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Previous research has shown that familiarization with three-dimensional (3D) caricatures can help improve
recognition of same-race and other-race faces, a result that may lead to new training tools in security
applications. Since 3D facial scans are not generally available, here we sought to determine whether 3D
reconstructions from 2D frontal images could be used for the same purpose. Our results suggest that, despite
the high level of photographic realism achieved by current 3D facial reconstruction methods, additional
research is needed in order to reduce reconstruction errors and capture the distinctive facial traits of an
individual.
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1. Introduction

We recognize faces from our own race better than those from
another race [1–4]. This other-race effect (ORE) is robust, and has been
reproduced in many studies [see 4–6] and across racial groups [6–8].
It is generally agreed that OREs result from the fact that the most
appropriate features for discriminating faces are race-dependent [9].
For instance, Africans focus more on the shape and location of the
eyes, eyebrows and ears, whereas Caucasians focus more on hair
texture, and hair and eye color [10]. Research shows that this OREmay
be reduced by drawing attention to the most distinctive feature of a
given face. For example, Hills and Lewis [11] showed that OREs could
be reduced by familiarizing subjects with own-race faces containing
features critical for differentiating other-race faces.

At the same time, people have better recollection for visually
distinctive faces [12–17], an effect that can be harnessed to create
more memorable stimuli. Researchers pursuing this strategy create
“caricatures” of normal faces by exaggerating their distinct qualities,
and they find that people are more able to recognize these distorted
faces than the veridical faces that were used to create them. This
perceptual result is known as the caricature effect [18–21]. Additional
studies have also demonstrated a reverse-caricature effect, according
to which familiarization with caricatures improves the recognition of
the veridical face at a later time [e.g., 18–24]. These results suggest
ways inwhich caricaturesmay be used as training tools in applied face
recognition settings (i.e. law enforcement1).
Motivated by this research, our previous work [27] has explored
the use of three-dimensional (3D) caricatures to direct attention to
critical features of other-race faces. Our experimental results showed
that reverse-caricatures reduce OREs in Caucasian participants when
viewing Indian faces. Although these results are a step towards
designing real-life training systems, obtaining 3D models of indivi-
duals is cost prohibitive if not impossible in some applied settings;
3D scanners are still expensive instruments, and scanning is not
possible if the target individual (i.e. a crime suspect) is at large.
One potential solution to this problem is to use photogrammetric
techniques to reconstruct 3D face models from 2D photographs
[28,29]. Using these reconstructed 3Dmodels one could then generate
caricatures from individual mug shots. However, it is unclear whether
caricatures based on reconstructed 3D models are still effective, since
the caricaturization process may amplify reconstruction errors to the
point of rendering the caricatures unusable. Answering this question
is the main objective of this work.

2. Facial reconstruction and caricaturization

For this study, we used the University of Freiburg 3DFS-100
dataset [28] containing m=100 3D face models. Each face consisted
of a mesh with n=75,972 vertices in full correspondence, and
each vertex was defined by its position in 3D Cartesian coordinates
S=(X1,Y1,Z1,X2,…,Yn,Zn) and its texture in RGB space T=(R1,G1,B1,
R2,…,Gn,Bn). Performing principal component analysis [30], a face
shape and texture can be defined by:

S = savg + ∑m−1
i αi⋅si ð1Þ

T = tavg + ∑m−1
i βi⋅ti ð2Þ
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Fig. 2. (a) Face segmentation used for 3D face reconstructions; each region is predicted
independently and then merged into a composite face. (b) Example of a 3D shape and
(c) its corresponding geometry image; the geometry image is an n×m matrix where
XYZ coordinates are represented as RGB values.
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where savg and tavg are the shape and texture averages, αi are the
shape principal components, si are the shape eigenvectors, βi are the
texture principal components and ti are the texture eigenvectors;
examples for same-race and other-race faces from the dataset are
illustrated in Fig. 1a.

