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This paper presents Posterior-Weighted Active Search (PWAS), an active-sensing algorithm for classification of
volatile compounds with arrays of tunable chemical sensors. The algorithm combines concepts from feature
subset selection and sequential Bayesian filtering to optimize the sensor array tunings on-the-fly based on infor-
mation from previous measurements. Namely, the algorithm maintains an estimate of the posterior probability
associated with each chemical class, and updates it sequentially upon arrival of each new sensor observations.
The updated posteriors are then used to bias the selection of the next sensor tunings towards the most likely
classes, in this way reducing the number of measurements required for discrimination. We characterized
PWAS on a database of infrared absorption spectra with 250 analytes, and then validated it experimentally on
an array of metal-oxide sensors. Our results show that PWAS outperforms passive-sensing approaches based
on sequential forward selection, both in terms of classification performance and robustness to noise in sensor
measurements.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Chemical sensors are generally used as first-order devices, where
one measures the sensor's response at a fixed setting, e.g., absorption
of an optical sensor at a specific wavelength, or conductivity of a solid-
state sensor at a specific operating temperature [1]. In many cases,
additional information can be extracted by modulating some internal
property of the sensor. As an example, measuring the conductivity of a
metal-oxide chemical sensor at different temperatures can provide a
wealth of discriminatory information [2]. However, this additional
information comes at a cost, such as sensing times or power consump-
tion. For this reason, feature subset selection (FSS) techniques are
commonly used to identify a subset of the most informative sensor
configurations.

Over the past decade, a handful of investigators in the chemical
sensor community have explored active sensing as an alternative to
FSS [3–7]. In contrast with FSS, where the sensor configurations are
optimized off-line, active sensing adapts the sensor configurations in
real-time based on information obtained from previous measurements.
In previous work [6,7], we showed that active sensing can achieve
higher classification performance than FSS with fewer measurements
and provides a trade-off between sensing costs and classification perfor-
mance. Unfortunately, these active-sensing methods were developed
for individual sensors, and do not scale up to sensor arrays. First, the
number of operating configurations for a sensor array grows
gutier@cse.tamu.edu
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exponentially with the size of the array; given an N-sensor array with
D configurations per sensor, there exist DN unique configurations.
Second, chemical sensor arrays are notoriously collinear (i.e., their re-
sponse across multiple chemicals is correlated), so additional strategies
are needed to account for correlation among sensors.

This article proposes Posterior-Weighted Active Search (PWAS), an
active-sensing algorithm for sensor arrays that addresses both issues
(combinatorial explosion and sensor collinearity). PWAS performs
active sensing by optimizing the sensors' tunings towards the most
likely classes at each sensing step; for this purpose, PWAS uses the
sequential Bayesian filter of our prior work [6,7] to update the posterior
probability of each class upon arrival of each newmeasurement. To cope
with the combinatorial explosion in sensor array tunings, PWAS uses
local search to build the sensor array configurations incrementally
(one sensor at a time). Finally, to cope with sensor collinearity PWAS
uses one of the two objective functions we have developed for this
purpose. The first objective function is a parametric filter derived from
the multivariate Fisher score [8], and weighs the within-class and
between-class scatter matrices according to the estimated class poste-
riors. The second objective function is a non-parametric information-
theoretic filter that measures feature relevance and feature redundancy
with respect to the class posteriors. PWAS operates following a ‘search-
sense-update’ sequence. During the ‘search’ step, the algorithmuses the
local search and objective functions to build the next sensor array
configuration. During the ‘sense’ step, the algorithm takes sensor mea-
surements using the selected configuration. During the final ‘update’
step, the algorithm re-estimates the class posteriors by feeding themea-
sured sensor responses to a sequential Bayesian update equation. This
search-sense-update process is continued until a predefined stopping
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criterion is met, at which point the final class label is declared based on
maximum a posteriori (MAP) criterion.

The rest of thepaper is organized as follows. Section 2 provides back-
groundmaterial on active sensing, and its applications to chemical sen-
sors. Section 3 describes the proposed PWAS algorithm with a focus on
the two objective functions, which are novel contributions of this paper.
Section 4 provides a thorough evaluation of PWAS against FSS and ran-
dom feature selection on a database of low-resolution absorption spec-
tra containing 250 chemicals. Section 5 describes the experimental
setup and results from validating the approach on an array of commer-
cial MOX sensors. The article concludes with a discussion of results and
directions for future work.

2. Background

The idea of active sensing originates from the theory of ‘active
perception’ [9,10], which states that an organismactively probes the en-
vironment to enhance its ability to extract behaviorally relevant infor-
mation. The concept caught on during the 1980s in the robotics
and vision community [11], where it was used to denote control strate-
gies that dynamically adapted sensing configurations as the sensor
interacted with its environment. Since then, active-sensing principles
have been used widely in vision, robotics and target tracking to address
various computational problems such as classification, detection,
estimation, sampling, and tracking. This prior work has shown that ac-
tive sensing canmanage sensing resourcesmore efficiently than passive
sensing, and can also provide a balance between sensing costs and
sensing accuracy [12].

In a classic paper on active vision, Aloimonos et al. [13] showed that
several computer vision problems that are ill-posed and non-linearwith
passive observers become well-posed and linear by use of an active
observer (i.e., one that can control the parameters of its apparatus,
such as focal length or orientation). Over the last two decades, active
sensing has also been used for motion tracking [14], scene exploration
and reconstruction [15], face recognition [16], vision-based localization
and mapping [17], and scene segmentation [18].

Active-sensing strategies have also been broadly used in robotic nav-
igation [19], localization [20,21], simultaneous localization andmapping
[17], and robotic exploration [22]. A classical active-sensing problem in
robotics is to decide where to move the robot (location decisions) and
how to reconfigure its sensors (sensing decisions) [23]. These problems
arise from the exploration-exploitation dilemma, which involves a
trade-off between immediate rewards (exploitation) such as bringing
the robot closer to its goal, and long-term effects (exploration) such as
gathering information through landmarks, surrounding obstacles, or
reading signs.

Along these lines, active sensing has also received attention for use
in military scenarios, specifically for tracking dynamic targets with sta-
tionary [24] and mobile sensors [25–27]. The target-tracking problem
involves estimating locations and velocities of multiple moving targets
(e.g., ground vehicles) using surveillance sensors such as radars, sonars,
or electro-optical sensors. One of the central challenges in target track-
ing is selecting the next sensing action; this involves choosing sensors,
setting their configurations (such as pointing angles, dwell lengths,
etc.), or possibly moving them to another location.

