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Abstract—This paper presents a computational model for chem-
ical sensor arrays inspired by the first two stages in the olfactory
pathway: distributed coding with olfactory receptor neurons and
chemotopic convergence onto glomerular units. We propose a
monotonic concentration-response model that maps conventional
sensor-array inputs into a distributed activation pattern across a
large population of neuroreceptors. Projection onto glomerular
units in the olfactory bulb is then simulated with a self-orga-
nizing model of chemotopic convergence. The pattern recognition
performance of the model is characterized using a database of
odor patterns from an array of temperature modulated chemical
sensors. The chemotopic code achieved by the proposed model is
shown to improve the signal-to-noise ratio available at the sensor
inputs while being consistent with results from neurobiology.

Index Terms—Chemical sensor arrays, machine olfaction, olfac-
tory bulb, olfactory receptors.

NOMENCLATURE

EC Effective concentration at which the neuron
shows half-saturation.

GL Glomerulus.

GR Granule.

Affinity of ORN to ligand .

L Ligand.

LOT Lateral olfactory tract.

MOS Metal oxide sensor.

M/T Mitral/tufted cells.

NLA Normalized log affinity.

OB Olfactory bulb.

ORN Olfactory receptor neuron.

P Pyramidal cells

PC Piriform cortex.

PCA Principal component analysis.
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PG Periglomerular cells.

Response of ORN to ligand .

RAD Receptor affinity distribution.

SBMO Sensor-based machine olfaction.

SOM Self-organized map.

I. INTRODUCTION

MOST current approaches for processing data from chem-
ical sensor arrays are the direct application of statistical,

chemometrics, and neural pattern recognition techniques [1].
However, biology has always served as an abundant source of
inspiration in the design of complex engineering systems. A
number of parallels between biological and artificial olfaction
are well known to the SBMO community. Two of these paral-
lels are at the core of SMBO, as stated in the seminal work of
Persaud and Dodd [2]. First, biology relies on a population of
ORNs that are broadly tuned to odorants. In turn, SBMO em-
ploys chemical sensor arrays with highly overlapping selectiv-
ities. Second, neural circuitry downstream the olfactory epithe-
lium improves the signal-to-noise ratio and the specificity of
the initial receptor code, enabling wider odor detection ranges
than those of individual receptors. Pattern recognition of chem-
ical sensor signals performs similar functions through prepro-
cessing, dimensionality reduction, and classification/regression
algorithms [3]. Unfortunately, ORNs and current chemical sen-
sors detect fundamentally different molecular properties of a
volatile compound. For this reason, correlation between chem-
ical sensor patterns and the perceived properties of an odorant,
arguably the ultimate role of machine olfaction, have been mod-
erately successful to date [4].

Leaving aside the daunting task of organoleptic prediction,
which will necessitate the development of sensing materials at-
tuned to the molecular determinants of odors, a number of ol-
factory processes are worthy of study for potential application
in machine olfaction. These include hyperacuity through sen-
sory integration [5], novelty detection through habituation [6],
orthogonalization of sensor patterns through lateral inhibition
[7], encoding of odor intensity in interspike intervals [8], con-
centration-invariant recognition of odors [9], [10], identification
against background, segmentation of odor mixtures [11], [12],
and perceptual grouping of odors [13]. Moreover, SBMO may
serve as a valuable platform for testing olfactory coding and
signal processing hypotheses from neurobiology. This modern
view of neuromorphic systems [14] reverses the traditional roles
of engineering and biology, since the objective becomes using
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Fig. 1. Different anatomical stages and signal-processing primitives in the ol-
factory pathway: 1) combinatorial coding, 2) chemotopic convergence, 3) log-
arithmic compression, 4) contrast enhancement, 5) storage and association of
odor memories, and 6) bulbar modulation through cortical feedback (adapted
with permission from [17]. (Color version available online at http://ieeexplore.
ieee.org.)

an engineering model to validate biological hypotheses rather
than designing engineering solutions inspired by biology.

