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Abstract- This paper presents a feasibility study on the 
application of pattern analysis techniques to classify load change 
transients and incipient abnormalities in an underground 
distribution cable lateral. The data were collected using an on- 
tine monitoring system installed in a residential area in Dallas. A 
set of features obtained from wavelet packet analysis was 
evaluated. Methods of dimensionality reduction were employed 
to overcome the curse of dimensionality while preserving a good 
classification rate. The classification results using k-nearest- 
neighbor (K") classifiers show that the proposed methodology 
can be used to classify load change transients and incipient 
abnormalities. 

Index Terms-Underground distribution cable, incipient 
abnormalities, wavelet packet analysis, pattern analysis. 

I. INTRODUCTION 

vents in an underground distribution system can be 
broadly divided into two main categories, normal and E abnormal. When normal events take place, no action 

needs to be taken. However, when an abnormality occurs, a 
series of corrective actions need to be used to ascertain the 
safe and reliable operation of the system. Abnormal events 
and transients can be categorized in terms of their severity 
level. For instance, transients due to load changes may occur 
frequently yet they are considered low level transients. In fact, 
it is the customer demand that dictates the amount of power to 
be delivered at any particular time. On the contrary, incipient 
fault-based events introduce high-level abnormalities that 
need to be identified so that the necessary corrective action 
can be taken. Hence, it is crucial to be able to distinguish 
among these events and issue an appropriate alarm signal 
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upon completion of the detection of such abnormalities. The 
unique and dissimilar characteristics of these events suggest 
utilizing pattern analysis techniques for automated 
identification. Successful classification of abnormalities and 
transient events would be a great benefit to the utilities, 
enabling them to detect severe faults at an early stage of their 
development, and consequently preventing unscheduled 
outages due to failures in underground cable. 

Ongoing research at the Power System Automation 
Laboratory (PSAL) at Texas A&M University aims to 
develop an incipient fault detection method having the 
capability of predicting the remaining life of underground 
cables. This paper presents preliminary work on the 
evaluation of a set of features obtained by a time-frequency 
multi resolution technique to classify load change transients 
and incipient abnormalities in an underground distribution 
cable lateral. This work was conducted to determine the most 
informative features that could distinguish between incipient 
abnormalities and load change transients. 

In this paper, a load change transient is defined as an 
appreciable increase or decrease in the current signals, and an 
incipient abnormality is any activity in the low frequency or 
high frequency signal pertaining to an incipient behavior. 
Section I1 provides a concise description of the data collection 
system and explains the formulation of the classification 
problem in terms of pattern analysis terminologies. In section 
111 a thorough discussion of the classification results is given. 
Section IV provides conclusions. 

11. PROBLEM FORMULATION 

As in any pattern analysis problem, there are four distinct 
steps to translate a classification problem into a pattern 
analysis formulation, data collection, preprocessing of data, 
feature extraction, and model selection / classifier design [ 11- 
[21-[31. 

A. Data Collection 
An underground distribution cable lateral installed in a 

residential area in Dallas was chosen to collect on-line data. 
This site was selected as the most appropriate location to 
capture possible incipient abnormalities. Fig. 1 shows the 
experiment site including the distribution transformer and the 
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underground cable. The underground distribution cable lateral 
is fed from a standard 7200 v distribution feeder and supplies 
power to the 72OOv/12Ov/24Ov, 100 KVA, 60 Hz distribution 
transformer via a normally open distribution loop. 