2.1. Prior work in active chemical sensing

Though not as broadly as in vision, robotics and target tracking,
active-sensing principles have been applied to various chemical sensing
problems as well, including odor generation, chemical discrimination,
and data collection. To our knowledge, the earliest use of active sensing
in the chemical/olfaction domain is the work of Nakamoto et al. [28,29]
on odor generation. The objective of this workwas to reproduce an odor
blend by creating a mixture from its individual components. The
authors developed an active-control algorithm that adjusted the
mixture ratio so that the response of a gas sensor array to the mixture
matched the response of the array to the odor blend.

Active sensing has also been used for chemical discrimination prob-
lems. As an example, Priebe et al. [3] developed a statistical pattern clas-
sification method termed Integrated Sensing and Processing Decision
Trees (ISPDT). This method builds a decision tree to partition feature
space hierarchically; nodes close to the root provide good clustering of
examples regardless of class labels, whereas nodes at the leaves seek
to discriminate examples from different classes. Each internal node
defines a sensor configuration (a feature) and its children the possible
observations. The decision tree is used to guide the sensing process as
follows. First, the sensor is operated according to the feature at the
root node. The resulting observation falls into one of the child nodes,
which determines the next step: either acquire new measurements
(if it is an internal node), or to classify the sample and terminate sensing
(in case of a leaf node). The authors evaluated ISPDT on a dataset con-
taining the response of an optical sensor array to trichloroethylene
(a carcinogenic industrial solvent) in complex backgrounds; ISPDT
reduced misclassification rates by 50%, while requiring only 20% of all
the sensors to make any individual classification.

More recently, Lomasky et al. [30] developed an “active class selec-
tion” method to optimize the generation of training datasets for e-
nose applications. Their approach was based on principles from active
learning, a machine-learning technique where the learning algorithm
chooses the training samples from which it learns. Active learning as-
sumes that many training instances are readily available and that the
cost lies in labeling them (e.g. through human annotation). However,
in e-nose applications the costs are not associatedwith labeling existing
samples but with the more laborious process of collecting new ones.
Therefore, the active class selection problem involves choosing the
class of the next training instance, whereas the active learning problem
deals with choosing the next training instance to be labeled. Lomasky's
approach consists of generating the next set of n training instances in
proportion to the instability of class boundaries, measured in terms of
the number of test instances whose classification labels change upon
inclusion of the previous set of n training instances. The authors validat-
ed the approach on an experimental dataset fromanarray offluorescent
micro-bead sensors exposed to six organic chemicals and their
mixtures. The results show that active class selection can minimize
the number of new training instances needed to obtain the maximal
classification performance.

An optical implementation of active-sensing principles was proposed
by Dinakarababu et al. [4] for rapid identification of chemicals. In this
work, the authors developed an Adaptive Feature Specific Spectrometer
(AFSS), a digital micro-mirror device capable of multiplexing certain
spectral bands and directing them onto a photo-detector. In this fashion,
the system is able to measure the projection of the incoming spectral
density onto a set of basis vectors, rather thanmeasure the spectral den-
sity directly. The basis vectors are the eigenvectors of a probabilistically-
weighted covariance matrix, with the probabilities corresponding to the
likelihoods of different classes based on previous measurements.

Our early investigations of active sensing focused on the problem of
discriminating M chemicals at fixed concentration with a single
temperature-modulated metal-oxide sensor. In [6], we presented a
partially observable Markov decision process (POMDP) solution to this
problem, and proposed a myopic policy that selected sensing actions
based on the expected reduction in Bayesian risk. In subsequent work
[5], we reformulated the problem to not only identify chemical samples
but also estimate their concentrations using Fabry–Perot interferome-
ters. This new approach used nonnegative matrix factorization [31] to
create concentration-independent absorption profiles of different
chemicals, and linear least squares to fit sensor observations to the re-
sponse profiles. In latter work, we extended the active-sensing method
to estimate the concentration of mixtures with known components
[32], and the more challenging problem of estimating concentrations
of mixtures with unknown components [33].
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3. Methods

Consider an array of N tunable chemical sensors S = 〈s1,s2,…,sN〉,
where each sensor Si can be operated at D distinct configurations ρ =
〈ρ1,ρ2,…,ρD〉.1 As an example, in the case of a Fabry–Perot interferome-
ter (see Section 4) each configuration corresponds to a particular
absorption wavelength, whereas in a metal-oxide chemoresistor
(see Section 5) each configuration corresponds to a pulse at a particular
operating temperature (see Fig. 7).

The sensor array is exposed to a chemical, and we seek to deter-
mine the identity of this chemical from a list of M possible targets
ω= 〈ω1,ω2,…,ωM〉. For this purpose, the array is operated by a central-
ized controller, which can adjust the configuration of each sensor
individually. The goal of the controller is to optimize the sequence of
T action vectors AT={a1, a2… aT}, where at is anN-dimensional vector
denoting the configuration at time t for each sensor in the array. As an
example, for an array with N ≥ 3 sensors and D ≥ 6 configurations,
the action vector 〈(s1,ρ2),(s2,ρ6),(s3,ρ5)〉 would correspond to simulta-
neously operating sensor s1 at configuration ρ2, s2 at ρ6, and s3 at ρ5.

The conventional solution to this problem is off-line optimization;
given a training set containing the response of each sensor at every con-
figuration for different chemicals, one would find the best TN sensing
configurationswith the constraint that exactly T configurations are cho-
sen for each sensor. These configurations would then be organized into
a fixed sequence of T action vectors, and used at sensing time. However,
this ‘passive’ approach is limited because it uses the same sequence of
action vectors for any test sample, regardless of the information arriving
from the sensors at each time step.

In contrast, our proposed approach (Posterior-Weighted Active
Search; PWAS) adapts the action vectors based on information acquired
at each measurement cycle. The approach follows a ‘search-sense-
update’ sequence, as illustrated in Fig. 1.

- In the first step (search), PWAS uses local search to build the next ac-
tion vector at + 1 incrementally (one sensor at a time). During this
process, sensor configurations are selected based on their ability to
(i) discriminate the classes with highest posterior p(ωi|Ot), where
Ot denotes the history of observations up to time t, and (ii) provide
information that complements that of other configurations already
included in the action vector.