The long-term goal of our research is to develop alternative
algorithms for chemical sensor arrays based on known signal-
processing principles of the olfactory system. In this paper
we present a model of two key elements in the early stages of
the olfactory pathway: combinatorial coding with ORNs and
chemotopic convergence onto GLs. We first propose a con-
centration-response model that performs a nonlinear mapping
of chemical sensor array data onto a population of simulated
ORNs. We then present a self-organizing model of chemotopic
convergence capable of generating glomerular activation pat-
terns consistent with those observed in the OB through optical
imaging. The complete model is validated using experimental
data from an array of metal–oxide gas sensors under tempera-
ture-modulation excitation.

II. SIGNAL PROCESSING PRIMITIVES IN

THE OLFACTORY PATHWAY

The olfactory pathway can be divided into three general
stages: 1) olfactory epithelium, where primary reception takes
place; 2) olfactory bulb, where an organized olfactory image
is formed; and 3) olfactory cortex, where odor associations
are stored. These anatomically and functionally distinct relays
perform a variety of signal processing tasks, resulting in the
sensation that we know as an odor. At the risk of understating
the complexity of the olfactory system, six fundamental compu-
tational functions can be identified for the purposes of machine
olfaction. Illustrated in Fig. 1, these are 1) signal transduction
into an ORN combinatorial code, 2) chemotopic convergence of
ORN axons onto GL, 3) logarithmic compression through lat-
eral inhibition from PG cells, 4) contrast enhancement through
lateral inhibition from GR cells, 5) storage and association

of odor memories, and 6) bulbar modulation through cortical
feedback.

The first function is concerned with transduction of the
chemical stimulus into an electrical signal. Odorants entering
the nostril bind to olfactory receptors and, through secondary
messenger mechanisms, transform the chemical stimulus into a
neural signal [15]. A complete model of the transduction [16]
is beyond the scope of this work; let it suffice that the spiking
frequency of an ORN is a monotonically increasing function of
the odorant concentration for a given receptor-odorant binding
affinity. This dose-response model will be further elaborated in
Section IV.

The next three signal processing primitives take place at the
OB. The second stage involves massive convergence of ORN
axons onto the glomerular layer [17], [18]. As illustrated in
Fig. 1, ORNs expressing the same receptor project onto a single
or a few target GLs. This form of convergence serves two com-
putational functions. First, massive summation of ORN inputs
averages out uncorrelated noise, allowing the system to detect
odorants below the detection threshold of individual ORNs
[5]. Second, chemotopic organization leads to a more compact
odorant representation than that available at the epithelium, pro-
viding the means to decouple odor quality from odor intensity.
This is the basis for the traditional view of GL as labeled lines or,
more recently, as molecular feature (or odotope) detectors [17].

The initial glomerular image is further transformed in the
olfactory bulb by means of two distinct lateral inhibitory cir-
cuits. The first of these circuits (third primitive in Fig. 1) takes
place between proximal GLs through PG cells. As noted by
Freeman [19], the interaction through PG cells may serve as
a “volume control” mechanism, enabling the identification of
odorants over several log units of concentration.

The fourth primitive is represented by dendro-dendritic inter-
actions between excitatory M/T and inhibitory GR cells. These
self- and lateral inhibitory circuits form the negative feedback
loops that are responsible for the observed oscillatory behavior
in OB [20]. More importantly, local inhibition introduces time
as an additional dimension for odor coding by generating tem-
poral patterning of the spatial code available at the GL layer
[21]. The precise role of the granular lateral inhibition circuits
is, however, under debate. The first and more traditional view is
that lateral inhibition sharpens the molecular tuning range of in-
dividual mitral cells with respect to that of their corresponding
ORNs [17]. Taken to the extreme, this function reduces to the
winner-take-all strategy of competitive learning. A second hy-
pothesis is that lateral inhibition leads to a “global redistribu-
tion” of activity such that the bulb-wide representation of an
odorant, rather than the individual tuning ranges, becomes spe-
cific and concise over time [18]. This neurodynamics view of
lateral inhibition is thus heavily related to temporal coding.