To test whether 3D reconstructions are amenable to reverse-
caricature effects, we decided to use a best-case reconstruction
scenario. Namely, we reconstructed the shape and texture of each face
in the 3DFS-100 dataset in a leave-one-out fashion while holding
constant the rendering parameters (i.e., camera position and
illumination). First, we removed each face from the dataset and
obtained a PCA decomposition on the remainingm=99 training faces
according to their shape (Strain) and texture (Ttrain). Next, we projected
the left-out test face ftest along the PCA eigenvectors (si, ti) to obtain its
principal components αtest and βtest:

αtest = Stest−savg
� �T

⋅si ð3Þ

βtest = Ttest−tavg
� �T

⋅ti ð4Þ

which yield a reconstructed 3D model f′test :

S′test = savg + ∑m−1
i αtest⋅si ð5Þ

T′test = tavg + ∑m−1
i βtest⋅ti ð6Þ
Fig. 1. Sample stimuli: (a) ground-truth frontal faces, (b) their corresponding 3D
segment-based reconstructions, (c) caricatures from ground-truth faces, and
(d) caricatures from reconstructed faces. Ears and neck were manually removed to
prevent participants from using picture-matching strategies. Inspection of (c) and (d)
illustrates the extent to which caricatures amplify reconstruction errors rather than
unique facial traits.
2.1. Blending segment-wise reconstructions

Face reconstructions f′test have 2(m−1) degrees of freedom (m−1
associated with shape, and m−1 associated with texture). To increase
the level of expressiveness, we segmented the face into four regions
[28], and performed the PCA decomposition for each segment
independently; see Fig. 2a. The final face model f′test was obtained by
combining each predicted segment through an image blending
procedure [31]. Namely, given two input images (A and B) to be
blended, we define a mask image M per segment that denotes whether
the corresponding pixel should come from image A (Mij=1) or B
(Mij=0). Then we construct a Laplace pyramid for images A and B, and
a Gaussian pyramid for the mask image M, as illustrated in Fig. 3. At
each level in the pyramid, the algorithm blends the two images as:

LCn i; jð Þ = GMn i; jð Þ⋅LAn i; jð Þ + 1−GMn i; jð Þð Þ⋅LBn i; jð Þ ð7Þ

where LAn, LBn, and LCn are the Laplace pyramids of the input images
(A and B,) and the output image C, respectively, and GMn is the
Gaussian pyramid of the mask image for a given level n. Finally, the
resulting blended image C , is synthesized from the LCn pyramid as:

Gn = LCn ð8Þ

Gn−1 = LCn−1 + Expand Gnð Þ ð9Þ

In order to apply this image-based blending algorithm to 3D
models, the 3D segments are converted into geometry images (GI)
[32] prior to the blending stage; see Fig. 2b,c. After blending all GI-
based segments, the resulting GI is converted back into a 3D model.
The overall method produces seamless and photorealistic reconstruc-
tions that are comparable to those in previous work [28,29,33];
examples for same-race and other-race faces are illustrated in Fig. 1b.

2.2. Caricaturization

In order to caricaturize faces consistently and evenly,2 we first
normalize each face f by its Mahalanobis distance (|| ||M) to the
average face fAVG [35]:

fN =
f

‖ f−fAVG‖M
ð10Þ

and then caricaturize it by linearly exaggerating differences with
respect to fAVG [19,21,35]:

fC = fAVG + 1 + αð Þ fN−fAVGð Þ ð11Þ
2 Distinctive faces need to be caricaturized less than typical faces in order to achieve
the same level of distinctiveness [34].
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Fig. 3. Construction of the Laplace pyramid for an image. The process starts with a Reduce () operation (low-pass filtering) and sub-sampling (half sized) the original image, G0, to
obtain G1. This process continues until reaching a predefined level N. GN is known as the Gaussian pyramid. To complete the Laplace pyramid LN, a band-pass operation is required
between two successive low-pass levels. The lower frequency image (G3 in the example), is interpolated using the Expand() operation before subtracting it from the higher
frequency image, G2. This process continues until reaching L0.
Adapted from [31].
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where the average face fAVG is computed using the 99 training faces.
We define caricaturization levels (α) as a function of the standard
deviation (σ) of the distance between un-normalized faces in the
dataset and their average:

σ = std ‖ f−fAVG‖Mð Þ ð12Þ

This parameterization is preferable to the conventional percentage
factor (α) because it adjusts the caricaturization level to the intrinsic
variability of faces in the dataset; as an example, a caricature factor
α=10% may be excessive for a fairly homogeneous dataset or
insignificant for a very diverse dataset, whereas a caricature factor
of σ=1 accounts for the variability in the dataset. Note that the
relationship between σ and α is trivially defined by:

α =
kσ

‖ fN−fAVG‖M
; ∀k∈Z s:t: α N −1 ð13Þ

Fig. 1c shows the results of applying this caricaturization method
to the ground-truth faces in Fig. 1a, whereas Fig. 1d shows the
equivalent caricatures when obtained from the reconstructed faces in
Fig. 1b. The reconstruction method is able to capture the main
characteristics of a face (e.g., gender, race, anthropometric cues), but
also introduces a few reconstruction artifacts that become evident as
we compare the two caricature sets. Thoughmore noticeable in other-
race faces, reconstruction artifacts also occur in Caucasian faces; e.g.,
the reconstruction fails to capture the unique chin dimple in the
second face in Fig. 1b. To what extend do these reconstruction errors
hamper facial recognition by humans?

3. Perceptual experiments

To answer this question, we employed an old/new face recognition
protocol [36,37] whereby subjects are first familiarized with a set of
faces, and then asked to recognize those faces among a set of
confounders. Following [27], we used the minimal degree of exagger-
ation between veridical and caricature faces that would lead to a
caricature effect. This exaggeration level was then used in a recognition
study that allowed us to test whether familiarizationwith caricatures of
reconstructed 3D models (as opposed to caricatures of the original 3D
models) would reduce OREs.

3.1. Stimuli

Forty face models were selected from the 3DFS-100 dataset [28].
The same 40 faces were used throughout the experiments. From these
ground-truth veridical faces (V) we generated 40 veridical recon-
structions (Vr), which were in turn used to generate 40 caricaturized
reconstructions (Cr). Following Furl et al. [37], our face corpus had a
similar distribution across races: 10 Caucasians, 10 East Asians, and 10
Indians. We also included 6 African faces and 4 faces from other
groups (Middle Eastern, Hispanic) as filler stimuli. East Asian and
Indian faces were treated as other-race faces.

3.2. Procedure

Forty-three Caucasian undergraduate students (24 females and 19
males) from the Department of Psychology at Texas A&M University
participated in this study. Participants were assigned to one of two
experimental conditions:

• Vr-V condition: familiarization with veridical reconstructions (Vr),
recognition of veridical faces (V). Twenty-one students participated
in this study, which served as a control.

• Cr-V condition: familiarization with caricaturized reconstructions
(Cr), recognition of veridical faces (V). Twenty-two students
participated in this condition, which tested our working hypothesis.

For each condition, participants were familiarized with 20 frontal
target faces (the same faces for all subjects), each presented twice in
random order, 3 seconds per presentation. Following familiarization,
participants were tested on 40 faces, of which 20 were “new” (non-
target) and 20 were “old” (target); all faces in the test phase were
rendered with a random orientation between±5 degrees in the three
axes in order to prevent picture-matching strategies [24]. Participants
were asked to identify each face as “old” if they recognized it as one
from the familiarization phase, or as “new” otherwise. Following [36],
no time limits were imposed, but participants were asked to make the

image of Fig.�3


Fig. 4. Signal detection d’ for (a) V-V and Vr-V conditions, and (b) C-V and Cr-V
conditions. V-V and C-V conditions are based on [27] results. Error bars represent
standard errors.

Fig. 5. (a) True positive and (b) false positive rates across experimental conditions. V-V
and C-V conditions are based on [27] results. Error bars represent standard errors.
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identification as rapidly as possible without sacrificing accuracy. In all
conditions, the same 20 randomly chosen faces were used (in either
caricature or veridical form). Following [27] exaggeration levels were
set to−1σ (α=−0.21) and 0σ (α=0) for veridical and caricaturized
faces, respectively. A similar gender distribution for participants was
maintained across experimental conditions.

