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Abstract 

In this paper we propose a new technique for 
feature extraction/selection based on the projection 
of sensor features in class space and taking into 
account the sensor variance. The proposed technique 
is inspired by the organization of the early stages in 
the biological olfactory system, and proves to be 
highly suitable for high-dimensional feature vectors 
with small number of training samples. We 
demonstrate the method on experimental data from 
two metal oxide sensors driven by a sinusoidal 
temperature profile.  

1 Introduction 
In a large number of applications using smart 

chemical sensors (sometimes referred as electronic 
noses) the goal can be defined as a categorization into 
a limited number of discrete classes from the 
information given by a set number of descriptors or 
features. Signal processing, and pattern recognition 
algorithms are useful tools applied in many steps 
after the chemical signals are translated to the digital 
domain. However, there are characteristics found in 
certain applications that configure harder problems 
for pattern recognition algorithms.  These 
characteristics typically translate into a lack of 
generalization of the algorithm to unseen data. This is 
commonly found when the sensor system generates 
high dimensional input spaces.  

Several authors have proposed different methods 
to generate high dimensional data from chemical 
sensors. Some make use of the dynamic information 
extracted from the evaluation of sensor transients 
[1,2] or sensor responses under certain temperature 
modulation profiles [3]. Other authors expanded the 
chemical information by means of a different sensor 
technology foundation. In 1996, White et al. 
presented a new sensor device built with an array of 
fiber-optic based chemosensors. Changes in dye 
fluorescence were recorded using a CCD device 
obtaining 256 channels [5]. High density 
configurations reaching 20k-fibers were achieved two 
years later by Michael et al. [6]. These works hint the 
future availability of sensor systems providing large 
dimensionalities.  

Also, high dimensional spaces penalize the 
generalization performance of most classifiers. In 1968, 
Hughes showed that with a fixed design pattern sample, 
recognition accuracy increased with the number of 
measurements made, but decreased when the measurement 
complexity was higher than some optimum value [4]. This 
points out to an optimum number of features for a given a 
training set size which, unfortunately, is not known a 
priori. Furthermore, it has been shown that data distributed 
in high dimensional spaces has some interesting properties. 
Jimenez and Landgrebe proved that the volume of a 
hypercube concentrates in the corners as the 
dimensionality increases, suggesting than most of the 
multivariate dataset space is empty and that data 
distribution on high dimensional spaces might be 
counterintuitive, making density estimation a more 
difficult problem [7]. Additionally, the required size of the 
training set increases as a function of the dimensionality, 
linearly for a linear classifier and to the square of the 
dimensionality for a quadratic classifier [8].   

However, typical algorithms found in electronic nose 
literature for feature extraction (e.g., Fisher’s Linear 
Discriminant Analysis) or selection (e.g., Sequential 
Forward Floating Selection) are prone to over-fitting or 
computational ill-conditioning when the ratio of 
dimensionality to samples is large.  

High dimensional sensory data is also found on the 
biological side. In the mammalian olfactory bulb, a very 
large number of receptors are processed through a 
topographic mapping:  olfactory sensory neurons (OSN) 
expressing the same receptor project onto a single or few 
glomeruli [9]. It is know that mammals develop around 2 
million olfactory sensory neurons in where each neuron 
expresses only a type of odorant receptor gene out of a 
repertoire of up to 1000 genes [10,11]. The study, 
characterization and modeling of this signal pathway 
[12,13], has lead to the development of neuromorphic 
signal-processing techniques for gas sensor arrays and may 
lead to new methods for processing of high dimensional 
data.  

In this paper we propose an alternative statistical 
formulation inspired on the convergence principle by 
means of a convergence map created from the training set. 
We demonstrate its suitability for high-dimensional 
problems with small training set sizes.  
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Figure 1. (a) Illustration of the projection of features ion the subspace H, orthogonal to u. (b) Response of two 

sensors under a sinusoidal temperature profiles and three analytes. 
 