Thefifthprimitive involves theformationof“odorobjects”and
the subsequent storage in the PC. Pyramidal neurons, the prin-
cipal cells in the PC, receive sparse, nontopographic, excitatory
connections from M/T axons in the OB through the LOT. These
projections are both convergent and divergent (many-to-many).
This suggests that P cells detect combinations of co-occurring
molecular features of the odorant, and therefore function as “co-
incidence detectors” [13]. The PC is also characterized by sparse,
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distributed connections between P cells. These lateral connec-
tions have been shown to play an important role in storing odors
with minimum interference and pattern completion of degraded
stimuli [22]. Together, these two anatomical features of the PC
form the basis for the synthetic processing of odors [13].

The sixth primitive involves centrifugal connections from
cortex onto GR interneurons in the olfactory bulb. Several com-
putational functions have been associated with these feedback
connections, including odor segmentation and habituation [11],
hierarchical clustering [23], and chaotic bulbar dynamics [24].
In the next section, we present a brief review of how these
various signal-processing primitives have been adapted for
processing data from chemical sensor arrays.

III. REVIEW OF NEUROMORPHIC PROCESSING

IN CHEMICAL SENSOR ARRAYS

Leveraging a growing body of knowledge from computational
neuroscience [25], neuromorphic models of the olfactory system
have become a recent subject of attention for the purpose of
processing data from chemical sensor arrays. Ratton et al. [26]
have employed the olfactory model of Ambros–Ingerson et al.
[23], which simulates the closed-loop interactions between the
olfactory bulb and higher cortical areas. The model performs a
hierarchical processing of an input stimulus into increasingly
finer descriptions by repetitive projection of bulbar activity to
(and feedback from) the olfactory cortex. Ratton et al. have ap-
plied the model to classify data from a microhotplate metal oxide
sensor excited with a saw-tooth temperature profile. Sensor
data were converted into a binary representation by means of
thermometer and Gray coding, which was then used to simulate
the spatial activity at the olfactory bulb. Their results show that
classical approaches (Gram–Schmidt orthogonalization, fast
Fourier transform, and Haar wavelets) yield better classification
performance. This result should come as no surprise given
that the thermometer and Gray codes are unable to faithfully
simulate the spatial activity at the olfactory bulb, where the
most critical representation of an odor stimulus is formed.

White et al. [27], [28] have employed a spiking neuron model
of the peripheral olfactory system to process signals from a
fiber-optic sensor array. In their model, the response of each
sensor is converted into a pattern of spikes across a popula-
tion of ORNs, which then projects to a unique mitral cell. Dif-
ferent odors produce unique spatio-temporal activation patterns
across mitral cells, which are then discriminated with a delay
line neural network (DLNN). Their OB-DLNN model is able
to produce a decoupled odor code: odor quality being encoded
by the spatial activity across units and odor intensity by the re-
sponse latency of the units.

Pearce et al. [5] have investigated the issue of concentration
hyperacuity by means of massive convergence of ORNs onto
GL. Modeling spike trains of individual ORNs as Poisson pro-
cesses, the authors show that an enhancement in sensitivity of

can be achieved at the GL, where is the number of con-
vergent ORNs. Experimental results on an array of optical mi-
crobeads are presented to validate the theoretical predictions.

Otto et al. have employed the KIII model of Freeman et al.
[29] to process data from FT-IR spectra [30], [31] and chemical
sensors [32]. The KIII is a neurodynamics model that faithfully

captures the spatio-temporal activity in the olfactory bulb, as
observed in electroencephalogram (EEG) recordings. Different
dynamical behaviors can be obtained from the model by careful
selection of the coupling coefficients in the KII sets, the cou-
pled oscillators that serve as the basic computational element
in the system [33]. In [30], the FT-IR spectrum of each analyte
was decimated, Hadamard-transformed, and normalized before
being used as an input vector into the KIII model. The authors
show that the principal components of the mitral cell state-space
attractors can be used to discriminate different analytes. Their
results, however, indicate that the KIII is unable to match the
performance of a regularized discriminant analysis classifier.