3.3. Results

3.3.1. Do 3D reconstruction errors affect recognition performance?
To answer this question, we compared results from the Vr-V

condition (i.e., in the newexperiments above) against those on theV-V
condition (i.e., in our earlier study [27]3) in terms of the signal
detection d’ measure [38]. Results are summarized in Fig. 4 Using the
experimental condition (V-V vs. Vr-V) and race (Caucasian vs. Asian
vs. Indian) as factors, a two-way ANOVA shows a main effect of
experimental condition, F(2,82)=8.735, pb0.01. Overall performance
in the Vr-V condition is lower than in the V-V condition: t(42)=2.956,
pb0.01, and also on each individual race. Thus, these results indicate
that reconstruction errors have a negative effect on recognition
performance, regardless of race.

To tease apart the influence of reconstruction errors on different
decisions, we also analyzed results in terms of true positive rates (TPR)
and false positive rates (FPR). Results are summarized in Fig. 5:

▪ TPRs showed a main effect of race F(2,84)=6.95, pb0.01, and of
experimental condition, F(1,42)=18.108, pb0.001. There was
no interaction effect between race and experimental condition,
F(2,84)=0.444, ns. Overall performance on the V-V condition
was significant higher than on the Vr-V condition, t(42)=4.255,
pb0.001.

▪ FPRs showed a main effect of race F(2,84)=4.99, pb0.05, and
interaction effects between race and experimental condition,
F(2,84)=3.125, pb0.05. There is no main effect of experimental
condition, F(1,42)=0.687, pN0.05. Overall performance on the
V-V condition was not significant different than on the Vr-V
condition, t(42)=0.829, pN0.05.
3 Our earlier experiments used the same procedure, stimulus set, and subject pool as
those reported here.
These results indicate that reconstruction errors affected recogni-
tion performance by decreasing TPRs but not necessarily by increasing
FPRs. However, there was a main effect of race on both measures,
which suggests that reconstruction errors affect the viewer's
performance differently depending on the race of the stimulus face.

Finally, we analyzed the signal detection criterion C, which
provides cues about whether participants have a bias toward a
particular answer. A conservative participant will answer ‘no’ more
often (positive C values), while a liberal participant will respond ‘yes’
more often (negative C values) [39]. Results are shown in Fig. 6a.
Analysis of variance shows a main effect of race: F(2,84)=7.55,
pb0.001 and amain effect of experimental condition: F(1,42)=9.621,
pb0.01, but no interaction effects: F(2,84)=2.914, ns. Participants on
the V-V condition were more conservative to own-race faces than to
other-race faces. In addition, training on the Vr-V condition caused a
noted increase in criterion C, which indicates that reconstruction errors
made participants more conservative. We can infer participants were
Fig. 6. Criterion C across experimental conditions. V-V and C-V conditions are based on
[27] results. Error bars represent standard errors.
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having difficulties learning from reconstructions. This is consistent
with the TPRs results above; conservative participants would experi-
ence a reduced TPR score. Furthermore, conservative participantswould
improve their FPRs. In this pair of experimental conditions, participants
maintained the same level of FPR scores.

3.3.2. Do caricatures reduce the impact of 3D reconstruction errors on
recognition performance?

To answer this question, we compared results in the Vr-V and Cr-V
conditions, also in terms of the signal detection d’ measure. Using
experimental condition (Vr-V vs. Cr-V) and race (Caucasian vs. Asian
vs. Indian) as factors, a two-way ANOVA shows no main effect of
experimental condition, F(1,41)=2.068, pN0.05. However, perfor-
mance was lower on Cr-V than on Vr-V: t(41)=1.438, ns, (p=0.07;
one-tailed). There was no main effect of race, F(2,82)=2.519, ns.
OREs on Indian faces were observed for participants in the Vr-V
condition: t(40)=1.69, pb0.05 (one-tailed), but not for participants in
the Cr-V condition: t(42)=0.88, ns. However, this reduction of OREs
with reverse caricatures was due to a reduction in recognition
performance onCaucasian faces rather than to an increase in recognition
performance on Indian faces. There was no significant interaction
between race and training condition, F(2,82)=0.997, ns; both training
conditions show similar performance profile across races. Therefore,
when considering the signal detection d’ measure, reverse-caricature
training using reconstructed 3D models did not reduce the impact of
reconstruction errors. In fact, it appears that the caricature process
amplifies reconstruction errors to a greater extent that it makes the
unique facial traits more salient.