2 Method 
We can define the response of the sensor system as 

a vector x in a D-dimensional feature space ℜD, 
where D corresponds to the complete number of 
features extracted from the sensor array. Assuming 
that all classes have Gaussian likelihoods, data 
distribution for the training set can be described by 
the mean response of a given sensor (or feature) k to 
class c, µc,k, and its standard deviation σc,k. Assuming 
C classes, a vector µk  
in a C-dimensional class space ℜC is defined to 
represent the mean response of each feature across all 
classes, where µk={µ1,k,…, µC,k}. Note that this class 
space is the dual to the conventional feature space, in 
which an odor sample is represented by its response 
across all sensors.  The standard deviations for each 
feature (σc,k) define confidence figures for µk values. 
This confidence values can be generally expressed by 
a covariance matrix Σk in ℜC.  

The variance of a given feature k in class space is 
symmetric with respect to the axis. This is due to the 
fact that a feature can be placed in class space using 
any pattern from class ci training set against any 
pattern from class cj training set. This enforces a 
diagonal covariance matrix Σk,c =σ2

c. 
The projection of the features into class space 

provides some interesting options due to the space 
properties. Features alongside the hyper-diagonal 
u=[1 1…1]T (see Figure 1(a)) in class space contain 
no discriminatory information since they provide the 
same response to all the classes. Therefore, a measure 
of the discriminatory information can be obtained by 
the projection of the mean vector µk onto the 
subspace H, namely µHk, where H is a C-1 
dimensional subspace orthogonal to u. Identically, to 
measure the confidence in the information content of 

feature k, we project the covariance matrix Σk onto the 
subspace H orthogonal to u (Fig.1 (a)), obtaining the 
projected mean µHk and projected ΣHk,, both in ℜC-1. 
Information about the discriminatory information, 
represented by the mean µHk, and the its uncertainty, 
represented by its variance ΣHk, can be combined to find a 
set of values wk=f(µHk, ΣHk).  

The selection of f(•) determines the method used to 
weight the discriminatory information once the uncertainty 
of the affinities is known from the training set. In the 
following we propose a heuristic method for f(•), although 
other options are possible. This heuristic is based on the 
intuitive idea that the relative relationship between µHk, 
and the projection of ΣHk on H axis,σHk, determine the 
confidence on the value of µHk,. This is computed element-
wise using the function f(µHk,σHk)=µHkexp(|µHk| -σHk), 
which rewards features that are distant from the hyper-
diagonal u and have low standard deviation.  

We propose two different alternatives in the use of the 
resulting factors. For feature selection, similar discriminant 
vectors wk are grouped using a partition of the subspace H 
(referred as ConvI). As a result, features with similar 
behavior (similar affinities to the set of C classes) are 
clustered together, in the same manner that olfactory 
receptor neurons expressing the same receptor converge 
onto the same glomeruli. Note that this is done via a 
partition of H, as opposite to a clustering (e.g. with a self 
Organizing Map (SOM)) in order to avoid a density 
estimation process in class-space. Estimation methods like 
a SOM would split high-density clusters creating multiple 
nodes although they would provide very similar 
discriminative power.  

A second algorithm is proposed by using the set of 
factors wk directly as a projection matrix, W. This 
projection maps ℜD

 into ℜC-1 in a feature extraction sense 
(we refer to this method as ConvII).  
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The first method needs of the assignment of a 
feature to a group or partition in the subspace H. This 
step can be computationally expensive when the 
number of classes defined in the problem is high 
(class space will show high dimensionalities). The 
second method avoids this partition and therefore will 
be computationally cost-effective. 

 
3 Robustness to over-fitting 

Both PCA and LDA use the data covariance for 
building the linear projection. In the case of PCA, the 
complete dataset covariance is computed whereas 
LDA computes per-class scatter matrices. These 
covariance matrices result in strong computational 
issues under high dimensional datasets. The proposed 
algorithm evades covariance matrices computation 
and builds a linear projection by using only variance-
mean relationship information. This is important in 
the case where covariance based methods are prone 
to over-fit the training dataset, degrading their 
generalization properties.   In order to show this 
property, a synthetic experiment was designed with 
three normal distributions generated in a three-
dimensional space. The dimensionality was extended 
by padding feature vectors with normal noisy 
channels N(0,α) (with α=0.1), to achieve a 200 
dimensional space. Each class was generated with a 
normal distribution N(µ,Σ) with a selection of 
parameters that provides with a dataset with 
discriminatory information in both mean and 
covariance, and defined by, 
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The performance of a k-NN classifier in 