Our prior work [6], [34] has investigated the use of habit-
uation for processing odor mixtures with chemical sensor ar-
rays. A statistical pattern recognition model was presented in
[34], where habituation is triggered by a global cortical feed-
back signal, in a manner akin to Li and Hertz [11]. A neuro-
morphic approach based on the KIII model was proposed in
[6], where habituation is simulated by local synaptic depres-
sion of mitral channels. Inspired by the role of GL as functional
units [35], sensor array patterns are preprocessed with a family
of odor selective discriminant functions before being fed to the
KIII model. Our results showed that the KIII model is able to re-
cover the majority of the errors, introduced in the sensor-array
and discriminant-function stages, by means of its Hebbian pat-
tern-completion capabilities. We have also proposed a model of
the early stages in the olfactory pathway to process data from
MOS [36], [37]. The model captures two functions: chemotopic
convergence of sensory neurons onto the olfactory bulb, and
center on–off surround lateral interactions. The sensor array re-
sponse is grouped in a manner akin to the convergence of ORN
axons onto the glomerular layer. This is subsequently fed to a
firing rate model [36] (or a spiking model in [37]) of the olfac-
tory bulb network to code odor identity and intensity in a qual-
itatively similar manner as in the biological olfactory system.

IV. DOSE-RESPONSE MODEL FOR OLFACTORY

RECEPTOR NEURONS

The first stage in the olfactory pathway is a large array
( 10–100 million) of sensory neurons, each of which selec-
tively expresses one or a few genes of a large ( 1000) family
of receptor proteins [38]. Each receptor is capable of detecting
multiple odorants, and each odorant can be detected by multiple
receptors, leading to a massively combinatorial olfactory code
at the receptor level. It has been shown [39], [40] that this broad
tuning of receptors may be an advantageous strategy for sensory
systems dealing with a very large detection space. This is cer-
tainly the case for the human olfactory system, which has been
estimated to discriminate up to 10 000 different odorants [41].

The response of a particular neuron is determined by the extent
to which the receptor binds to the odorant (or ligand). Following
[42], the binding of one receptor-ligand pair can be modeled as

(1)

where is the average instantaneous firing rate of olfactory
receptor neuron ORN when exposed to ligand at concen-
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Fig. 2. (a) Concentration-response curve for one ORN. (b) Range of simulated ORN affinities for a particular analyte.

tration , is the binding affinity between ORN and ,
and is the molecular Hill equivalent. Shown in Fig. 2(a), this
equation models a monotonic increase in the ORN firing rate
with the log-concentration of odor stimulus. The affinity
can then be interpreted as the inverse of the effective concentra-
tion at 50% EC , at which the neuron shows half-saturation,
whereas determines its intensity tuning range EC . The
effect of the affinity on the dose-response curve is illustrated
in Fig. 2(b). Following this model, a particular ORN can then be
characterized by a vector of log-affinities towards the different
volatile compounds (or molecular features) in a given chemical
problem space

(2)

V. CHEMOTOPIC CONVERGENCE MODEL

As discussed earlier in Section II, ORNs converge onto the
OB in a chemotopic fashion, whereby ORNs expressing the
same receptor type project onto a few neighboring GLs. Based
on this property, we now present a self-organizing model of con-
vergence that generates a chemotopic projection from a large
population of ORNs onto a two-dimensional lattice of GLs [43].
The model exploits the ORN representation in (2), according
to which selectivity and sensitivity can be related to the direc-
tion and magnitude of the log-affinity vector , respec-
tively. This interpretation is illustrated in Fig. 3(a) for a simple
problem with two analytes and six ORNs. Vectors along the
shaded angular region (ORN to ORN ) have similar selectivity
profiles but increasing sensitivities. On the contrary, vectors in
the shaded radial region (ORN and ORN ) have similar sensi-
tivities but different selectivity profiles. The key assumption in
our model is that, in order to generate a chemotopic projection,
ORNs must converge to GL according to their selectivity rather

than their sensitivity. Defining an NLA vector as

(3)

the chemotopic convergence mechanism can be implemented by
performing a clustering of the ORN population in NLA space
and associating each cluster center to an individual GL. Since
GLs are arranged as a single layer in the olfactory bulb, and
given that neighboring GLs tend to respond to similar odors
[44], [45], a natural choice to model the ORN-GL convergence
is the SOM of Kohonen [46]. The SOM is presented with a pop-
ulation of ORNs, each represented by its coordinates in NLA
space. Once the SOM is trained to model this population, each
ORN is then assigned to the closest SOM node (a virtual GL)
in NLA space to form a convergence map. Finally, the response
of each GL is computed as the sum of the activity of all ORNs
that converge to it

(4)

where is the firing rate of ORN to ligand and if
ORN converges to and zero otherwise. Note that the NLA
space is only used to assign each ORN to an individual GL; the
ORN and GL responses in (4) are obtained using the unnormal-
ized log-affinity vector
and the dose-response model (1).

