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Abstract

As pen-based interfaces become more popular in to-
day’s applications, the need for algorithms to accu-
rately recognize hand-drawn sketches and shapes has
increased. In many cases, complex shapes can be
constructed hierarchically as a combination of smaller
primitive shapes meeting certain geometric constraints.
However, in order to construct higher level shapes, it is
imperative to accurately recognize the lower-level prim-
itives. Two approaches have become widespread in the
sketch recognition field for recognizing lower-level prim-
itives: gesture-based recognition and geometric-based
recognition. Our goal is to use a hybrid approach
that combines features from both traditional gesture-
based recognition systems and geometric-based recogni-
tion systems. In this paper, we show that we can pro-
duce a system with high recognition rates while provid-
ing the added benefit of being able to produce normal-
ized confidence values for alternative interpretations;
something most geometric-based recognizers lack. More
significantly, results from feature subset selection indi-
cate that geometric features aid the recognition process
more than gesture-based features when given naturally
sketched data.

1. Introduction

Hardware supporting pen-based input has become
popular in recent years as Tablet PCs, SmartBoards,
and touch screens are becoming common modes of in-
put for many applications. Sketches are used in a
variety of domains to help convey ideas and designs.

Computer-aided design (CAD) tools have been created
to allow the visualization of abstract ideas; however,
traditional CAD applications use less than intuitive in-
terfaces. Sketching is a very natural choice as an al-
ternative to the multi-tool selection paradigm. Many
tools have been created which allow sketching to be
easily incorporated into user interfaces [12, 16]. How-
ever, in order for sketching to be an effective means of
input, we must develop recognizers that can accurately
determine the intention of a sketcher.

Two approaches have become standard to solving
the sketch recognition problem. The first approach
treats input sketches simply as two-dimensional ges-
tures [1, 15, 18]. These gesture-based recognition tech-
niques typically focus on how a sketch was drawn rather
than on what the final sketch actually looks like. The
typical goal of these systems is to take an input stroke
(a sampling of points in the form of x, y, and time
value) and classify each one into a set of pre-defined
gestures. This approach has the benefit of using mathe-
matically sound classifiers which produce fast classifica-
tions along with normalized confidence values, but has
the disadvantage of using feature sets which are user-
dependent and require individual training by each user
to give good recognition results. Furthermore, many
of these gesture-based features produce systems which
are very sensitive to changes in scale and rotation.

The second approach has been to describe shapes
geometrically, focusing on what the sketch looks like
and less on how it was actually drawn [14, 17, 19]. Es-
sentially, these geometric-based techniques are meant
to take a single stroke as input and classify it as one of
the predefined geometric primitives. These techniques
are geometric in nature because they compare a stroke



Figure 1. Example scenario in which higher-
level context can disambiguate a lower-level
interpretation. In this example, the high-level
recognizer may realize that the ambiguous
stroke is more likely to be a circle (which rep-
resents a wheel in this domain) than an el-
lipse because of context.

to an ideal representation of each primitive using for-
mulas based on geometry. Primitives can then be com-
bined hierarchically to form more complex shapes us-
ing specialized grammars [7]. Since the geometric tests
used by these systems focus more on what the sketch
looks like, these recognizers are typically more user-
and style-independent. This also means that no indi-
vidual (per user) training is necessary; the only train-
ing required is that which is necessary to determine
numerous geometric thresholds. The disadvantage of
such a system is that geometric-based recognizers typi-
cally use numerous thresholds and heuristic hierarchies
which are difficult to analyze and optimize in a system-
atic fashion. Inferences about generalization are hard
to determine because classification is not statistical.
Furthermore, the use of multiple error measures on a
per shape basis makes ranking alternative interpreta-
tions difficult [14].