Category 

Low Frequency Signal 

1 Cable Lateral Being Monitored 2 Phase Current CT 
3 Neutral Current CT 4 Pad Mounted Distribution Transformer 

Fig. 1. Monitoring Site in Dallas, Transformer and Cable 

Frequency Range of Output Signals 

0 - 780 HZ 

Data collection was performed using an on-line monitoring 
system installed in the site. The monitoring system, whose 
block diagram is shown in Fig. 2, comprises three basic 
components: signal transducers, analog signal conditioning 
unit, and a computer-based data acquisition system. The 
signal transducers transform the voltage signals to levels 
acceptable by the signal-conditioning unit. They also 
transform the current signals into equivalent voltage signals of 
acceptable range. The transformed signals are then fed to the 
analog signal-conditioning unit whose functions are to act as 
an isolation unit, and to filter the signals into various 
frequency ranges. Signals from the analog signal-conditioning 
unit are finally fed to the digital data-acquisition system 
embedded in the computer: 

Fig. 2. Block Diagram of the Monitoring System 

Using the monitoring system, three basic electrical signals, 
namely voltage, phase and neutral currents are observed. The 
system records the signals for one-second duration every 15 
minutes. Moreover, various statistical and frequency 
parameters of these signals namely average, maximum, 
minimum, standard deviation and magnitude of the harmonics 
are calculated and recorded. 

In the signal-conditioning unit, the phase and neutral 

current signals create four outputs, as shown in Table I, 
unique in frequency range and scale, to increase the 
magnitude resolution during data-acquisition. The notch in 
three of the output signals is to remove the dominant 
fundamental frequency (60Hz), thereby improving the 
magnitude resolution in the given frequency range [4]. 

I Notch Low Frequency Signal 0 -780 Hz, Notch at 60 Hz 

2 - 7.5 KHz, Notch at 60 Hz Notch High Frequency Signal 
Scale 1 (NHF x 1) 

2 - 7.5 KHz, Notch at 60 Hz Notch High Frequency Signal 
Scale 10 (NHF x 10) 

B. Preprocessing Mechanism 
Recorded current signals may contain normal or abnormal 

activities, however, most of the recorded data represent 
normal operation of the system. Furthermore, transient events 
can be initiated by load changes, incipient faults, or other 
events. A preprocessing scheme was employed in order to 
filter out normal events and categorize the remaining signals 
in terms of their corresponding predefined classes. 

A second motivation for the use of preprocessing is to 
reduce redundancy. The sampling rate for the notch low 
frequency signals was set at 15360 samples/sec for recording, 
which gave a frequency range of 0 - 7680 Hz. However, these 
signals were limited to 0 - 780 Hz by a low pass anti-aliasing 
filter in the analog signal-conditioning unit. Thus, to reduce 
redundancy, these signals were decimated by a factor of eight 
yielding an effective sampling rate of 1920 sampleskec. 

C. Feature Extraction /Selection 
The goal of feature extraction or selection is to obtain a few 

features that discriminate classes with a high degree of 
accuracy. This important procedure is a key step for the 
success of any classifier. The feature extractiodselection 
process involves two steps. First, a number of raw features are 
obtained. This was accomplished in the present work by 
means of Discrete Wavelet Packet Analysis (DWPA) method 
[5]. Second, the raw features are projected onto a lower 
dimensional space by means of multivariate statistical 
techniques in order to reduce the dimensionality while 
preserving a good classification rate. These techniques are 
briefly explained in the following sections. 

1 )  Wavelet Packet Analysis Design 
Analyzing data using DWPA involves three steps, selection 

of the type of mother wavelet, the order of mother wavelet, 
and the level of decomposition. A number of wavelet families 
with unique properties have been proposed in the signal 
processing literature, but the most appropriate family is 
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generally application-dependant. After literature review and 
from earlier wavelet analysis results, it was found that the 
fourth order Daubechies wavelet yields the best performance 
for studying power system transients and incipient behavior 
[4]-[6]-[7]. Thus, the fourth order Daubechies wavelet was 
chosen as the mother wavelet for the analysis. Roughly 
speaking, selection of the level of decomposition depends on 
the desired frequency resolution. To obtain the best frequency 
resolution, the 4" level decomposition was chosen as 
illustrated in Fig. 3. 