A. Emerging Olfactory Code

To illustrate the coding capabilities of the chemotopic
convergence model, we first present results on a large ol-
factory system with 400 000 ORNs and a 20 20 SOM
lattice [43], which yields a realistic convergence ratio of
1000:1. The probabilistic distribution of ORN log-affinities

for analyte across a reper-
toire of receptors is modeled with the RAD of Lancet et al.
[47], which states that the probability of a given ORN type is
inversely proportional to its affinity . The RAD is a universal
model for ligand-receptor interactions that has been shown
to provide theoretical estimates of receptor repertoire size
that are consistent with the experimental studies of Buck and
Axel [38]. Standard parameter settings of the RAD ( ,
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Fig. 3. (a) Interpretation of selectivity and sensitivity from the log-affinity vector. (b) Glomerular SOM (red) and ORN repertoire (cyan) in normalized log-affinity
space for a simulated three-analyte chemical space. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 4. (a) Glomerular images for ten different ligands at 10 M. Each ligand produces a unique spatial pattern across the GL layer. (b) Glomerular images for
ligand L and the mixture L + L at increasing concentrations from 10 to 10 M. (Color version available online at http://ieeexplore.ieee.org.)

, and ) are used in this paper. In
this case, ORN activities are simulated according to (1) since
collecting sensor-array patterns for a large number of analytes
and concentrations is impractical. Results on experimental data
from the sensor array are presented in Section VI.

In order to illustrate the NLA distribution and the ORN-to-GL
convergence mapping, the model is first trained on a hypothet-
ical chemical space with only three analytes. The simulation re-
sults are shown in Fig. 3(b). Due to the normalization step in
(3), the ORN population in NLA space follows a uniform distri-
bution on a unit-radius spherical manifold. In turn, the trained
SOM lattice arranges itself to model this NLA distribution, as
illustrated by the two-dimensional mesh in Fig. 3(b).

In order to analyze the emerging olfactory code, the model
is finally simulated on a larger chemical space with ten ana-
lytes. After training, the SOM is exposed to (simulated) con-
centrations of the analytes ranging from 10 M to 10 M, re-
sulting in the 20 20 glomerular images shown in Fig. 4. The
glomerular response of the different analytes at a fixed concen-
tration of 10 is shown in Fig. 4(a), whereas the glomerular
activities at different concentration for analyte and the mix-
ture are shown in Fig. 4(b). These results show that each
analyte elicits a unique glomerular image with higher activity in
those GLs that receive projections from ORNs with high affinity
to that analyte. As the concentration of the analyte increases, ad-
ditional ORNs with lower affinity are recruited, resulting in an
increased activation level and a larger spread of the analyte-spe-
cific loci. These results are consistent with those from experi-

mental data in neurobiology [45], [48], [49]: spatially local ac-
tivity, and decoupling of odor identity/concentration.

VI. PROCESSING OF CHEMICAL SENSOR DATA

The sensor array employed in this paper consists of two
MOS chemoresistors [50]. These sensors are widely available
commercially from several vendors, are fairly stable, and
provide good sensitivity for various solvents and combustible
gases. However, MOS sensors are known to be poorly selective.
Their selectivity is partly determined by the operating tem-
perature, normally set by applying a fixed excitation voltage
across a resistive heater built into the device. It has been shown
[51] that this thermal dependence can be used to improve the
selectivity of the sensor by modulating the heater voltage and
capturing the sensor response at multiple temperatures. This
excitation principle is commonly referred to as temperature
modulation [52]. Two types of temperature-modulation profiles
are commonly employed: temperature cycling and temperature
transients [53]. In temperature cycling, the sensor is excited
with a continuous heater voltage, typically a sinusoidal wave-
form, to ensure a smooth temperature profile. If the heater
waveform is slow enough to allow the sensor to keep up with
the set-point temperature, the behavior of the sensor at each
temperature may then be thought of as a “pseudosensor” by
virtue of the temperature-selectivity dependence. In thermal
transients, on the other hand, the sensor is driven by a step or
pulse waveform in the heater voltage, and the discriminatory
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Fig. 5. (a) Temperature modulated response of a TGS2600 sensor to three concentrations three analytes at three concentration. (b) PCA scatter plot of serial
dilutions from three analytes. Increasing subindexes (one to three) denote higher concentrations. (Color version available online at http://ieeexplore.ieee.org.)