As before, we performed a finer-grained analysis in terms of
true positive rates (TPR) and false positive rates (FPR). Results are
summarized in Fig. 5a-b.

▪ TPRs did not show a main effect of race F(2,82)=2.096, ns, training
condition, F(1,41)=0.959, ns, or interaction effects, F(2,82)=0.681,
ns. However, performancewas better on Cr-V than it was on Vr-V:
t(41)=0.972, pN0.05.

▪ FPRs did not have a main effect of race: F(2,82)=1.275, ns, but
had a significant main effect of condition: F(1,41)=6.332, pb0.05.
Namely, performance was worse on Cr-V than on Vr-V: t(41)=
2.516, pb0.05.

These results suggest that although the caricature process may
improve TPRs, this is at the expense of a much larger increase in FPRs
such that the net effect of caricaturization (as measured by the signal
detection d’ measure) is detrimental.

Finally, we also analyzed the signal detection criterion C. Results
are shown in Fig. 6. Analysis of variance shows no main effect of race,
F(2,82)=1.424, ns, and no significant interaction, F(2,82)=0.050, ns.
However, there is a main effect of training condition F(1,41)=3.80,
pb0.05. Namely, participants in the Cr-V condition become less
conservative than those in the Vr-V condition and approach the ideal
observer (i.e., C=0, no strategy).

3.3.3. Do caricatures of reconstructed faces provide better recognition
performance than veridical faces?

To answer this question, we compared results in the Cr-V and V-V
conditions in terms of the signal detection d’ measure. Using
experimental condition (Cr-V vs. V-V) and race (Caucasian vs. Asian
vs. Indian) as factors, a two-way ANOVA did not show a main effect of
race, F(2,86)=2.796, ns, and did not have an interaction between race
and experimental condition. There was a main effect of experimental
condition, F(1,43)=17.792, pb0.001; performance on the V-V condi-
tion was significantly higher than on the Cr-V condition, t(43)=4.218,
pb0.001. Thus, the reverse-caricature effect we observed in our earlier
work [27] disappearswhen caricatures are obtained from reconstructed
3D models, which suggests that reconstruction errors can perceptually
mask distinctive facial cues.

As before, we also analyzed TPRs and FPRs; results are summarized
in Fig. 5:

▪ TPRs did not show a main effect of race F(2,86)=2.512, ns, and
no interaction effects, F(2,86)=1.313, ns. TPRs showed a main
effect of training condition, F(1,43)=12.09, pb0.001. Namely,
Cr-V performance was significantly lower than V-V performance:
t(43)=3.477, pb0.001.

▪ FPRs had amain effect of race, F(2,86)=5.501, pb0.01, but no effect
of condition, F(1,43)=3.184, ns, or interaction effects: F(2,86)=
1.759, ns.

These results mirror those in Section 3.3.1 and indicate that the
lower recognition performance on Cr-V is due to a reduction of TPRs
rather than an increase in FPRs.

Finally, analysis of variance on the signal detection criterion C,
summarized in Fig. 6, shows nomain effect of experimental condition:
F(1,43)=2.204, ns, or interaction effects: F(2,86)=2.799, ns. How-
ever, there is a main effect of race: F(2,86)=9.031, pb0.001, namely
in terms of reduced OREs in the Cr-V condition.

4. Discussion

By definition, caricatures increase the salience of idiosyncratic or
normatively distinct qualities. This form of distortion appears to
increase the amount of memorable information available for later
recognition. As a result, exposure to facial caricatures can increase
later recognition of their veridical counterparts and also can reduce
the ORE. Our previous study [27] showed that caricatures from
ground-truth 3D models improve the recognition of their veridical
counterparts and also reduce OREs, as measured by the signal
detection's sensitivity index d' [38]. The main objective of this work
was to determine whether these earlier results would extend to face
recognition when the veridical 3D models are not available and have
to be replaced by reconstructions.