- In the second step (sense), PWAS applies the action vector at + 1 to
the sensor array and measures the corresponding sensor response
vector Ot + 1.

- In the final step (update), PWAS estimates the posterior p(ωi|ot + 1)
to incorporate evidence from the latest measurement vector Ot + 1;
this is done using a sequential Bayesian update equation [34].

The critical step in this process (and the main contribution of this
work) is how to quantify the discriminatory information of a given
action vector while considering the class posteriors. In the sections
that follow we propose two objective measures that are suitable for
this purpose, and describe the remaining components of the PWAS
algorithm.

3.1. Posterior-weighted filters for active feature selection

A number of objectivemeasures have been proposed to evaluate the
discriminatory information of chemical sensor arrays, such as signal-to-
noise ratio [35], Fisher scores [36], and mutual information [37]. How-
ever, these objective measures assume a passive-sensing scenario
where the sensor array is optimized off-line, and therefore do not
adapt as additional information from previous measurements becomes
available. We propose two objectivemeasures to address this need. The
1 For notational convenience, we assume all the sensors have the same configuration
space.
first measure, Weighted Fisher Score (WFS), evaluates action vectors
based on their ability to discriminate the most likely classes, measured
as the ratio of between-class to within-class scatter weighted by the
class posteriors. The second method, Dynamic Mutual Information
(DMI), evaluates action vectors based on information-theoretic mea-
sures of feature relevance and feature redundancy relative to the class
posteriors. WFS is a parametric measure (it assumes class conditional
densities are Gaussian), whereas DMI is non-parametric. Detailed de-
scriptions of these two objective functions are presented next.

3.1.1. Weighted Fisher Score
WFS is a generalization of the traditional Fisher score (FS) used in

linear discriminant analysis [38], a supervised dimensionality reduction
method that seeks to preserve class discriminatory information. Given a
feature set F = ρ1, ρ2,…, ρj, the FS is defined as the determinant of the
ratio of between-class scatter to within-class scatter corresponding to
features in F :

FS Fð Þ ¼ det W−1B
� �

ð1Þ

whereW and B are the between-class andwithin-class scatter matrices,
respectively:

B ¼
XM
i¼1

Bi;W ¼
XM
i¼1

Wi ð2Þ

Matrix Bi is defined as:

Bi ¼ Ni μ−μ ið Þ μ−μ ið ÞT ð3Þ

where μ is the samplemean vector for all features in F, estimated on the

training set2X:μ ¼ 1
N1þN2þ…þNMð Þ ∑

x∈X
x Fð ÞT, and μi is the samplemean for

class ωi: μ i ¼ 1
Ni
∑x∈ωix Fð ÞT . Similarly, Wi is defined as:

Wi ¼
X
x∈ωi

x Fð Þ−μ ið ÞT x Fð Þ−μ ið Þ ð4Þ

When used for feature selection, FS helpsfind a set of features thatmax-
imizes the distance between training instances from different classes
relative to the distance among instances of the same class. In this pro-
cess, FS weighs all classes equally, or in proportion to their number of
examples in the training set as in Eqs. (3) and (4).

Now consider an active-sensing scenario where the sensor has been
driven for t-1 sensing steps with action vectors At = {a1,a2,…,at − 1},
resulting in observations vectorsOt={o1, o2,…ot− 1}. Based on these ob-
servations, the class posteriors have been estimated to be pt = {pt(ω1),
pt(ω2),…,pt(ωM)}, where pt(ωi) = p(ωi|O, A), and Σi = 1

M pt(ωi) = 1. To
contextualize, assume a problem with M = 3 classes and posterior
distribution pt = {0.1, 0.4, 0.5}. How could pt inform the selection of
the next action vector at? In this case, classes ω2 and ω3 are 4–5 times
more likely than class ω1, which suggests that additional sensing re-
sources should be allocated to breaking the tie between them rather
than furthering the gap with ω1. The solution proposed here (WFS)
redefines the total scatter matrix by weighing the individual scatter
matrices according to the class posteriors:

B ¼
XM
i¼1

pt ωið ÞBi; W ¼
XM
i¼1

pt ωið ÞWi ð5Þ
2 X is a matrix of D columns and (N1 + N2 + N3…+ NM) rows, where Ni is the number
of training instances from class ωi. x denotes a single row vector of X, and x(F) denotes a
row vector (of size 1 × |F |) containing the entries corresponding to F .



Fig. 1.An overview of the PWASmethod. PWAS uses a sequential search to generate various array configurations and the objective function evaluates them. The best such configuration is
chosen to drive the sensor array and the resulting observations are used to update the class posteriors.
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Thus, for a given action vector at, the WFS is defined as:

J F atð Þ ¼ det
XM

i¼1
pt ωið ÞWi atð Þ

� �−1XM
i¼1

pt ωið ÞBi atð Þ
� �

ð6Þ

where det(∙) is the determinant of amatrix, Bi(at) is based on Eq. (3)with

mean vectors μ ¼ 1
N1þN2þ…þNMð Þ∑x∈Xx atð ÞT and μ i ¼ 1

Ni
∑x∈ωi

x atð ÞT
estimated only for those features included in at. Likewise,Wi(at) is esti-

mated as ∑x∈ωi
x atð Þ−μ ið ÞT x atð Þ−μ ið Þ. In this way, WFS favors sensor

configurations that have higher between-to-within scatter among the
more likely classes.

It is important to note that the full scatter matrices Bi(F) andWi(F)
do not have to be recalculated at every sensing step, since they are inde-
pendent of the class posteriors. Instead, these two scatter matrices can
be computed off-line and stored for later use; at each sensing step,
PWAS generates the sub-matrices Bi(at) and Wi(at) by selecting the
rows and columns corresponding to the features in at. This reduces
computational costs significantly at run time.