information is contained in the chemical transient induced by
the fast change in temperature.

In this paper, we employ temperature cycling with sinusoidal
waveform (0–7 V, s, 10 Hz sampling frequency). The
sensor array was exposed to the static headspace of mixtures
from three analytes: acetone , isopropyl alcohol , and
ammonia at three dilution levels in distilled water (the
neutral). The lowest dilution of the analytes was 0.3 v/v%
for acetone, 1.0 v/v% for isopropyl alcohol, and 33 v/v% for
ammonia. These baseline dilutions were chosen so that the
average isothermal response (i.e., a constant heater voltage of
5 V) across the two sensors was similar for the three analytes,
thus ensuring that they could not be trivially discriminated.
Two serial dilutions with a dilution factor of 1/3 were also
acquired, resulting in 15 samples per day (four mixtures
three concentrations, plus three neutral samples). The process
was repeated on three separate days, for a total of 45 samples.
The temperature-modulated response of one of the sensors to
the three concentrations of the single analytes is shown in
Fig. 5. The sinusoidal heater voltage starts at 0 V at

samples, reaches a maximum of 7 V at samples, and
returns to 0 V at sa. Each analyte leads to a unique
pattern, defined by the amplitude and location of a maximum
in conductance. Two maxima are easily resolved in the case of
isopropyl alcohol.

To extract information from the temperature modulated
response, each transient was decimated into ten equally spaced
measurements per sensor, generating a 20-dimensional odor
signal from the sensors. The response to distilled water was
subtracted from the response to each analyte in order to make
the origin of feature space coincide with the neutral odor. A
PCA reduction of this high-dimensional vector, illustrated
in Fig. 5(b), shows a unique concentration gradient for each
of the three analytes, with increasing separability at higher
concentrations (higher subindexes), as could be expected.

A. Mapping Sensor Patterns Onto Firing Rates

To simulate an ORN population with a chemical sensor
array, a mapping is required from the feature space in Fig. 5(a)
onto firing rates according to the monotonic dose-response
model in (1). For this purpose, we propose a receptor model

that transforms the -dimensional sensor response
, where is the response of sensor to odor

A, onto an -dimensional response
across a population of ORNs. The selectivity of
each simulated ORN is given by an -dimensional unit vector

defined in feature space, as illustrated in
Fig. 6(a). The response of receptor to odor is then given by

(5)

where is the length of the odor vector, which captures con-
centration information, is the angle between the vectors

and , which is related to the identity of the odor, de-
fines the receptive field width of this receptor [refer to Fig. 6(b)],
and is a logistic function that models saturation. The co-
sine weighting of the form shown in (5) is common in the pri-
mary motor neurons used to code movement directions [54] and
has been suggested to be a primary requirement for performing
vector computations on sensory inputs [55].

Let us illustrate this mapping with an example. Consider a
synthetic problem with two gas sensors (1 and 2) and three re-
ceptors ( , , and ). The surface plot in Fig. 7 shows the
response of each simulated ORN to all possible combinations
of sensor 1 and sensor 2 responses. Receptor A is selective to
odors that produce high response in sensor 2 and low response in
sensor 1. Receptors B and C, which have similar selectivity, re-
spond maximally to odors that generate high response in sensor
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Fig. 6. (a) Illustration of the receptor model: The selectivity of receptor neuron i is defined by the unit vector V in a two-dimensional sensor space. The response
of this receptor to odor A depends on the angle � between V and the sensor response to the odor S = [S ; S ]. (b) Effect of parameter p on the cosine
weights: large value of p corresponds to narrow receptive field widths and small p values corresponds to broad receptive field widths. (Color version available
online at http://ieeexplore.ieee.org.)