Our results indicate that 3D reconstructions are not of sufficient
quality to be used for face recognition purposes, even when rendered
without caricaturization. Training with reconstructed faces (Vr-V)
leads to lower TPRs when compared to training on veridical faces
(V-V), although FPRs seem immune to reconstruction errors. Training
on caricatures of reconstructed faces (Cr-V) leads to higher TPRswhen
compared to training on reconstructed faces (Vr-V) but at the expense
of a larger increase in FPRs, with a negative net effect. This suggests
that the caricature process amplifies reconstruction errorsmore than it
enhances distinctive facial features. Finally, trainingwith caricatures of
reconstructions (CrV) leads to lower recognition performance than
than training on veridical faces (V-V),mainly in terms of reduced TPRs.

Collectively, our study indicates that the reconstruction process
fails to capture themore distinctive features of a given face (e.g., notice
the missing chin dimple in the second row of Fig. 1.). Because
caricatures amplify differences relative to a norm, they also exacerbate
any errors introduced during reconstruction (e.g., first row face in
Fig. 1), possibly distracting participants away from the distinctive
features of faces. Thus, our results suggest that the original 3D faces
may be required in order to generate perceptually valid caricatures.

These results are critical for the development of training tools
because in most realistic settings 3D scans of the target faces are not
available. In these cases, all that is available is a 2D “mug shot” of the
target. While at the onset of this study we anticipated that caricatures
would amplify reconstruction errors, it was not clear whether these
errors would compromise human's ability to recognize faces. As an
example, humans recognize faces under fairly severe manipulations
(e.g., at very low resolution, under partial occlusion), but this ability
breaks down with other types of lossless manipulations (e.g., rotated
or inverted faces); see [40].
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4.1. Future work

One may be tempted to infer that more sophisticated reconstruc-
tion algorithms would be needed, such as the non-linear optimization
method in [28]. While this may be the case in more general
reconstruction scenarios (e.g., with real photographs), the recon-
struction method in Eqs. (5) and (6) is optimal (in the mean-square-
error sense) for our study since the representation is linear in the
optimization parameters (shape and texture) and all remaining
parameters (camera and illumination) were assumed known. Thus,
failure to reproduce our earlier results (which used ground-truth 3D
faces) must be attributed to factors other than the reconstruction
procedure, and instead point in the direction of facial databases.
Specifically, extending the 3D face database would certainly improve
the reconstruction quality, as additional faces would provide a
more diverse pool from which to reconstruct new faces. Likewise,
increasing the number of input images of a probe face (e.g. frontal, 3/4
and profile views) might help capture distinctive facial traits that are
not prominent in a frontal view. Facial diversity (race, gender, age)
most likely plays a significant role in the quality of reconstruction.
Having a well-balanced database or one that specifically matches the
characteristics of the input face (e.g. Caucasian, male, 55-60 years of
age) might also improve reconstruction results. Additional research is
also needed to determine, among others, (i) the level of reconstruc-
tion accuracy that must be achieved to obtain perceptually realistic
(as opposed to photorealistic) results, (ii) the type and number of
facial segments (Fig. 2a), maybe on a race-by-race basis or to account
for facial asymmetries, and (iii) the types of reconstruction errors (e.g.
shape vs. reflectance, different facial areas) that have the greatest
impact on recognition performance. Addressing these questions is a
necessary step towards the development of effective training tools
for face recognition.

Our work evaluates whether reverse-caricatures can improve the
recognition of specific other-race faces, i.e. a closed-world assumption.
While we believe that, with sufficient exposure to caricaturized other-
race faces, reduction of OREs may generalize to faces not seen in the
familiarization phase (see [11]), this issue will also require further
investigation. However, in security applications where one seeks to
improve the recognition of specific faces (i.e. those of a suspect at
large), the closed-world assumption is valid.
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