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Abstract—This paper presents a neuromorphic approach for
sensor-based machine olfaction that combines a portable chemical
detection system based on microbead array technology with a
biologically inspired model of signal processing in the olfactory
bulb. The sensor array contains hundreds of microbeads coated
with solvatochromic dyes adsorbed in, or covalently attached
on, the matrix of various microspheres. When exposed to odors,
each bead sensor responds with corresponding intensity changes,
spectral shifts, and time-dependent variations associated with the
fluorescent sensors. The bead array responses are subsequently
processed using a model of olfactory circuits that capture the
following two functions: chemotopic convergence of receptor
neurons and center on—off surround lateral interactions. The
first circuit performs dimensionality reduction, transforming the
high-dimensional microbead array response into an organized
spatial pattern (i.e., an odor image). The second circuit enhances
the contrast of these spatial patterns, improving the separability
of odors. The model is validated on an experimental dataset
containing the responses of a large array of microbead sensors to
five different analytes. Our results indicate that the model is able
to significantly improve the separability between odor patterns,
compared to that available from the raw sensor response.

Index Terms—Lateral inhibition, machine olfaction, neuromor-
phic computation, olfactory bulb, optical microbead sensors, sen-
sory convergence.

1. INTRODUCTION

ENSOR-BASED instruments for odor measurement have
emerged in the past two decades [1] that combine an array
of cross-selective chemical sensors and a pattern recognition
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engine. A number of sensing technologies have been used
for these instruments, primarily metal oxide and conducting
polymer chemoresistors, surface acoustic wave devices, quartz
microbalance resonators, and field-effect devices [2]. The
vast majority of these so-called “electronic-nose” instruments
employ a modest number of sensors (e.g., 4-32). In contrast,
olfactory systems rely on a large number of receptor types
(~ 1000 receptors in humans [3]), and each receptor type is
massively replicated. To narrow the dimensionality gap be-
tween biological olfactory systems and their current artificial
counterparts, we propose a chemical sensing approach based
on optical microbead technology [4], [5]. Each microbead is
a cross-selective sensor, and thousands of microbeads can be
assembled into a single fiber-optic bundle. Thus, the response
of a microbead array is high dimensional, combinatorial, and
redundant, much like what is known about olfactory reception
(6], [31].

Conventional pattern recognition techniques break down as
the dimensionality of the input space grows significantly beyond
the amount of training data. The olfactory system, on the other
hand, has been optimized over evolutionary time to make sense
of signals from millions of receptor neurons. Thus, biologically
inspired computational models represent an attractive candi-
date for the processing of microbead array signals. Previously,
Pearce et al. [7] investigated the role of signal integration on ar-
rays of optical microbeads, a mechanism that also takes place
in the olfactory system when receptor neurons converge onto
glomeruli. The authors showed that signal integration improves
the detection threshold by a factor of \/n, where n is the number
of beads in the array. White et al. [8], [9] employed a spiking
neuron model of the peripheral olfactory system to process sig-
nals from fiber-optic sensor array. In their model, the response
of each sensor was converted into a pattern of spikes across a
population of olfactory receptor neurons (ORNs), which then
projects to a unique mitral cell. Different odors produce unique
spatio-temporal activation patterns across mitral cells, which are
then discriminated with a delay-line neural network (DLNN).
Their olfactory bulb-DLNN model is able to produce a decou-
pled odor code: odor quality being encoded by the spatial ac-
tivity across units, and odor intensity by the response latency of
the units.

In this paper, we extend a biologically inspired model that
we proposed for temperature-modulated metal-oxide sensors
[10]. The model captures the following two stages in the ol-
factory pathway: chemotopic convergence of receptor neurons
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Fig. 1. Scanning electron microscope (SEM) image of a microbead array (Il-
lumina’s BeadArray™). Each bead has a diameter of 3 ;¢m, and protrudes out
of a well of similar diameter etched onto a fiber-optic bundle.

onto the olfactory bulb and center on—off surround lateral in-
teractions. The first circuit performs dimensionality reduction,
transforming the high-dimensional response into an organized
spatial pattern (i.e., an odor image). The second circuit reduces
the overlap between these patterns, increasing their discrimina-
tion at a later stage. The model is validated on an experimental
dataset containing the responses of a large array of microbead
sensors (/N = 586 sensors) to five different analytes.