Fig. 7. Illustration of the receptor mapping: Three receptors and their receptive
field defined in a synthetic two dimensional sensor space. (Color version avail-
able online at http://ieeexplore.ieee.org.)

1 but low response in sensor 2. Furthermore, the response of
the receptors increases with an increase in concentration (repre-
sented by an increase in the amplitude of the sensor response)
and saturates. By sampling the sensor space with a population
of such simulated receptors, a high-dimensional odor signal can
be obtained that preserves the topology and proximity relation-
ships of the sensor space.

B. Chemotopic Convergence Model

In order to evaluate the proposed dose-response and chemo-
topic convergence models on experimental data from the sensor
array, a smaller olfactory system with 5000 ORNs and a 10
10 SOM lattice was used. The sensor response (only one out
of three replicates) to each of the three analytes at
their highest concentration was used to train the system. Since
uniformly sampling the 20-dimensional space with 5000 ORNs
would lead to a very sparse representation, the simulated ORNs
were aligned in the direction of the three training odor vectors
with the addition of uniformly distributed noise to each dimen-
sion ( 25% of the maximum value) to prevent overfitting. The
SOM was then trained using a fixed learning rate and a decaying
neighborhood width (refer to [56; p. 450] for equations). Fig. 8

shows the simulated glomerular images (SOM activity) for the
three analytes at three dilution levels. Lighter areas
in the SOMs identify nodes that show high activity to the input
odor, whereas darker regions correspond to nodes that are not
active. These GL images present a simpler structure than that in
Fig. 4, primarily due to the fact that only three analytes are used
and, therefore, the SOM needs to learn only three odor-specific
loci. Besides this quantitative difference, the glomerular SOM is
capable of decoupling odor quality from odor intensity, quality
being encoded by the spatial pattern across glomeruli, and in-
tensity being captured by the amplitude and spread of this pat-
tern. An interesting observation to be made at this point is that
the locus of activity for a given odor corresponds to those SOM
nodes that receive projections from the temperature features of
maximum gain to that odor.

Fig. 9 shows the response of the system to a mixture of
acetone and isopropyl alcohol at three different concentrations,
which resembles the sum of the activation produced by any of
its individual components. This form of additive effect, where
the perceived strength of the mixture is equal to the sum of the
perceived strengths of its components, is known to occur during
perceptual processing of odor mixtures [57].

Apart from the qualitative similarity with the processing of
odors in the biological olfactory system, what are the pattern
recognition advantages of the proposed model? To answer this
question, we employ a measure of class separability derived
from Fisher’s linear discriminant analysis [58]

(6)

where and are the within-class and between-class scatter
matrices, respectively, defined as follows:

(7)

(8)

and (9)
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Fig. 8. Glomerular images of the three analytes generated using an experimental database of temperature-modulated MOS sensors exposed to acetone, isopropyl
alcohol, and ammonia at three different concentrations levels [refer to Fig. 5(a)]. Lighter areas in the SOMs identify nodes that show high activity to the input odor,
whereas darker regions correspond to nodes that are not active. Three replicates per analyte and concentration are shown in the figure to illustrate the repeatability
of the spatial patterns. A population of 5000 sharply tuned receptor neurons (p = 30) and a 10� 10 SOM lattice was used to generate these spatial maps. (Color
version available online at http://ieeexplore.ieee.org.)

Fig. 9. Glomerular images generated from the sensor array response to a mix-
ture of acetone and isopropyl alcohol at three concentrations. Lighter areas in the
SOMs identify nodes that show high activity to the input odor, whereas darker
regions correspond to nodes that are not active. (Color version available online
at http://ieeexplore.ieee.org.)

Fig. 10. Comparison of pattern separability using (a) raw sensor data (circles),
(b) PCA (triangles), and (c) convergence: maximum separability is achieved in
the region p = 8 to p = 12. (Color version available online at http://ieeexplore.
ieee.org.)

where is a feature vector, is the number of odor classes,
and are the mean vector and number of examples for odor ,
respectively, is the total number of examples in the data set,
and is the mean vector of the entire distribution. Being the
ratio of the spread between classes relative to the spread within
each class, the measure increases monotonically as classes
become increasingly more separable.