validation was computed after a reduction to two 
principal components using PCA, LDA and 
Convergence (Conv II). The number of samples per 
class used in the training set was varied from 66 to 
600, corresponding to a ρ=0.33 to ρ=3, where ρ is 
defined as the number of samples per class over the 
dimensionality. Classification ratio was computed by 
means of a validation set with 1000 samples 
generated with the aforementioned distributions. 
Each experiment was repeated a total of 100 times. 
Results are shown in Figure 2. Note that PCA holds a 
stable performance for all computed values of ρ. On 

the other side, although Convergence and LDA provide 
similar classification rates at ρ=3, there is a noticeable 
performance drop of LDA at low ρ due to ill-conditioned 
with-in scatter matrix (S-1

w) in the Fisher criterion. Results 
for this simple setup suggest that Convergence achieves 
similar performance to LDA, and even improves its 
performance avoiding data over-fitting effects. 
4 Results 

Proof-of-concept for the proposed method is illustrated 
with experimental data from two metal oxide sensors 
modulated in temperature. The sensors were exposed to 
dilutions of three different analytes (A,B and C), and their 
responses under a sinusoidal temperature profile (0-7 V; 
2.5min period; 10Hz sampling frequency) were recorded 
(Figure 1(b)). As a result, the input space dimensionality 
was D=3,000. The proposed feature selection algorithm 
was performed with a uniform grid of four units covering 
the subspace H.  As shown in Figure 3, the algorithm splits 
the temperature profile into different regions, which 
depend on their discriminatory information. Note that 
peaks characteristics of class B are grouped together under 
the G1 group, and features that provide low response to C 
but high response to A are grouped as G3. Overall the 
method is providing a rich combinatorial selection of 
which features are helpful for obtaining discriminant 
projections. After the convergence mapping is constructed, 
training and test data can be projected using grouping data 
using the convergence information:  

gi =
1
Ni

cik xk
k=1

D

∑       (2) 

where gi is the output of the group i, Ni the number of 
features grouped in the set i, xk is the feature k and cik takes 
1 if the feature k converges to set i, and 0 otherwise.  
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Figure 2.  Comparative response of PCA, LDA and 

Convergence (II) under over-fitting conditions.
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Figure 3.  Result of the feature grouping on class-space. For visualization purposes, only the response to the 

highest concentration to each analyte is shown. 
 
In Figure 4 we show the score plots from the output 
of PCA (a) and LDA (b) compared with those 
generated by the two algorithms proposed (ConvI in 
(c). ConvII in (d)). LDA projection was computed 
using a decimation of the waveform of the order 1:6. 
In the four algorithms, the models were trained using 
the lower dilutions (numbered as A1, B1 and C1) and 
the rest of dilutions were projected onto the 
respective models (2 and 3) as validation samples. In 
the PCA plot, it is noticeable that analytes A and B 
are confused at low concentration (dilutions 1 and 2) 
whereas in LDA those are correctly separated. The 
convergence based algorithms also separate the three 
analytes and show a similar behavior as LDA, with 
the difference that Convergence was computed using 
the complete sensor waveforms D=3000.  
 
5 Conclusions 

The proposed algorithms shown this paper are a 
result of two efforts: the study of the convergence 
seen from the population of olfactory sensory 
neurons to the glomerular layer form a signal 
processing view, and the construction of this 
convergence under the constrains given by the 
existence of a training set available to build the 
convergence map. This idea has led to the proposal of 
an algorithm based in grouping of features in class-
space constructed with information that takes into 
account the relationship between mean and variance 
for each feature. An alternative method is derived 
from the first that avoids the feature clustering and 
builds a direct linear projection from the class space 

to a C-1 dimensional space. The algorithms are 
computationally efficient under high dimensionalities and 
well suited for small-sample-set input spaces since it does 
not involve the computation of covariance matrices in 
feature space. Further work will consider a more 
theoretical formulation of the method, more quantitative 
analysis and will explore its generalization characteristics 
for other fields like image processing or genomics. 
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Figure 4.  Scatter-plots for the four methods. (a) Principal Components Analysis,  
(b) Linear Component Analysis, (c) Convergence type I, (d) Convergence type-II 

 