Ranking alternative interpretations with a normal-
ized confidence value can be important in aiding a
higher-level recognition system, which often has access
to context that can help resolve ambiguity in a lower-
level interpretation [3, 6]. For example, imagine that a
user draws a shape and the low-level recognizer returns
a circle interpretation with an ellipse listed as an alter-
native interpretation. In addition, the low-level recog-
nizer can also supply confidence values: 55% chance
of an ellipse, 45% chance of a circle. The higher-level
recognizer may now be more likely to choose the cir-
cle interpretation over the ellipse interpretation given
that these confidence values are so close, if context in-
dicates that an circle is a more likely interpretation.
An example of this is shown in Figure 1.

Our initial goal for this work was to find a way to
combine these gesture-based and geometric-based ap-

proaches in such a way as to take advantage of the pos-
itive aspects of each (accurate classification, user inde-
pendent, mathematically sound, ability to produce nor-
malized confidence values, etc.) while avoiding many
of the disadvantages. During this process, we discov-
ered that gesture-based features were less significant in
aiding recognition on freely sketched data. This discov-
ery, along with the production of normalized confidence
values, is our main contribution.

As is the case in many previous works [14, 17, 19],
we focused simply on classifying low-level primitive
shapes. We have chosen to classify single strokes into
one of nine different shape classes (arc, line, curve, cir-
cle, ellipse, helix, spiral, polyline, and complex). This
is the shape set used in a previous geometric-based rec-
ognizer, PaleoSketch [14]. In this paper we show that
combining the gesture-based features from Rubine [15]
with geometric-based features and using a statistical
classifier can yield accurate recognition results while
producing normalized confidence values. We also per-
form feature subset selection to determine what fea-
tures are the most significant for recognition. Our find-
ings indicate that geometric-based features contribute
more significantly to the recognition of naturally drawn
sketch data than gesture-based features.

2 Previous Work

2.1 Gesture-based Recognition

In 1991, Dean Rubine introduced one of the
first pen-based input gesture recognition systems,
GRANDMA [15]. This toolkit allowed users to specify
single stroke gestures that could be trained and learned
through a simple linear classifier. Rubine proposed
thirteen features which could be used to classify sim-
ple gestures with an accuracy of 98% on a fifteen-class
gesture set when trained with at least fifteen examples
per class.

Rubine’s work was extended by [1]. In this paper,
Long et al. added nine new features to Rubine’s ex-
isting set. They performed multi-dimensional scaling
to identify correlated features and ultimately found
an optimal subset that contained eleven of Rubine’s
original thirteen features along with six of their own.
Both of these works proved to be helpful in recognizing
two-dimensional gestures, but when applied to natural
sketch recognition problems, the accuracy of these ap-
proaches is not optimal.

The nature of the feature sets used by these recog-
nizers requires that gestures be drawn the same way
and to the same scale every time they are drawn. For
example, a clockwise, circular gesture would not be the



Figure 2. Example of a higher-level shape
(pendulum) being constructed from lower-
level primitives (line, circle).

same as a counter-clockwise, circular gesture. When
treating sketched shapes as gestures these approaches
do not perform well because they put constraints on
how users must draw. Our goal is to be able to create
recognition systems which are user-independent and
allow users to draw as they would naturally, without
having to worry about issues such as where to start a
stroke or which direction to draw certain shapes. This
is typically referred to as “free” or “natural” sketch
recognition [8].

2.2 Geometric-based Recognition

Because of the drawing constraints imposed by
gesture-based classifiers, the most recent shift in sketch
recognition has been toward a geometric approach,
which puts virtually no drawing constraints on the
user. Essentially, shape grammars such as LADDER
[7] can be used to define higher level shapes as a com-
bination of lower level primitive shapes meeting cer-
tain geometric constraints. Figure 2 gives an exam-
ple of how higher-level shapes can be constructed from
lower-level primitives.