II. OPTICAL MICROBEAD SENSOR ARRAYS

The microbead array technology used in this research was
originally developed by Walt and colleagues at Tufts University
[4], [5]. Typically, each array includes thousands of bead sen-
sors that are made from various materials (e.g., Si or PMMA)
that can be porous in order to increase surface areas. Beads are
arranged in wells etched on the solid surface in order to generate
an array of sensors, as illustrated in Fig. 1.

The beads are functionalized using solvatochromic dyes, ei-
ther adsorbed in the matrix of the microspheres, or covalently at-
tached to them. Solvatochromic dyes are known to display large
shifts in their fluorescence spectra with variations in the polarity
of the surrounding medium, a property that is retained even after
the dyes are applied to the beads. Unique sensors can be made
either by immobilizing the solvatochromic dyes in polymer ma-
trices that vary in polarity, hydro-phobicity, porosity, elasticity,
and swelling tendency, or by using different dyes with the same
matrix. In this study, the former approach was used.

The size of each sensor is in the order of a few micrometers
(3-5 pm in this study), so one can easily envision a miniatur-
ized multisensor system. Illumina’s BeadArrayTM technology
allows us to build arrays that contain 50 000 or more fibers, with
micron-size cores in a 1.5-mm-diameter fiber bundle. The cores
of the fibers are etched on one side of the fiber bundle using a
chemical method to a specific depth, while the cladding of each
fiber remains intact. This means that there exist 50 000 micro-
wells at one end of the fiber bundle, which can be randomly
loaded with the functionalized microspheres. Light excitation
and fluorescence collection from the fiber bundle is achieved in
a variety of ways; an example is illustrated in Fig. 2.

Total internal reflection

. . Photon (out)
Fiber cladding —>

<—— Fiber
Photon (in)

Fluorescence

Excitation Emission

Fig. 2. The optical fiber property of total internal reflection is used to guide
excitation light, generated at the proximal end of the fiber, towards a bead at
the distal end of the fiber. The dye on the bead is excited, and the generated
fluorescence is guided back towards the proximal end in order to be analyzed.

Fig. 3. Image of a monochrome CCD camera of the fluorescence pattern of
an array. The image was filtered using a bandpass optical filter matched to the
maximum response of the solvatochromic dye.

Different methods have been employed for fluorescence de-
tection, such as a spatially distributed readout with a broadband
light excitation source, an integrated spectrometer detector, and
a hyperspectral imaging technique whereby spatially distributed
signals are collected via a fast-changing electronically tunable
optical filter. In the latter case, a snapshot of the spectra of each
individual sensor in the array is recorded at each instant in time.
In this study, the detector is a charge-coupled device (CCD)
camera that can record (in a single image) the fluorescence pat-
tern of all beads, filtered with a specific bandwidth optical filter
that matches the maximum response of the solvatochromic dye
used in the sensors. Fig. 3 shows an example fluorescence pat-
tern of a microbead array recorded using a monochrome CCD
camera. The selection methodology used to determine an appro-
priate bandpass filter is illustrated in Fig. 4.

The distribution of bead types in the fiber bundle is random,
as shown in Fig. 5. Hence, each array first needs to be decoded to
identify the position and type of each bead in the image. This is
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Fig. 4. Detection principle: the wavelength shift is captured as an intensity

change with an optical bandpass filter appropriately designed for the specific
emission fluorescence.
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Fig. 5. Random distribution of five bead sensors across the fiber bundle (each
color represents a specific bead sensor).

accomplished by exposing the array to a number of known sol-
vent vapors, to which the individual bead types have been pre-
viously calibrated [11]. After decoding, one can then analyze in
various ways a series of such images collected over the duration
of the sensor—sample interaction. Analysis of the intensity vari-
ations at a particular fluorescence wavelength during an image
sequence generates a unique temporal response pattern for each
bead type, creating a “fingerprint” for each chemical sample.
Subsequent pattern recognition of the bead array responses al-
lows identification of the chemical.

III. EXPERIMENTAL SETUP

Experimental data for this work was collected from a
benchtop system used at Illumina to screen single sensors
(specificity and sensitivity), analyze multisensor array data at
the interaction of various chemicals, perform spectral studies,
and optimize image acquisition. A first-generation compact
system has also been developed and tested specifically for the
petroleum industry (ChevronTexaco). This portable device is
shown in Fig. 6. Various designs of a miniature detector have
also been explored that could be integrated with a wireless
network infrastructure for distributed sensing applications.