3.1.2. Dynamic mutual information (DMI)
The second objective function we propose here can be considered as

a generalization of information-theoretic filters used for supervised fea-
ture subset selection [39–42]. These filters typically measure the infor-
mation content of a feature set as a combination of feature relevance to
feature redundancy, where relevance is defined in terms of the mutual
information between each feature and the class labels, and redundancy
is defined in terms of the mutual information among the features
themselves. A classic example is Hall's information-theoretic objective
filter [42], which estimates the information content of a feature set
F = ρ1, ρ2,…,ρj, as a ratio of relevance R to redundancy D. In Halls'
method,R is defined as:

R ¼
X
ρi∈F

U ρi;ωð Þ ð7Þ

where U(ρi,ω) is the symmetrical uncertainty3 between feature ρi and
the class label ω [43]:

U ρi;ωð Þ ¼ 2� I ω;ρið Þ
H ωð Þ þ H ρið Þ

� �
ð8Þ

Likewise, Halls's redundancy measure D is defined as:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fj j þ

X
ρi∈F

X
ρ j∈F ;ρi≠ρ j

U ρi;ρ j

� �s
ð9Þ
3 Symmetrical uncertainty is a normalized variant of mutual information. Mutual infor-
mation has an inherent bias in favor of variableswithmore values. Symmetrical uncertain-
ty compensates for this bias by normalizing the values to be in the range [0, 1].
where U(ρi,ρj) is the symmetrical uncertainty between features ρi and
ρj:

U ρi;ρ j

� �
¼ 2�

I ρi;ρ j

� �
H ρið Þ þ H ρ j

� �
0
@

1
A ð10Þ

I(ω;ρi) is the mutual information between ω and ρi, I(ρi;ρj) 4 is the
mutual information between features ρi and ρj, and H(ω) and H(ρi)
are the entropy of ω and ρi respectively.

As before, consider an active-sensing scenario where after t-1 sens-
ing steps the class posterior distribution is Pt. How can knowledge of
Pt be incorporated into an information-theoretic filter to maximize the
separability between the more likely classes? A conventional measure
such as Hall's filter cannot be used for this purpose because it evaluates
features with respect to the distribution of classes in training data—as
shown in Eq. (7). Our solution (Dynamic Mutual Information; DMI) re-
defines feature relevance in terms of symmetrical uncertainty between
each feature and the posterior distribution Pt. Namely, given an action
vector at, we defineR as:

R ¼
X
ρi∈at

U ρi;ptð Þ ð11Þ

where U(ρi,pt) is the symmetrical uncertainty between feature ρi and
posteriors pt:

U ρi;ptð Þ ¼ 2� H ptð Þ−H ptþ1jρi

� �
H ptð Þ þ H ρið Þ

� �
ð12Þ

H(pt) =−∑pt log(pt) is the entropy of the posterior distribution, and
H(pt + 1|ρi) is the expected entropy in the posterior distribution upon
observing ρi. Estimating H(pt + 1|ρi) can be interpreted as projecting
uncertainty into the next sensing step4.

With themodified definition of feature relevance of Eq. (11) in place,
the DMI of action vector at becomes:

JM atð Þ ¼
X

ρi∈at
U ρi;ptð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

atj j þ
X

ρi∈at

X
ρ j∈at ;ρi≠ρ j

U ρi;ρ j

� �r ð13Þ

Thus, by estimating symmetric uncertainty relative to the posteriors,
DMI favors features that have high mutual dependence with the more
likely classes. When the posterior distribution is uniform pt ωið Þ ¼ 1

M∀i,
DMI is equivalent to Hall's objective function. Note that the symmetrical
uncertainty between every pair of features does not have to be
recalculated at every sensing step. Instead, these values can be estimated
4 Details on estimating I(ρi;ρj) and H(pt + 1|ρi) are provided in Appendix 2.



Fig. 2. The training set used for illustration purposes consists of 3000 samples (1000
samples per class) generated from 2D Gaussian distributions with parameters: μ1 ¼
1:26 4½ � , μ2 ¼ 4:73 4½ �, μ3 ¼ 3 1½ �, and Σ1 ¼ Σ2 ¼ Σ3 ¼ 1 0

0 1

	 

. The three class

means form an equilateral triangle in the two-dimensional feature space.

5 The list includes other variants of sequential search such as sequential backward
search,floating searchmethods, etc., aswell asmeta-heuristics such as genetic algorithms,
simulated annealing, or tabu search, among others [38].

6 As shown in Eq. (14), the class posteriors are updated based on the naïve Bayes as-
sumption. Though features are rarely independent, research in machine learning shows
that in practice the naïve Bayes assumption is very effective because the final classification
decisions are often correct even if the probability estimates are inaccurate [44]. This as-
sumption can easily be relaxed by incorporating the feature covariancematrix in the pos-
terior update, at the expense of increasing computational costs at run time.

Table 1
Pseudo-code for the algorithm used by PWAS to construct action vectors at.

construct_action_vector (N, ρ, bt)
- at = ϕ
- for i = 1 to N

- best= 0
- for j = 1 to |ρ|

- score = JF(at ∪ ρj)
- if score N best

- best= score
- ρsel = ρj

- ρ = ρ − ρsel
- at = at ∪ ρsel

- return at
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before sensing begins to significantly reduce computational costs at run
time.

3.1.3. Illustration
We conclude this section with an example that illustrates how the

two proposed measures (WFS and DMI) adapt in response to informa-
tion in the class posteriors. Consider a three-class problem (ω1, ω2,
ω3) with the training data of Fig. 2. The goal is to determine which of
the two features (f1, f2) should be chosen based on the posterior distri-
bution pt.

Consider a first scenario where the three classes are equally likely:
pt(ω1) = pt(ω2) = pt(ω3) = 1/3. Using Eq. (6), theWFS of the two fea-
tures is JF(f1) = JF(f2) = 2.03; using Eq. (13), the respective DMI scores
are JM(f1)= JM(f2)= 0.33. Lacking additional information fromprevious
measurements, both methods rate features f1 and f2 as equally informa-
tive. Now, consider a second scenario with posterior distribution pt ¼
0:4 0:4 0:2½ �. Using Eqs. (6) and (13), the scores become JF(f1) =
2.45 and JF(f2) = 1.62 for WFS, and JM(f1) = 0.35 and JM(f2) = 0.29 for
DMI. Thus both methods rate f1 as more informative than f2, in agree-
ment with the distribution in Fig. 2, which shows that the two majority
classes (ω1 and ω2) differ only along the first dimension. As a third and
final scenario, consider the posterior distribution pt ¼ 0:2 0:4 0:4½ �.
In this case, the scores become JF(f1) = 1.82 and JF(f2) = 2.25 for WFS,
and JM(f1) = 0.30 and JM(f2) = 0.35 for DMI. Thus, both methods rate
f2 as more useful than f1, in agreement with the distribution in Fig. 2,
which shows that separability between the majority classes (ω2 and
ω3) is largest among the second dimension.