In order for these higher-level recognition schemes
to be effective, it is important that the low-level primi-
tive shapes are accurately recognized. Many geometric-
based recognizers have been developed to recognize
low-level primitive shapes [14, 17, 19]. Unlike gesture-
based techniques, these recognizers do not use statisti-
cal classifiers. Instead, they focus on determining the
error between a sketched shape and its ideal version
using a series of geometric tests and formulas. Some
recognizers focus on developing a universal error met-
ric such as the feature area error metric [19]. How-
ever, universal error metrics can be hard to describe
and compute for more complex primitive shapes such
as spirals and helixes.

In order to support more primitives, some recogniz-
ers use different error metrics for each primitive [14].
These recognizers then rely upon heuristic hierarchies

and numerous thresholds to order shape interpreta-
tions. Such an approach makes it hard to generalize
and prove a recognizer’s success for future sketches. It
also makes producing normalized confidence values dif-
ficult (the biggest downfall of such an approach).

3. Features

As mentioned before, our goal is to combine gesture-
based and geometric-based approaches in such a way
as to take advantage of the benefits of both techniques.
We will use a statistical classifier - namely a quadratic
classifier [5] - that uses a feature set containing both
gestural and geometric features. Our hypothesis is that
this approach will lend itself more naturally to system-
atic optimization than using heuristic hierarchies, will
maintain user independence because of the addition of
geometric features, and will still enable us to return
multiple, ranked interpretations with normalized con-
fidence values.

Our feature set initially contained 44 total features.
The first 31 features came from geometric tests de-
scribed in [14]. The remaining 13 features are the clas-
sical gesture-based features used by Rubine [15]. The
descriptions of each of these features are beyond the
scope of this paper, so the interested reader is referred
to [14, 15]. Table 1 gives a list of the features we used.

4. Data

To perform our tests, we used a dataset consisting of
1800 total sketch examples - the same dataset from [14].
Each example consists of a single stroke and is labeled
with the intention of the original sketcher. A stroke is
defined as the set of points (x-coordinate, y-coordinate,
and time stamp) sampled between pen-down and pen-
up events. The data samples came from 20 different
users. Each user provided 90 samples (10 of each shape
class). Figure 3 shows some examples from the dataset.

For our experiments we split the data set into
two halves. The first half consisted of 900 examples
sketched by 10 distinct users. The second half con-
sisted of 900 examples from 10 different users. Rather
than use a random 50/50 split of the overall data, we
chose to split based on user to more accurately reflect
how a sketch system would be used (i.e. the classifier
is trained with data offline and then new users interact
with the system without providing their own training
data). This testing procedure allows us to determine
the extent to which our algorithm is user-independent.
The first half of the data was used to perform feature
subset selection and training while the second set was
left untouched until the validation of our final model.



1. Endpoint to stroke
length ratio (100%)

12. Curve least
squares error (90%)

23. Spiral fit: avg.
radius/bounding box
radius ratio (60%)

34. Length of bounding
box diagonal (20%)

2. NDDE (90%) 13. Polyline fit: # of
sub-strokes (70%)

24. Spiral fit: center
closeness error (70%)

35. Angle of the
bounding box diagonal
(40%)

3. DCR (90%) 14. Polyline fit:
percent of sub-strokes
pass line test (50%)

25. Spiral fit: max
distance between
consecutive centers (20%)

36. Distance between
endpoints (10%)

4. Slope of the direction
graph (20%)

15. Polyline feature
area error (80%)

26. Spiral fit: average
radius estimate (10%)

37. Cosine of angle
between endpoints (0%)

5. Maximum curvature
(40%)

16. Polyline least squares
error (30%)

27. Spiral fit: radius test
passed (1.0 or 0.0) (40%)

38. Sine of angle between
endpoints (10%)

6. Average curvature
(30%)

17. Ellipse fit: major axis
length estimate (20%)

28. Complex fit: # of
sub-fits (60%)

39. Total stroke length
(20%)

7. # of corners (30%) 18. Ellipse fit: minor axis
length estimate (30%)

