011). Hosom et al. (2004) validate the
automatic measuring of the lexical stress ratio, a weighted
composite of amplitude area, frequency area, and duration
in the stressed compared to the unstressed vowel, in the
production of eight trochaic word forms, but do not use
it to detect stress patterns. Unlike second language learning

systems where each syllable is evaluated individually, in our

system we evaluate the relative variation in stress patterns

between two successive syllables to identify prosodic errors.
Moreover our work has been performed using children’s

speech instead of adult speech which can result in high errors

due to variations in vocal tract length, formant frequency and

pronunciation.
In this work only multi-syllabic (two or more) words

marked as correctly pronounced by the PV module are
passed to the LSV component. Fig. 10 shows the block dia-
gram of the lexical stress verification process; the various
time and frequency based measures used to evaluate the
stress pattern are summarized in Table 4.



Fig. 10. Block diagram of the lexical stress pattern verification process.

Table 4
Prosodic features used for syllable stress classification (nucleus denotes
vowel in syllable).

Feature Description

f 1 Peak-to-peak amplitude integral over syllable nucleus
f 2 Energy mean over nucleus
f 3 Maximum energy over nucleus
f 4 TEO peak-to-peak amplitude integral over syllable nucleus
f 5 TEO energy mean over nucleus
f 6 Maximum TEO energy over nucleus
f 7 Nucleus duration
f 8 Syllable duration
f 9 Maximum pitch over nucleus
f 10 Mean pitch over nucleus
f 11 21 Bark-scale filter banks
f 12 27 Mel-scale filter banks
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Lexical stress is produced through variations in syllable
duration, intensity and fundamental frequency (Fletcher,
2010). In any English multisyllabic word the stressed sylla-
ble has longer duration as well as higher intensity and pitch
values. As in our prior work (Shahin et al., 2012), the
speech signal is divided into 10 ms windows, from which
energy and pitch features are computed. The energy value
is computed by integrating the square of the amplitudes
over the frame duration, pitch value is estimated using
the auto correlation method (Boersma, 1993), and peak-
to-peak amplitude is computed as the difference between
maximum and minimum amplitude over the nucleus dura-
tion. We also utilized amplitude and energy features from
the Teager energy operator (TEO) version of the speech
signal (Teager, 1980); the TEO signal has been shown to
reduce the effect of noise and tracks rapid energy changes
within a glottal cycle. Syllable and nucleus duration mea-
sures are obtained from the pronunciation-verification
module described earlier.

We also compute the signal energy in different frequency
sub-bands on the Mel-scale (Davis and Mermelstein, 1980)
and Bark-scale (Zwicker, 1961). These sub-band energies
are also computed for each 10 ms frame in the syllable
nucleus (vowel), and then averaged over the syllable
nucleus. We used 21 Bark-scale and 27 Mel-scale filter
banks.

In a final step, and in order to reduce speaker dependen-
cies, we measure the variability between two consecutive
syllables in multisyllabic words with unequal stress patterns
by computing the pairwise variability index (PVI)
(Ling et al., 2000) for each computed prosodic measure.
This provides the degree of asymmetry across pairs of
neighboring syllables. The PVI for any acoustic feature f i

is given by:

PVIi ¼
f ð1Þi � f ð2Þi

ðf ð1Þi þ f ð2Þi Þ=2
ð9Þ

where f ð1Þi ; f ð2Þi are the acoustic features of the first and sec-
ond of two consecutive syllables. PVIs tend to be positive
for words with a SW stress pattern, and negative for words
with a WS stress pattern. The computed feature vector is
then classified as SW or WS stress pattern using a machine
learning algorithm.

7.2. Classifiers

Existing work on stress detection and prosodic labeling
has used different types of classifiers, e.g. Support Vector
Machines (SVM) (Chen and Wang, 2010; Zhao et al.,
2011), decision tree (Deshmukh and Verma, 2009; Xie
et al., 2004), Hidden Markov Model (HMM) (Li et al.,
2007), Neural Network (Wagner, 2009), Maximum
Entropy (MaxEnt) (Rangarajan et al., 2007). In Kim and
Beutnagel (2011), the authors implemented 4 different
machine learning algorithms to classify different lexical
stress patterns for the CAPL system and obtained the high-
est accuracies with the SVM and MaxEnt classifiers. We
therefore implemented the SVM and MaxEnt as they
achieved better accuracies in a similar classification prob-
lem to ours, and compared them to the standard Neural
Network classifier.