A. The Optical Module

A block diagram of the optical module in the benchtop system
is shown in Fig. 7. The excitation light is generated by a white
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Fig. 6. Portable, field deployable chemical sensing unit.

light source, and filtered by a combination of interference band-
pass optical filters to allow only an optimized excitation spec-
trum to reach the sensor. The excitation light is directed in a
typical epi-fluorescence setup, whereby a beamsplitter is used
to both excite the sensor and also select the emitted fluores-
cence from the sensor in a straight path to the CCD. The CCD
is a cooled VGA camera (Cooke Corporation) with 6 X 6 pm
pixel size and very high quantum efficiency (QE) in the wave-
lengths necessary for an optimum spectral shift. A 20 x scien-
tific grade objective (Olympus U-PLAN APO), optimized for
all wavelengths, is used to image the fiber-optic bundle. The
sensor is a fiber-optic bundle etched and fitted with approxi-
mately 50000 bead sensors. However, the field of view of the
objective spans only a quarter of the full fiber-bundle surface, so
a reduced number of sensors in the array can be imaged at any
point in time.

The interaction chamber was made out of Teflon (and/or
PEEK, depending on the chemicals tested), and was designed
with a goal of ultra-low dead volume. The sensor was fitted
via a leak-tight ferrule onto the threads of one of the ports
of the chamber; two additional ports were used for delivery
and exhaust. A fourth port, not used in this experiment, can
also be used for head-on excitation. In this alternative setup,
fluorescence is collected through the bundle rather than through
epi-fluorescence, making it advantageous for a compact device
with light-emitting diode (LED) illumination sources.

B. Vapor-Delivery Module

The vapor-delivery module consists of latching solenoid
valves, a micro-pump, and the interaction chamber that houses
the sensor. Teflon tubing, as well as appropriate sample and
purge gas (air) filters, are used. The delivery system can be
alternated between liquid and gas phases. Two configurations
are available in the gas phase: a calibration mode, where a
system of syringes and solenoids and/or sampling bags is used,
and a detection mode. The syringe/solenoid configuration is
described in Fig. 8. Ny is sparged through the sample, so that
vapor builds up in the headspace of the bottle until equilibrium
is reached. A solenoid valve (V1) oscillates between headspace
(V1 closed) and the N2 gas (V1 open), while the syringe is
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Fig. 7. The optical module of the Illumina benchtop system.
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Fig. 8. Sample delivery system used

aspirating to capture this mixture. Then the syringe dispenses,
creating a constant flow and concentration of the sample in the
carrier gas stream, and is continuously released in the hood
when the top left solenoid valve (V2) is at the normally-open
(NO) position. At the same time, the sensor is purged with N2
by keeping the right solenoid (V3) at NO position. Following
purging, both V2 and V3 are set to a closed position, allowing
the diluted sample to flow onto the sensor for a specified
amount of time (of the order of 1 to 6 s). Finally, the system
returns back to the Ny purging initial condition (V2 and V3 at
NO position).

The system was calibrated using low flow techniques and
Tedlar bags at very high dilution numbers. The resolution of the
system (i.e., minimum detectable difference in concentration) is
of the order of 1 to 5 ppm, depending on the solvent vapor. The
sensors with highest specificity (optimized) display a limit of
detection (LOD) in the order of 10 to 50 ppm, depending on the
solvent vapor tested, under laboratory conditions.

C. Control Electronics and Data Acquisition

Currently, a laptop computer controls all the electronics of
the optical system, as well as the vapor delivery system, and the
data acquisition. Details of this system are to be published as a
separate paper in the near future.

]:l Mass Flow Meter

Teflon tubing, 1/16 " ID

Notation

‘ 3-Way solenoid valve
Digital pressure gauge

for calibration of the portable device.

D. Experimental Dataset

The experimental dataset used in this study comprises of
transient responses of 586 microbead sensors to five analytes:
toluene (TOL), ethyl alcohol (EA), acetone (ACE), ethyl hy-
droxide (Et-OH), and methyl hydroxide (Me-OH). Fig. 9(a)
shows the transient response of 100 microbead sensors to ace-
tone, whereas Fig. 9(b) shows the transient response of a single
microbead sensor to several presentations of each analyte. The
odorant was introduced at ¢ = 14 s and removed at ¢ = 35 s.