29. Complex fit: # of
non-polyline
primitives (50%)

40. Total rotation
(100%)

8. Line least squares
error (0%)

19. Ellipse feature area
error (10%)

30. Complex fit:
percent of sub-fits
that are lines (90%)

41. Absolute rotation
(10%)

9. Line feature area error
(40%)

20. Circle fit: radius
estimate (30%)

31. Complex score /
rank (50%)

42. Rotation squared
(10%)

10. Arc fit: radius
estimate (0%)

21. Circle fit: major
axis to minor axis
ratio (80%)

32. Cosine of the starting
angle (30%)

43. Maximum speed
(20%)

11. Arc feature area error
(20%)

22. Circle feature area
error (0%)

33. Sine of the starting
angle (10%)

44. Total time (30%)

Table 1. Features used by our recognizer. Implementation details for features 1-31 can be found in
[14]. Details for features 32-44 can be found in [15]. Bold features are those chosen as the optimal
subset through feature subset selection. Percentage values indicate how often a feature was chosen
as optimal through various folds of subset selection.

5. Results

Our goal was to determine whether or not we
could use a statistical classifier to classify single-stroke
sketched primitives using a combination of gesture-
based and geometric-based features. In addition, we
wanted to determine if our approach produced classi-
fication rates that are comparable to the current best
low-level system, PaleoSketch. In order to compare our
approach directly to the PaleoSketch system, we have
presented our results using the same 50/50 user split
from [14]. However, we also wanted to determine if our
final classifier was robust to other splits. Therefore, we
have also presented results based on 25 folds of cross-
validation where we combined the training and testing
data into a single set and randomly selected 10 users for
training and 10 users for testing. Table 2 shows the re-
sults of using the full feature set along with a quadratic

classifier for each of the cases just mentioned. In this
table, we also present the improved accuracy achieved
through feature subset selection. Because of singulari-
ties in the data, the covariance matrix was regularized
by adding a small value (0.001) to its diagonal [4].

As Table 2 shows, the full feature set alone did not
provide the same accuracy reported in [14]. We can
also see that the split used by the original PaleoSketch
system is not favorable to the quadratic classifier using
the full feature set. Fortunately, the quadratic classi-
fier can be optimized by removing features which con-
tribute negatively to recognition.

5.1. Feature Subset Selection

To determine relevant features, we employed a
greedy, sequential forward selection (SFS) technique
to perform feature subset selection [2]. The subset se-



Figure 3. Examples of each shape class from
our dataset. From left to right, starting at the
top: line, arc, ellipse, helix, complex (com-
bination of other primitives), circle, polyline,
curve, spiral.

lection algorithm used a quadratic classifier as a wrap-
per [10] to determine the order in which features were
added. Optimal features are those which are in the sub-
set that yielded the highest accuracy during the SFS
process. In the event of a tie, the subset containing
the fewest number of features was selected. We per-
formed 10 folds of SFS using random 50/50 user splits
(5 users to train, 5 users to test) with our 900 sample
training set, yielding 10 different feature subsets from
which the final subset was obtained. In order to de-
termine the final optimal feature subset we performed
25 folds of classification using random 50/50 user splits
on each of the 10 subsets. Furthermore, we looked at
each of the 44 features and analyzed how often each
feature appeared as an optimal feature in one of the 10
folds of subset selection. In addition to the 10 subsets
found through feature subset selection, we also created
10 other subsets. The first of the 10 additional subsets
contained only features that were present in all 10 folds
(100%) of subset selection. The second contained the
features from the first along with features that were
present in at least 9 out of 10 folds (90%) of subset
selection. The third contained features present in at
least 8 out of 10 folds (80%) and so forth. Figure 4
shows the classification of each subset averaged across
25 folds.

The overall best performance was obtained with the
subset that contained features which were present at

Full feature Optimal feature
set subset

Quadratic classifier
86% 97.44%

using PaleoSketch split

Quadratic classifier
91.97% 96.45%

25-fold random splits

Original PaleoSketch 98.56% 98.56%

Table 2. Accuracy rates achieved using differ-
ent feature sets along with a quadratic clas-
sifier.

least 50% of the time in our multi-fold subset selec-
tion process (bolded in Table 1). When using only
this subset with a quadratic classifier we can produce
higher classification rates that more closely resemble
those given by the original PaleoSketch system, seen in
Table 2. A t-test confirms that the classification differ-
ence between our approach and the PaleoSketch system
is statistically insignificant (t = 0.0566, p = 0.9549).