Based on these previous works, we used three different
classifiers to classify the stress patterns in the words in
the database and compared their performance. These
included:

(1) A multi-layer perceptron feed forward artificial
neural network (MLP) containing input, hidden and
output layers. The output layer had 2 neurons, one
for the SW class and another for the WS class. The
number of neurons in the input layer depended on
the size of the feature vector, one for each feature
and the hidden layer size was empirically determined.

(2) A two-class support vector machine (SVM) contain-
ing a Gaussian kernel.

(3) A Maximum Entropy classifier (MaxEnt) that is
based upon the multinomial logistic regression
model.

All three classifiers were implemented using inbuilt
MATLAB toolboxes. To implement the SVM and ANN
we used the MatLab toolboxes svmtrain and NN toolbox.
For MaxEnt we used the implementation of Jerod
Weinman (Weinman).
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7.3. Speech datasets

For the training and development of the LSV compo-
nent, we used data from children of ages 4 to 16 years in
the OGI corpus. Only multi-syllabic words and full sen-
tences manually marked as correct were used. PVI values
were computed for the features of consecutive syllables; a
two-syllable word resulted in one PVI value/feature,
whereas a three- and four-syllable word gave two and three
PVI values/features respectively. As we computed a relative
measure between each consecutive syllable, the output fea-
tures became speaker independent. To ensure that the clas-
sifiers were not biased toward one of the two classes (SW or
WS), we used an equal number of samples for both classes
in the training and developing processes. The system per-
formance was then evaluated using the DOH test set. The
counts of speakers and stress patterns for the different data
sets are summarized in Table 5.
Table 5
The counts of stress patterns in each class for the different data sets.

Data Speech corpus NO # speakers WS SW

Training OGI 904 8304 8304
Development OGI 169 1664 1664
Testing DOH 6 287 188

Table 6
Components of each feature vector.

Intensity (I) Mean energy + maximum energy
+ peak-to-peak amplitude

TEO intensity (I_TEO) Intensity features derived from TEO
version of the speech signal

Duration (D) Nucleus duration + syllable duration
Pitch (P) Maximum pitch + mean pitch
Tradition features (T) Combination of (I_TEO + D + P)
Mel sub-band (Mel) 27 Mel-scale sub-band energies
Bark sub-band (Bark) 21 Bark-scale sub-band energies

Fig. 11. The classification accuracy of the LSV for different feature sets and diff
of the TEO signal, D is the duration features, P is the pitch features and T is the
Bark, Mel+T and Bark+T are the Mel-scale and Bark-scale sub-band energies
sets of features.
7.4. Experiments

The PVI of all extracted acoustic measures listed in
Table 4 were calculated for all data sets. The three different
classifiers MLP, SVM and MaxEnt were then trained using
the computed PVI values of the data in the OGI training
set. Despite the extensive work on prosodic labeling, lim-
ited work has been performed on classifying lexical stress
patterns in speech, making it difficult to compare our
results to existing algorithms.
7.4.1. Experiment 1

The accuracy of these three classifiers using various
combinations of different feature subsets (as described in
Table 6) from the OGI development data set were com-
pared in Fig. 11.

The results show that classifiers using a combination of
all the traditional features perform better than those using
individual subsets and classifiers using any of the set of
sub-band energy features perform better than those using
the traditional features alone. The results show that the
best overall accuracy (83.3%) is obtained using a 20 hidden
units MLP with traditional features and Bark-scale ener-
gies as inputs.

Individual SW and WS stress pattern accuracies and
overall classification accuracies for the best-performing
MLP are shown in Table 7. The system classifies correctly
83.6% of the SW and 83% of the WS lexical stress patterns
when using the Bark-scale sub-band energies and tradi-
tional feature set.
7.4.2. Experiment 2

We asked two SLPs to independently mark the lexical
stress patterns in productions from both typically develop-
ing children and children with CAS. They perceptually
judged data consisting of 50 multi-syllabic words each
erent classifiers where I is the intensity features, I_TEO is intensity features
combinations of the previous traditional feature sets (I_TEO+D+P). Mel,
and the combination of the Mel-scale and Bark-scale with the traditional



Table 7
Classification accuracy for different feature sets using MLP classifier. The
best accuracy is obtained using Bark-scale sub-band energies and
traditional features (highlighted in bold with underline).