IV. COMPUTATIONAL MODELING

The use of large arrays (hundreds to thousands of sensors)
opens the doors for alternative pattern recognition approaches.
The approach adopted in this study involves mimicking solu-
tions from the biological olfactory system [15]. Specifically, we
model two computational functions in the olfactory pathway:
chemotopic convergence and odor opponency, for processing
bead array responses. Details of these models are presented in
the following subsections.

A. Dimensionality Reduction Through Chemotopic
Convergence

The projection from the olfactory epithelium onto the olfac-
tory bulb is organized such that ORNs expressing the same re-
ceptor gene converge onto one or a few spherical structures
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Fig. 9. (a) Response of 100 microbead sensors to acetone. The odor is intro-

duced at t = 14 s and removed at ¢ = 35 s. (b) Transient response of a single
microbead sensor to several presentations of each analyte.

of neuropil called glomeruli, where they synapse mitral cell
dendrites [16]. This convergence transforms the initial combi-
natorial code into an organized spatial pattern (i.e., an olfac-
tory image), which decouples odor identity from intensity [17].
In addition, massive convergence improves the signal-to-noise
ratio by integrating signals from multiple receptor neurons [7],
[18].

To model the ORN-glomerular convergence, we topologi-
cally cluster sensors that have similar selectivity using the self-
organizing map (SOM) of Kohonen [19]. The selectivity of a
bead sensor is defined as

Sel; = [3?1,3?2,...,3?0} (1)

where R¢ is the response of sensor i to odor O, and C is the
number of odorants. Once the SOM is trained, the response of
each SOM node can be computed as follows:

N
> Wi RY
a=E @
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where NV is the number of bead sensors, and W;; = 1 if sensor
1 converges to SOM node j and zero otherwise; a normalization
constant vazl Wi;; is used to ensure that discriminatory infor-
mation is not overshadowed by the common-mode response of
the array [10]. Note that the SOM is used to cluster features
(bead sensors) rather than samples (as is conventionally done in
pattern recognition). Thus, each SOM node G; can be thought
of as a simulated glomerular unit.

B. Contrast Enhancement Through Center On—Off Surround
Lateral Interaction

The initial odor image available at the glomerular layer is fur-
ther transformed in the olfactory bulb (OB) by means of two dis-
tinct lateral inhibitory circuits. The first of these circuits, which
occurs at the input of the OB, has been suggested to perform
some form of “volume control” to broaden the dynamic range
of concentrations at which an odorant can be identified [20].
A computational model of this circuit has been previously de-
scribed by us to achieve concentration normalization [21]. The
second circuit occurs at the output of the OB. These circuits
have been recently found to have local excitatory (on-center)
and long-range inhibitory (off-surround) connections, and have
been suggested to perform contrast enhancement of the spatial
patterns in the OB [22].

We model this center on—off surround contrast-enhancement
circuit with the well-established additive model from neurody-
namics [23, p. 676], whose general form is

dvi(t)  vi(t) &
ét :_JT_j+kZ=1ijnp(vk(t))+Ij G

where v; is the activity of mitral neuron j, 7; is the time constant
that captures the dynamics of the neuron, Ly; is the synaptic
weight between neurons k and j, M is the number of neurons,
and /; is the external input in (2), properly scaled (I; = 10G;)
in order to balance the contribution of sensors and lateral inputs.
The nonlinear activation ¢ (-) is the logistic function defined by

1
v (v;) = 1+ exp(—ay - (vj — az)) @

where the constants a; and as are set to 0.0392 and 74.985,
respectively, to match the dynamic range of the input signal
from microbead arrays.! To model center on—off surround, each
neuron makes excitatory synapses to nearby units and inhibitory
synapses with distant units as follows:

Ula,b],  d(k,j) < 4L
Ul-b,a), M <d(k,j) < 2 5)

r

0, d(k,j) > 2

T

ﬁ

Ly, =

where U [a,b] is a uniform distribution between a and b
(@ = 0,b = 1 in this study), d is the distance between
units measured as a Euclidean distance within the lattice

IThe value of these constants is problem dependent, but can be easily tuned
so that most units in the lattice operate in the near-linear range of the sigmoidal
function; this ensures good sensitivity to changes in the sensor response. An
inappropriate choice for these values would otherwise lead to saturation of these
units.
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Fig. 10. Simulated glomerular maps for five analytes, five repetitions each, using a 20 x 20 SOM lattice and 586 microbead sensors.