3.2. Search strategy and posterior update

Having defined objective functions that can adapt to new informa-
tion and account for sensor collinearity, we now turn our attention to
the problem of searching for suitable sensor configurations. Given the
exponential number of possible configurations for a sensor array with
N sensors and D configurations, O(DN), exhaustive enumeration is un-
feasible except for toy problems. Instead, a search algorithm is needed
to efficiently search through this large space at every sensing step, a pro-
cess that is similar to that of feature subset selection [38]. In this paper,
we use sequential forward search for its simplicity, though a number of
alternative strategies may be used.5 Namely, PWAS generates the next
action vector at by adding the configuration of each sensor one at a
time. Startingwith an empty action vector at=ϕ, at each step PWAS se-
lects the configuration for sensor n that maximizes the objective score
when combined with the configurations of the previous n− 1 sensors:
ρn ¼ argmax

ρ
J F at∪ρð Þ, with at={ρ1, ρ2,…ρn− 1}. This search is execut-

ed forN iterations to construct an action vector at of cardinalityN. While
doing so, we track the configurations that were used in the previous
iterations and sensing steps to avoid repetition. The pseudo-code for
the search process is included in Table 1.

Once the action vector at is constructed, PWASdrives the sensor array
with the corresponding configurations and measures the sensor re-
sponse vector ot, which is used to re-estimate the class posteriors pt +
1(ωk) via sequential Bayesian updating:

ptþ1 ωkð Þ ¼ pt ωkð Þp ot jωk;atð Þ
p otð Þ ð14Þ

where the denominator p(ot) is a normalization constant that ensures
the posteriors add up to one, and the likelihood term p(ot|ωk, at) is the
probability of obtaining observation vector Ot when the sensor array is
exposed to chemical ωk and driven with action vector at, which we
estimate under the assumption that sensor measurements are class-
conditionally independent:

p ot jωk;atð Þ ¼ ∏
N

i¼1
p oijωk; si;ρið Þ ð15Þ

Once the allocated T sensing steps have been completed, PWASbrings the
sensing process to a halt and declares a final class labelωout ¼ arg max

1≤k≤M
pT

ωkð Þ using theMAP criterion.6 Pseudo-code for the complete PWAS algo-
rithm is included in Table 2.

4. Validation on synthetic data

In a first series of experiments, we validated PWAS on simulated data
from an array of tunable Fabry–Perot interferometers (FPI) [45]. FPIs are
optical devices comprised of two partially-reflective parallel mirrors
forming an optical resonance cavity [46]. When a light beam reaches
the outer surface of the first mirror, it undergoes several reflections and
refractions between the two mirrors, resulting in a number of parallel
beams (of decreasing amplitudes) emerging from the second mirror.

image of Fig.�2


Table 2
Pseudo-code for Posterior-Weighted Active Search (PWAS).

1) Initialization
- p0(ωk) = 1/M, ∀ k

- t = 1
2) Search

-Construct action vector at using the procedure in Table 1
3) Sensing

-Apply at to the sensor array
-Measure observation vector ot

4) Posterior update
- pt + 1(ωk) = pt(ωk)p(ot|ωk, at)/p(ot)
- t = t + 1

5) Termination
-If t ≤ T go to step 2
-Else classify sample as ωout ¼ arg max

1≤k≤M
pT ωkð Þ
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When combined with an infrared (IR) source and a detector FPIs can be
used as tunable chemical sensors: by adjusting the distance between
the mirrors one can measure IR absorption at a wavelength of interest.

To simulate the response of an FPI to different chemicals, we used IR
absorption spectra in the NIST chemistry WebBook (http://webbook.
nist.gov/chemistry/), a database containing high resolution (250 points
per μm) IR spectra in the range 3–21 μmfor over 16,000 chemicals in the
gas phase. We chose 250 compounds from this database that have
strong absorption peaks in the range 8–10.5 μm, a typical operating
range of commercially-available FPI sensors (http://www.infratec.de/
en.html). To simulate the low resolution of FPI sensors, each spectrum
was down-sampled to 116wavelengths; each one of thesewavelengths
was treated as a sensor configuration; i.e., ρ= 〈ρ1,ρ2,…,ρ116〉, following
the notation in Section 3. Fig. 3 illustrates the absorption spectra for 50
of the 250 compounds in our dataset.

Using these spectra, we generated 10 samples for each chemical by
adding Gaussian noise of standard deviation σ = 0.05 at each wave-
length and used the resulting dataset of 2500 (250 × 10) samples for
Fig. 3. Infrared absorption spectra of 50 compounds as a function of wavelength. For visualiz
training purposes. Similarly, we generated another dataset containing
5000 samples (20 samples per chemical) for testing purposes; this
test set contained additive Gaussian noise with σ = 0.15, three times
the noise level in the training data.

Following our prior work [6], we modeled the distribution of sensor
responses (i.e., absorption) at configuration ρi (i.e., wavelength) to
chemical ωj with a Gaussian mixture model (GMM) [47] as:

p ojωk;ρið Þ ¼
XM
m¼1

αmN ojμm;Σmð Þ ð16Þ

wherem is the number of Gaussian components, and αm, μm, Σm are the
mixing coefficients, mean and covariance of each Gaussian, respective-
ly; these parameters were optimized via Expectation-Maximization to
maximize the likelihood of the 2500 training samples. The 2500 training
samples were also used to calculate the total within-scatter and
between-scatter matrices of WFS in Eqs. (2)–(4), and the symmetrical
uncertainty for DMI in Eq. (10). Once the GMM, WFS and DMI models
were built on training data, the 5000 test samples were used to run
the PWAS algorithm in Table 2.

We characterized PWAS through a series of experiments. In a first
experiment, we evaluate the ability of both objective functions (WFS,
DMI) to handle increasing dimensionality. In a second experiment, we
compared PWAS against two passive-sensing strategies, sequential for-
ward selection and a naïve random feature selection. In a final experi-
ment, we assessed the performance of all the methods at increasing
levels of additive noise.