Figure 4. Average accuracy of each subset
averaged across 25 folds of cross-validation
on our training set. Subsets 1-10 are the sub-
sets determined through 10 different folds of
feature subset selection. Subset 11 is the
subset containing only features chosen 100%
of the time in the subset selection process.
Subset 12 contains features chosen at least
90%. Subset 13 contains features chosen at
least 80% and so on.



6. Discussion

One interesting observation is that one can still
achieve a high classification rate, around 93%, with
only the top six features (those present in at least 90%
of the subset selection folds). This result indicates that
these features contain a wealth of information and are
highly independent of one another. In addition to pro-
viding normalized confidence values for each interpre-
tation, our approach also has the additional benefits of:
(1) being easier to code and (2) performing faster clas-
sification than the original PaleoSketch system since
fewer features need to be computed.

Of the 31 features from the geometric-based recog-
nizer, fourteen were chosen to be in the optimal sub-
set by the subset selection algorithm. Most of these
features were based on the polyline and complex tests
performed by the PaleoSketch system. This is not too
surprising given that the classification decision between
polylines and complex fits was one of the hardest ones
to make for the heuristic hierarchy used in the orig-
inal PaleoSketch system. We also noticed that both
the NDDE (normalized distance between direction ex-
tremes) and DCR (direction change ratio) values were
chosen to be significant. This supports the observa-
tions made in [14] that these are helpful for geometric
classification. Other added features included the least
squares error of a curve fit, the major axis to minor axis
ratio (used to distinguish circles from other ellipses),
and two tests used to distinguish spirals and helixes.

The most important observation, however, is that
only one of the gesture-based features was chosen as
an optimal feature during subset selection: total rota-
tion. This feature is also used by the PaleoSketch sys-
tem to compute the number of rotations that a stroke
makes. All other gesture-based features were deter-
mined to be insignificant, which is not surprising given
the manner in which we split our data. By performing
our tests with splits based on user (a more accurate
representation of how a true sketch recognition system
would be used), we biased our subset selection algo-
rithm toward user-independent features. The fact that
geometric-based features proved to be more significant
than gesture-based features is interesting given that so
many sketch recognition systems have been built on
gesture-based features alone: [9, 11] to name a few.

7. Future Work

The most important and immediate direction for fu-
ture work is to see how our approach generalizes against
other classes of complex shapes. For our tests, we used
a complex shape consisting of one line and one arc: the

complex shape used in [14]. Obviously, it would be im-
practical to create a class for every possible primitive
combination, which is infinite. In theory, a complex
shape is simply an outlier class that occurs when it is
determined that a shape is not one of the basic primi-
tive shapes. Therefore, it is possible that the addition
of other complex shapes would still be recognized us-
ing our approach. However, there is also the possibility
that our recognizer is simply recognizing one line, one
arc interpretations and not a generalized complex in-
terpretation. We hope to collect more complex shape
data to determine whether or not this is the case. We
also want to look into other features, such as the “ink
features” proposed in [13], to see if they can further aid
recognition.

8. Conclusion

We have taken two traditional approaches to low-
level sketch recognition and combined them to create
a hybrid recognition scheme. By combining gesture-
based and geometric-based features into a statisti-
cal classifier, we have created a recognizer that can
produce highly accurate classification while maintain-
ing user independence and allowing users to sketch
freely. Furthermore, our approach can produce nor-
malized confidence values that can be used by a higher-
level recognition system when resolving ambiguity.
Through feature subset selection, we have also shown
that geometric-based features are more optimal than
gesture-based features in recognizing freely sketched
data.
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