(d = \/(rowk — row;)” + (coly, — col;)*; row and col being
the row and column coordinates of a neuron in the lattice), and
r determines the receptive-field width of the lateral connec-
tions. An appropriate lateral inhibition spread (r) is selected
to provide maximum odor separability, where separability is
measured as follows [24]:

. t’I”(SB)

= = 6
t?”(Su,') ( )

where Sy and S are the within-class and between-class scatter
matrices, respectively [25]. For the dataset presented in Sec-
tion III-D, the maximum for this separability measure was found
to occur at r = 4.3 (cells or pixels). This receptive field width
will be used to quantify the benefits of the proposed model.

V. RESULTS

We used the response of 586 microbeads to the five analytes
(Section III-D) to train a chemotopic convergence map with 400
nodes, arranged as a 20 X 20 lattice. The response of each sensor
to an odorant was the difference between the steady-state re-
sponse (! = 34 s and baseline value ({ = 13 s ). Fig. 10 shows
the resulting odor maps for the five analytes, five samples per
analyte. Only the first sample of each odor was used to train the
SOM; all remaining samples were used for validation purposes.
It can be observed that each analyte is encoded by a unique spa-
tial pattern across the SOM lattice, and that these patterns are
highly repeatable across presentations.

The outputs of the convergence model were subsequently
input to the additive lateral inhibition model in (3). Fig. 11 (top
row) shows the spatial patterns that result from sensory con-
vergence at the input of the OB for one validation sample of
each analyte (i.e., Fig. 10, first column). These spatial patterns
are highly overlapping due to the collinearity of the sensors.
Fig. 11 (middle row) shows the resulting spatial activities fol-
lowing stabilization of the center-surround lateral interactions.

Et-OH Me-OH

Center
Surround

.,JII

My
m

Fig. 11. Spatial maps at the input (top row) and output (middle row) of the OB
model. The bottom row shows the four sparse coding regions that emerge as a
result of the lateral interactions.

TOL leads to heavy activation on two highly localized regions
(spatial code: 12). EA and Et-OH, which generate similar sensor
response, produce similar activation in regions 1, 2, and 3 (spa-
tial code: 123). ACE produces heavy activation of region 4, 5,
and 3 (spatial code: 345). Finally, Me-OH produces heavy acti-
vation of regions 3 alone (spatial code: 3). Thus, the spatial pat-
terns after center-surround interactions are significantly sparser
than the chemotopic odor maps, and provide increased odor sep-
arability.

The spatial patterns in Fig. 11 capture information that is
available from the steady-state response of the model. How-
ever, a growing body of evidence indicates that time and dy-
namics are key to odor information processing [18], [26]. To
visualize their role in the behavior of our model, the temporal
evolution of the 400-dimensional (20 x 20) system was pro-
jected onto a three-dimensional subspace by means of prin-
cipal components analysis. Shown in Fig. 12, trajectories for
each odor originate at nearby locations in state space; this ini-
tial state corresponds to the highly overlapping spatial patterns
at the input of OB (i.e., those in Fig. 11, top row). As a result
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Fig. 12. Evolution of OB activity for the five analytes along the first three prin-
cipal components. Twenty-five trajectories are shown, one per sample in the
dataset. The initial points in the trajectories are the spatial maps at the input of
the OB network, shown in Fig. 11 (top row). Odor separability is significantly
improved as a result of lateral inhibition.

of center on—off-surround lateral connections, the activity for
each odor slowly moves away from the initial location and set-
tles into odor-specific fixed-point attractors, which correspond
to the localized spatial patterns in Fig. 11 (middle row). The re-
peatability of the odor trajectories is illustrated by visualizing all
twenty-five trajectories (five samples per analyte) in the dataset.
These results are consistent with recent neurobiological find-
ings in the insect antennal lobe (analogous to mammalian ol-
factory bulb), which show that odor-evoked spatiotemporal ac-
tivity evolves over time and converges into odor-specific attrac-
tors [26].