SW (%) WS (%) Overall (%)

I 73.2 50.4 61.7
I_TEO 74.3 51.1 62.8
D 76 47.4 61.5
P 63 48.5 55.7
T 74.1 65.7 70
Mel 75.2 76 75.6
Bark 75.6 74.4 75
Mel+T 81.5 83 82.2
Bark+T 83.6 83 83.3
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collected from 10 typically developing children and 10 chil-
dren with CAS. The resulting inter-rater reliability was
98% for typically developing children while it dropped
down to 82% for children with CAS, indicating the non-
triviality of perceptually assessing disordered speech.
7.4.3. Experiment 3

Based on these results (Shahin et al., 2012), we then
evaluated the performance of the Bark+T MLP-based
LSV on the DOH test set. For this purpose, ground-truth
lexical stress patterns (SW or WS) in every word in the test
set were manually judged by a speech therapist. The LSV
classifier achieves an overall classification accuracy of
77.6%, with 78.3% accuracy for SW patterns and 76.5%
for WS patterns. As expected, the disordered nature of
the speech in DOH test set led to a decrease in the perfor-
mance of the LSV, however these results are comparable to
the inter-rater reliability scores presented in Section 7.4.2.
As our LSV performs a bi-syllabic assessment of stress, it
is difficult to compare our results to those obtained with
lexical stress detectors used in second language learning
system where stress is evaluated for individual syllables.
8. Conclusions

We have presented a speech processing engine for the
delivery of automated speech therapy in childhood apraxia
of speech. The engine is able to identify voicing delays in
children’s productions as well as pronunciation and proso-
dic errors, the main error types associated with CAS. All
three components of the engine (VAD, PV and LSV) were
tested with a corpus of disordered speech from children
with CAS. The developed intensity based VAD correctly
determined 94.3% of the voicing delays in the speech
production.

Compared to previous pronunciation verification meth-
ods, which rely on posterior probability confidence mea-
sures, we use a generic search lattice with different
alternative paths to allow for detection of insertion, dele-
tion and substitution errors. The use of additional arcs in
the search lattice based on expected mispronunciations
increased PV accuracy to 88.2% compared to the accuracy
of 79.9% obtained with a PV based on posterior confidence
measures. This validates the need to use information about
disorder specific errors in the design of an accurate PV sys-
tem for therapy purposes.

A MLP classifier trained on PVI values of intensity,
pitch and duration measures and Bark-scale sub-band
energies in the LSV component was able to classify both
SW and WS errors in the produced stress patterns with
an overall accuracy of 83.3% with typically developing chil-
dren and 77.6% for children with CAS. The resulting accu-
racy with CAS speech is comparable to our reported
perceptual inter-rater reliability of 82%. Using PVI values
enabled detection of the subtle variations in the production
of adjacent phonemes that result in SW and WS stress pat-
terns. The addition of sub-band energies to the traditional
features derived from intensity, pitch and duration used in
prosodic assessment led to further improvement in the per-
formance of the LSV indicating that aside from intensity
and pitch, stress patterns are also impacted by variations
in the frequency structure of the productions.

The proposed engine may be used as part of a compre-
hensive, speech assessment tool for CAS that can provide
automated feedback about the speech produced in a
remote, tablet-based therapy system, a capability currently
lacking in existing technology-based therapy systems. The
tool targets the disorder specific difficulties that children
with CAS face to provide therapists with quantitative
speech assessment results about the exercises completed
by the child at home. This allows therapists to remotely
monitor the child’s progress and adapt the prescribed ther-
apy regimen to meet the individual needs of the child.

Despite extensive work, ASR systems have found lim-
ited application in the area of speech therapy due the
difficulties in working with children’s speech. Our work
shows that by tailoring the system to identify disorder
specific errors, it is possible to use ASR techniques to
obtain meaningful feedback about speech productions.
The task is significantly facilitated due to (1) the structured
nature of the speech exercises, (2) restricted domain size
and (3) prior knowledge of the expected stress pattern,
phone sequence and particular errors produced by children
with CAS.

Further work with the speech processing module is
ongoing. Our next immediate step is to improve the acous-
tic HMMs in the PV component by means of discrim-
inative training (i.e., Maximum Mutual Information) and
adaptation techniques to adjust the acoustic models to each
individual user. Work is underway to trial the speech
analysis engine with a large dataset collected with the
tablet-based speech therapy tool as part of a clinical study.
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