4.1. Experiment 1: performance vs. dimensionality

In the first experiment, we characterized the performance of PWAS
for sensor arrays of size N = {1,2,3,4} and T = {1,2…10} action steps
using both objective functions. When using DMI as the objective
ation purposes, the spectra are plotted in three columns with an offset along the y-axis.

http://webbook.nist.gov/chemistry/)
http://webbook.nist.gov/chemistry/)
http://www.infratec.de/en.html)
http://www.infratec.de/en.html)


Fig. 4. Classification performance of WFS (hollow markers) and DMI (solid markers) for
various array sizes and sensing steps.

97R. Gosangi, R. Gutierrez-Osuna / Chemometrics and Intelligent Laboratory Systems 132 (2014) 91–102
function, we discretized each feature into 10 bins (value was chosen
empirically) using k-means clustering for the purpose of estimatingmu-
tual information. No discretization was needed when using WFS as the
objective function. Results are summarized in Fig. 4. Classification per-
formance increases with the number of sensing steps for both objective
functions. At any given sensing step, performance also increases with
the number of sensors in the array. Both results are to be expected
since the number of sensor measurements provided to the classifier in-
creases with the number of sensing steps and the number of sensors in
the array. Fig. 4 also shows that WFS outperforms DMI, the difference
being more evident for larger N. This result suggests that WFS can ac-
count for sensor redundancy more effectively than DMI.

4.2. Experiment 2: active vs. passive sensing

In the second experiment, we compared the two objective functions
under active-sensing and passive-sensing scenarios, also with varying
array sizes (N = 2,3,4) and sensing steps (T = 1,2…10). For passive
sensing we performed sequential forward selection (SFS) in combina-
tion with either the un-weighted Fisher Score (FS) or Hall's mutual
information (MI) as the objective function.7 To gauge the complexity
of the discrimination problem we also include results from a naïve
Random Selection (RS) algorithm that chooses features randomly at
each sensing step, with the constraint that features used in the previous
sensing steps cannot be used again; classification results for RS were
averaged over 10 separate runs.

Overall results for the five methods are summarized in Fig. 5. In all
cases, classification increasesmonotonicallywith the number of sensing
steps and array size. In the initial sensing step, active and passive
methods achieve the sameperformance, a reasonable result considering
that no previous measurements are available. More importantly, the
two active methods (WFS and DMI) consistently outperform their pas-
sive counterparts (FS and MI), and also RS as expected. The difference
between active and passive methods is more significant when using
Fisher scores as the selection criteria (WFS≫ FS) rather thanmutual in-
formation (DMI NMI), a result that is consistent with the findings in the
first experiment.

4.3. Experiment 3: performance vs. noise

In the third experiment, we evaluated the five methods (WFS, DMI,
FS, MI, and RS) at varying signal-to-noise ratios (SNR) in the test data.
For this purpose, we generated datasets with additive Gaussian noise
in the range σ=0.12 to σ=0.3 in steps of Δσ=0.02. Then, we tested
the methods on an array with N = 2 sensors and T = 10 time steps.
Results are summarized in Fig. 6. As expected, classification degrades
for all methods with decreasing SNR, but the two active methods
(WFS, DMI) outperform their passive counterparts (FS, MI) at each
SNR. Aswe had found in the second experiment, the difference between
the active and passive methods becomes more evident when the Fisher
Score is used as the selection criterion.

5. Validation on experimental data

Finally, we validated PWAS experimentally on an array of MOX
sensors8 (Figaro TGS 2620, TGS 2602, and TGS 2610) exposed to five
7 For each valueofN and T, we used SFS tofind thebest subset ofN× T features out ofN×
D possibilities (T≪ D), then trained a naïve Bayes classifier with class conditional features
distributions p(ρi|ωj) modeled as Gaussian mixtures. To ensure that exactly T features are
selected for each sensor, we enforce a constraint that in the jth iteration of SFS we choose
a configuration for the (1 + mod(j − 1, N))th sensor, wheremod is the modulo operator.

8 These sensors have broad and overlapping selectivity: TGS 2620 is marketed for the
detection of organic vapors, TGS 2602 is sensitive to ammonia and hydrogen-sulphide,
and TGS 2610 is sensitive to hydrocarbons (propane and butane).
household chemicals (mineral spirits, acetone, ammonia, denatured
alcohol, and isopropyl alcohol). The chemicals were placed in a 30 ml
vial and their headspace vapors delivered to the sensor chamber using
an air pump connected downstream. The concentration of each chemi-
cal was controlled with a gas diluter (Custom Sensor Solutions, Inc.),
and the entire apparatus (sensors, diluters, pump, and valves) was
interfaced through two NI data acquisition cards and controlled with
Matlab.

As afirst step,we conducted apreliminary study todetermine concen-
trations for each chemical that made the discrimination problem non-
trivial. Namely, we measured the isothermal response of each sensor to
the five analytes at five concentrations (4% to 20%, in steps of 4% v/v),
and identified concentrations at which the isothermal responses were
similar. To obtain the isothermal response, the sensors were exposed to
each analyte for 100 s under a constant heater voltage of 5 V. Our goal
was to ensure the samples could not be distinguished based solely on
the amplitude of the responses and that temperature modulation
would be necessary. The final concentrations were: xylene — 12%,
denatured alcohol — 4%, mineral spirits — 4%, turpentine — 8%, and
ammonia — 16% v/v.

To generate experimental data for each analyte, the sensor arraywas
driven with 20 sequences, each sensor with a different sequence and
each sequence consisting of 10 heater voltages (3 ≤ VH ≤ 7.5 V in
steps of 0.5 V) in a randomized order. This resulted in a dataset with
100 samples (5 chemicals × 20 sequences). Analytes were presented
in a randomized order to avoid systematic errors. At eachheater voltage,
the sensors were pulsed for 20 s; between consecutive pulses, the sen-
sors were reset to a baseline heater voltage (0 V) for 10 s. This form of
temperature programming helped reduce variance in the responses
due to thermal dynamics [48]. Driving the sensor with a pulse at each
of the 10 heater voltages (i.e., VH = 3+ 0.5 × k; k= 0…9) was treated
as a sensor configuration; i.e., ρ = 〈ρ1,ρ2,…,ρ10〉. Fig. 7 shows the re-
sponse of the three MOX sensors to a sequence of five voltage pulses
when exposed to mineral spirits. In this example, the three sensors
were driven with the same temperature sequence.