Visual inspection of the steady-state response in Fig. 11 and
the transient trajectories in Fig. 12 clearly shows that the lateral
inhibitory network increases the contrast between odors. To
quantify these benefits, we compared the separability measure
J in (6) at the output of the model against the separability that
is available 1) from raw sensor data, 2) following chemotopic
convergence, and 3) at the output of an OB network with
random lateral connections. The latter allows us to separate the
role of center on—off surround circuits from that of dynamics
alone. Fig. 13 shows the temporal evolution of the separability
J for each of the four cases. Three repetitions are shown in
the case of random and center-surround lateral connections to
illustrate the repeatability of results for different (randomly
drawn) connection strengths. Chemotopic convergence alone
(J = 83) is able to improve odor separability compared to that
available from the raw bead-array response (J = 60). Random
lateral connections appear to improve discrimination initially
(J ~ 500 at t = 50 ms), but their steady-state performance is
on average comparable to chemotopic convergence. In contrast,
discrimination for the model with center on—off surround lateral
connection increases monotonically after an initial period (¢ >
100 ms), reaching a maximum in their steady-state response
(J ~ 700). This steady-state discrimination corresponds to
the fixed-point attractors in Fig. 12 and the spatial maps in
Fig. 11 (middle row).
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A. Comparison With Statistical Techniques

We compared the pattern separability achieved by the pro-
posed model against two statistical dimensionality-reduction
techniques that are widely used with chemical sensor array
data: principal component analysis (PCA) and linear discrimi-
nant analysis (LDA) [25]. PCA is an unsupervised method that
provides optimum reconstruction in the mean-squared-error
sense, whereas LDA is a supervised technique that provides op-
timum separability for Gaussian classes with equal covariance
matrices.

PCA was performed on the raw sensor data (586 dimensions).
Only the first two PCA eigenvectors were preserved, which ac-
count for 96.2% of the variance. LDA was also performed on
the raw sensor data; in this case, the four nonzero eigenvalues
were preserved. Both statistical techniques provide good sep-
aration between odor classes, but lead to larger within-class
scatter than the neuromorphic approach; e.g., note in Fig. 12
that the network converges to a highly localized activity pat-
tern when exposed to multiple repetitions of the same odor. As
a result, the neuromorphic model provides higher odor separa-
bility (.J) than PCA and LDA, as illustrated in Fig. 13. While
the extent to which these results generalize to other datasets re-
quires further investigation, we believe that the improved per-
formance of the neuromorphic model is due to the fact that it
does not require computation of inverse scatter matrices, which
become problematic when the dimensionality of the input space
is larger than the number of samples in the dataset (e.g., 586 di-
mensions versus five samples per class, in our case). This sug-
gests that the neuromorphic model is particularly advantageous
in very-high-dimensional spaces, a result that is consistent with
the olfactory system.

VI. SUMMARY

In this paper, we have presented a neuromorphic approach
for sensor-based machine olfaction that combines microbead
array technology with a model of signal processing in the
olfactory bulb. Our approach can be summarized as follows.
Polymeric microbeads with immobilized solvatochromic dyes
are randomly assembled in a fiber bundle to produce an array of
diverse sensors. Changes in polarity of the dyes’ local environ-
ment induce characteristic shifts in their fluorescence spectrum,
which can be monitored. Imaging of the microbeads’ response
leads to a high-dimensional signal, which is first processed
with a self-organizing model of chemotopic convergence. The
convergence model transforms the microbead array response
into an organized spatial pattern (i.e., an odor image). Odor
images formed through convergence are however highly over-
lapping due to collinearity of sensor input, and require further
processing. Hence, these odor maps are subsequently processed
using a lateral inhibitory circuit with center-surround connec-
tions. These lateral interactions improve contrast between odor
images, producing sparse and more orthogonal patterns than
those available at the input.

At present, the steady-state response of the bead sensors to
odorants is used as the input to our model. We are currently in-
vestigating the extent to which information in the response tran-
sients can further improve separability between similar odors
(e.g., EA versus Et-OH). Specifically, one could modulate the
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Fig. 13. Comparison of the OB network with center-surround lateral connections (three repetitions are shown) against 1) raw data, 2) following chemotopic
convergence, 3) at the output of an OB with random lateral connections (three repetitions), 4) PCA (first two components capturing 96.15% of total variance), and,

5) LDA.

sensors with a pulse train in the sample concentration, much
like what is observed with the breathing cycle of animals. This
would lead to oscillatory attractors in the model. By matching
the time constants of the model to those of the sensor transients,
the system could converge to limit cycles with higher discrim-
inatory information than the fixed-point attractors in Fig. 12.
Further, this work has focused on primarily discriminating pure
analytes at a single concentration. The next stage of our re-
search will investigate incorporation of gain-control circuits in
the olfactory bulb to handle multiple concentrations [27], and
bulb—cortex interaction to perform mixture segmentation and
background suppression [28].
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