Fig. 10 shows the separability between the three analytes (all
concentrations included) when computed from raw sensor data
(20 dimensions), principal components (first two PCs), and fol-
lowing convergence mapping. Odor separability is constant for

raw data and PCA since these representations are not a function
of the receptive field width. Maximum separability is achieved
using convergence mapping with receptor neurons whose recep-
tive field width is neither too broad nor too narrow ( to

). This is in agreement with theoretical work on biolog-
ical and artificial chemical sensors, which indicates that max-
imum mutual information between the sensor response and the
set of odors to be identified is obtained by using an array of re-
ceptors/sensors that are tuned to 25–35% of the entire stimuli
set [39]. Furthermore, our results show that convergence (for

) leads to an increase in odor separability when
compared with the raw signals or the PCA projection. This im-
provement in signal-to-noise-ratio is a direct result of the super-
vised nature of the convergence mapping, which leads to more
orthogonal patterns than those available at the input.

VII. DISCUSSION

This paper has presented a computational model for chem-
ical sensor arrays inspired by the first two stages in the olfac-
tory pathway: Population coding with broadly tuned olfactory
receptor neurons and chemotopic convergence onto glomerular
units. Each receptor is modeled by a vector of log-affinities to-
wards the different analytes in chemical space. Combined with
a monotonic concentration-response curve, this model can be
used to define a nonlinear mapping from chemical sensor-array
patterns onto firing rates. The rationale behind our mappings
from sensor data onto a high-dimensional ORN population is
that, in order to exploit the strategies employed by the olfactory
system, our model must operate with a similar representation to
that available in the epithelium (i.e., combinatorial and high-di-
mensional).

The first of such biologically inspired strategies is the con-
vergence mapping presented in this manuscript. Olfactory re-
ceptor neurons are assumed to project onto the olfactory bulb
according to their selectivity profile, defined as a normalized
vector of affinities towards different volatile compounds. A Ko-
honen SOM is used to cluster olfactory receptor neurons in a
topology-preserving fashion, leading to a two-dimensional spa-
tial patterning of activity that are consistent with results ob-
served in the biological olfactory bulb through optical imaging.
Note that the SOM is used to cluster sensor features that have
similar affinities (similar class information) rather than to cluster
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similar examples, as is conventionally done in pattern recog-
nition: clustering is done in the “affinity space” rather than in
the conventional “feature space.” It is this novelty in training
the SOM that leads to spatial odor maps that are qualitatively
similar to those found in biology [45], [48], [49]. The chemo-
topic convergent projection produces unique spatial patterns for
each analyte, effectively decoupling odor quality from odor in-
tensity, which cannot be accomplished at the receptor level.
This emerging code is analyzed on a large model consisting of
400 000 receptors and 400 glomeruli using simulated data, and
also on a smaller model with 5000 receptors and 100 glomeruli
using actual data from a gas sensor array.

Our results on sensor data show that maximum separability is
achieved with a receptive field that is neither too broad nor too
narrow. Our model has employed a homogeneous receptor pop-
ulation. However, theoretical predictions by Alkasab et al. [39]
have shown that maximum mutual information is achieved with
a heterogeneous population of receptors/sensors. It is therefore
possible that improved pattern separability may be obtained by
employing a nonuniform distribution of receptor field widths
(parameter in our model). An additional but related direc-
tion for future work is to study the generalization properties
of the model when exposed to unseen odors (or mixtures of
learned odors). Clearly, there exists a tradeoff between selec-
tivity and generality. With a receptive field tuned to the odors
in the training set (as has been done in this paper), the system
may be unable to respond to new odors if these lie on under-
sampled regions in feature space. A heterogeneous distribution
of receptor field widths may again be the solution to balance
both goals.

The overall objective of our research is to develop a pattern
recognition architecture that incorporates all of the processing
stages identified in Section II. To this effect, we intend to in-
tegrate the proposed chemotopic convergence mechanism with
models of periglomerular volume control [59], granule contrast
enhancement [36], [37], and bulbar-cortical interactions [60]
that are being developed by our group.
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