Following our prior work [32], we used Principal Component Analy-
sis (PCA) to extract features from the sensor transients. Namely, for each
of the 10 voltage settings and for each sensor, we collected the transient
responses to all analytes and then applied PCA to obtain the loadings
(eigenvectors) and scores. Fig. 8(a) shows the transient responses of
the TGS 2610 sensor to the five chemicals (5 transients per chemical)
when driven with a 20-second pulse at 3.5 V; Fig. 8(b) shows the first



(a) N=2 (b) N=3 (c) N=4

(d) N=2 (e) N=2 (f) N=2

Fig. 5. Comparison between active (WFS, DMI) and passive sensing (FS, MI), for various array sizes and sensing steps: (a–c)WFS vs. FS, (d–e) DMI vs. MI. RS is included as a reference to
gauge the complexity of the problem.
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three loadings. This process is repeated for each sensor and voltage set-
ting to obtain the corresponding loadings and scores. In all cases, the
first three principal components were sufficient to capture more than
99% of the variance. Thus, PCA allowed us to compress the transient re-
sponse down to three features (i.e., the PCA scores). Then,we used three
one-dimensional GMMs (one per principal component) to create the
sensor models, resulting in 90 GMMs (3 principal components × 10
Fig. 6. Classification performance of active, passive and random sensing as a function of
noise in test data.
temperatures × 3 sensors). To generate observations during testing,
the sensorwas drivenwith a particular pulse and the resulting transient
response was multiplied with the corresponding PCA loadings; the
resulting scores were treated as the observations.

5.1. Results

We present the results of comparing active sensing (WFS, DMI)
against passive sensing (FS, MI) for arrays with N = 2 (TGS 2620,
2602) and N = 3 (TGS 2620, 2602, and 2610) sensors and varying
number of sensing steps (T = 1…5). The evaluation process followed
a 20-fold cross-validation loop. For each fold, the experimental data
(100 samples) was randomly divided into two subsets: a training
dataset containing 40 samples (8 per chemical), and a test dataset con-
taining 60 samples (12 per chemical). For the passive approaches
(FS and MI), we used sequential forward selection to select N × T fea-
tures, with the constraint that T features were chosen for each sensor,
then trained a naïve Bayes classifier on the N × T features and tested
the classifier on holdout data; this process was repeated for each of
value of N and T. We used the same cross-validation loop to test the
active approaches (WFS and DMI).

Fig. 9 summarizes the results in terms of average classification rates.
These results are largely consistent with those on simulated data: clas-
sification improves with increasing number of sensors and sensing
steps and, more importantly, the active methods outperform their pas-
sive counterparts. In addition, as with simulated data, the choice of the
objective function significantly influenced the difference between the
active and passive methods. For example, at N= 2, WFS outperformed
FS by 3.2% (averaged over all the sensing steps) but DMI bettered MI by
only 0.5%.

Compared to the results on simulated data, the differences between
active and passive methods are relatively small. This is partly due to the
reduced complexity of the classification problem (5 classes vs. 250
classes), to where a single sensing step is often sufficient to obtain
close to 85% classification rate, leaving a smaller margin for improve-
ment when using active sensing. In such cases it is more meaningful



Fig. 7. Transient response of the MOX sensors to mineral spirits. The sensors were driven with a sequence of 5 voltage pulses, each pulse 20-seconds long.

(a) (b)

Fig. 8. (a) Sensor transients to thefive chemicals (5 repetitions per chemical) in response to a 3.5 V pulse in heater voltage. This pulse was preceded and succeeded by a 10-second pulse at
0 V. (b) The first three principal components extracted from the transients in (a).
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to analyze classification errors – the opposite of classification rates.9

When considering this, the results in Fig. 9 show that active sensing
can reduce classification errors significantly, by as much as 30% for
N=2 sensors and T=5actions. Altogether, these results are consistent
with those on synthetic data and the general hypothesis that active-
sensingmethods obtains better classification performance than passive
methods [5,6].
6. Conclusions and discussion

We have presented a Posterior-Weighed Active Search method for
active classification with chemical sensor arrays. PWAS addresses a
major limitation of previous active-sensing algorithms— their poor scal-
ability to higher-dimensional problems, by using a local search to build
the action vectors incrementally. We have also presented two objective
9 As an example, improving classification rate from98% to 99% (a seemingly small incre-
ment of 1%) can be difficult as it requires reducing errors by 50%.
functions (Weighted Fisher Scores, WFS; Dynamic Mutual information,
DMI) that account for sensor collinearity and also adapt as additional in-
formation from previous measurements becomes available.

We evaluated our approach on two datasets; one containing low-
resolution infrared absorption spectra from 250 chemicals, the second
dataset containing temperature-modulated MOX responses to 5
chemicals. Results from both datasets lead to two main conclusions.
First, active sensing achieves better classification performance than pas-
sive methods for a given sensing budget. This can be attributed to the
adaptive nature of active sensing, which allows PWAS to modify the
sensing programs according to the test sample at hand. Second, active
sensing is more robust to measurement noise than passive. This again
can be attributed to the fact that active sensing selects features at mea-
surement time, which allows PWAS to adapt to noise, whereas passive
sensing uses a pre-specified set of features computed off-line based on
training data.

Results on both datasets also show that WFS outperforms DMI
systematically, which indicates thatWFS can account for feature redun-
dancy more effectively than DMI — note that both objective functions
use the same search strategy. On synthetic data (Section 4), one may



(a) N = 2

(c) N = 2 (d) N = 3

(b) N = 3

Fig. 9. Classification performance ofWFS and FS for (a)N=2, and (b) N=3 sensors, DMI andMI for (c) N=2, and (d) N=3 sensors. For clarity, the curves corresponding to SFS were
shifted slightly along the x-axis. Error bars denote standard deviations.
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be tempted to attribute the higher performance of WFS to the fact that
the datasetwas generated by addingGaussian noise to theNIST spectra;
thus, the argument goes, WFS may have been ideally suited for this
dataset since it assumes that the classes are Gaussian. However, WFS
also outperforms DMI on experimental data, so an explanation for its
higher performance lays elsewhere. A more likely factor is that DMI
only considers the posterior distribution when calculating feature
relevance but not feature redundancy.10 Therefore, as the number of
measurements increases, DMI becomes less effective in accounting for
feature redundancy. On experimental data (Section 5), an added factor
is the limited number of training samples. For DMI to be effective, the
joint probability distributions need to be estimated accurately, which
is challenging considering that there were only 40 training samples
for each round of cross-validation.

Another likely factor for the subdued performance of DMI is the
discretization step. The symmetrical uncertainty measures in Eqs. (10)
and (12) are sensitive to the discretization process: both to the
discretization algorithm and to the resolution (number of bins and bin
sizes). Uniform discretization, though easy to implement, will fail to
capture the nuances of a continuous distribution and is also sensitive
to outliers. Therefore, a clustering-based discretization is the better op-
tion. Likewise, the number of bins can also influence the symmetrical
uncertainty measures. If the distribution is approximated with too few
bins, the details of the distribution will not be captured, whereas too
10 Though it is possible to consider the class posteriors when calculating feature redun-
dancy, it requires estimating 3-dimensional joint probability distributions, which in-
creases the computational complexity of the method and also the amount of training
data required to learn the distributions.
many binswill lead to a very sparse distribution (and also increase com-
putational complexity at run time). For the experiments in this paper,
we chose the bin counts empirically, but optimizing the number of
bins admits a more systematic approach. The discretization step serves
the only function of providing a non-parametric estimate (e.g., a
histogram) of the probability density function, from which to calculate
entropy. Other forms of entropy estimation may be used to circumvent
the discretization step altogether. As an example, Huber et al. [49] have
presented close-form approximations of the true entropy for Gaussian
mixtures. Alternatively, Xu et al. [50] have developed kernel-density-
estimation methods that allow the entropy to be computed directly
from data samples.

Active sensing yielded smaller performance gains (compared to pas-
sive sensing) on experimental data than on synthetic data, particularly
for large N. As discussed in Section 5.1, this is largely due to the relative
complexity of the two problems. The experimental dataset contained
only 5 chemical compounds and 10 features (heater voltages), so a
single measurement is able to achieve classification rates around
85% — see Fig. 9. In contrast, the synthetic dataset contained a much
larger problem with 250 chemical compounds and 116 sensing actions
(wavenumbers), towhere classification performancewith a singlemea-
surement is below 20%— see Fig. 5. Likewise, classification performance
on the experimental dataset converges after 3–4measurements (partic-
ularly for N= 3 sensors), whereas on the synthetic dataset it continues
to increase after 10 measurements. These results suggest that active
sensing is most beneficial in situations that require discriminating a
large number of chemical targets, including the backgrounds and
interferents that are likely to be present in practical settings. Our results
also show that, given a sufficient number of measurements, the perfor-
mance of active and passive sensing becomes comparable. However, for
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a particular classification rate, active sensing generally requires far
fewer measurements than passive sensing. As an example, the results
in Fig. 9(a) show that active sensing can achieve classification rates
above 90% with only two measurements, whereas passive sensing re-
quires five measurements. These results suggest that active sensing is
also likely to be most beneficial in time-critical situations, such as in
the analysis of transient targets (e.g., plumes), or whenever sensors
have a large settling/recovery times, in which case a long sequence of
measurements becomes prohibitive.

6.1. Future work

In this paper, we tested PWAS on arrays with moderate number of
sensors (in the range of N=2 to N=6).When applied to larger arrays
(N N 10), PWAS could be modified to select joint configurations for
groups of collinear sensors. As an example, consider a sensor array
with N identical sensors. In this case, the sensors may be organized
into M groups, each group containing N/M sensors. At each sensing
step, PWAS would select M operating configurations, one for each
group of sensors, and operate the sensors accordingly. The resulting
observations would be averaged by the groups, and this process would
reduce noise in the observations. Finally, the averaged values would be
used to update the posteriors. In such an approach, the number of groups
Mwould act as a trade-off between the noise in the observations and the
number of unique features acquired at each sensing step.

Our current implementation of PWAS assumes no prior knowledge
about the target chemicals (i.e., all sensing actions are initialized to be
equiprobable) but could easily be extended to take advantage of domain
information. As an example, prior knowledge about the distribution of
target chemicals could be used to bias the selection process towards
spectral lines that show strong absorption for the main functional
groups. In this fashion, PWAS could be used to eliminate certain func-
tional groups completely early in the sensing process, simplifying the
classification problem at later stages and allowing the system to focus
on fine discrimination of chemicals.
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Appendix 1. Computational complexity of PWAS

The computational complexity of PWAS depends on the choice of
objective function. The computational costs of WFS at run time come
from calculating the weighted sum of scatter matrices and then
calculating the determinants. At each sensing step, the forward search
goes through N iterations (one per sensor). At each iteration, PWAS
searches through a maximum of D configurations. For each configura-
tion, it computes the sum of M square matrices of size N × N, which is
O(N2M), and then calculates its determinant, which is O(N3) steps
using LU decomposition. Therefore, the worst-case computation
complexity of PWAS per sensing step is the higher of O(N4D) and
O(N3MD).

The computational costs of DMI at run time come from estimating
the expected entropy reductions in Eq. (12). As with WFS, the forward
search goes through N iterations. At every iteration, DMI searches
through amaximumofD configurations, and for each configuration cal-
culates the entropy reduction. At each iteration, it also calculates the
sum of O(N2) elements to estimate the denominator in Eq. (13). The
complexity of Eq. (12) depends on the number of discrete values into
which the observation spaces have been discretized. If each observation
space is discretized into r bins, then Eq. (12) takes O(rM) steps. There-
fore, the worst-case computation complexity of PWAS, per sensing
step, is the higher of O(N3D) and O(NDrM).
Appendix 2. Mutual information and expected entropy

In Eq. (12), the expected entropy H(pt + 1|ρi) is defined as:

H ptþ1jρi

� � ¼ X
ok

p okjρið ÞH ptþ1jρi; ok
� �

H(pt + 1|ρi) is computed in three steps. First, for each possible
discretized observation ok from ρi, we estimate the expected posterior
distribution pt + 1 using Eq. (14). Second, we compute the entropy of
each expected posterior distribution H(pt + 1|ρi, ok). Third, we sum
these entropies weighted by the corresponding observation probabili-
ties p(ok|ρi), which are obtained from the GMMs.

In Eq. (10), themutual information I(ρi,ρj) between configurationsρi
and ρj is defined as:
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where p(oi,oj) is the probability of jointly obtaining oi from configura-
tion ρi, and oj from configuration ρj. To estimate this joint distribution,
we discretize the observation space of all features using k-means clus-
tering and then estimate the joint probability of ρi and ρj by counting
the number of samples for every pair of observation.
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