Level 1 

Level 2 

Fig. 3. 4th Level Wavelet Packet Decomposition Tree 

The wavelet packet analysis was conducted on sample 
length of one-second duration. Thus, for one-second data, the 
low frequency signals contain 1920 samples and the high 
frequency signals contain 15360 samples. To obtain a better 
frequency range in the sixteen details, the samples are zero- 
padded symmetrically (at the beginning and the end of the 
signal) to achieve dyadic sample length (2048 samples for low 
frequency signals and 16384 samples for high frequency 
signals). The approximate frequency ranges for each of the 
details at level 4 are 64 Hz and 0.5 KHz for a signal length 
equal to 2048 and 16384, respectively. It should be noted that, 
for the signal with 2048 samples, the frequency ranges at level 
4 are such that the harmonics of 60 Hz (fundamental 
frequency) are evenly distributed among the details. 
Therefore, zero-padding the signal facilitate the interpretation 
of analysis results in terms of signal harmonics. 

2)  Formation of Raw Feature Vector 
After 4th level wavelet packet decomposition, the resulting 

16 details were stored along with the original signal. Raw 
features are defined to be the maximum magnitude of spikes 
in each of these signals. The magnitude of the spikes is a 
measure of contribution of that frequency range to the 
original signal. To provide a better comparison among the 
details, the magnitude of the maximum spike is normalized by 
the magnitude of the corresponding spike in the original 
signal. The normalized magnitude of the spike was then 
stored in the raw feature vector. The vector thus consists of 
17 elements, 16 of which represent the normalized magnitude 
of the spikes in the details plus the magnitude of the spike in 
the original signal as the 17'h feature. This process was 
performed on every input signal, resulting in a ~x17data  
matrix where N denotes the total number of examples in the 
data set (2 1 10 examples). 

~ 
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3) Dimensionality Reduction 
The objective of dimensionality reduction is to keep the 

dimensionality of the pattern recognition problem (i.e. the 
number of features) as small as possible while preserving 
good classification accuracy. Dimensionality reduction can be 
accomplished by means of feature selection or feature 
extraction. The term feature selection refers to techniques that 
select the best subset of the input features set. Methods that 
create new features based on transformations and 
combinations of the original feature set are called feature 
extraction methods. The choice between feature selection and 
extraction depends on the application domain. 

Principal Component Analysis (PCA) is the best-known 
linear unsupervised feature extraction method [3]. The linear 
transformation is defined by the eigenvectors of the 
covariance matrix, which leads to vectors that are 
uncorrelated regardless of the form of the distribution. If the 
distribution happens to be Gaussian, then the transformed 
vectors will be statistically independent. The objective of 
PCA is to perform dimensionality reduction while preserving 
as much as the randomness (variance) in the high-dimensional 
space as possible. PCA performs a coordinate rotation that 
aligns the transformed axes with the directions of maximum 
variance. The main limitation, however, is that as an 
unsupervised method, it does not consider class separability 
information. There is no guarantee that the direction of 
maximum variance will contain good features for 
discrimination. 

Linear Discriminante Analysis (LDA) is another well- 
known linear feature extraction method, but unlike PCA it is 
supervised [2]-[3]. The objective of LDA is to perform 
dimensionality reduction while preserving as much of the 
class discriminatory information as possible. In LDA, 
interclass separation is measured by Fisher criterion, which 
finds the eigenvalues of the betwefin-class scatter matrix to 
the within-class scatter matrix. The within-class scatter matrix 
is defined by: 

C 

s, = p i  
;=I 

where, 

x denotes the data, c is the number of classes and pi is the 

mean vector of class wi . 
The between-class scatter is defined by : ,, 

(3) 
i=l 

where N i  is the number of patterns of class i , and ,fL is the 
mean of the entire distribution. 

The solution proposed by Fisher is to maximize the 
function that represents the difference between the means of 
the classes (between-class scatter) normalized by a measure 



of the within-class scatter. The projections with maximum 
class-separability are the eigenvectors corresponding to the 
largest eigenvalues of sM,-'sB. This method produces as many 
projections as the number of classes minus one. If the 
classification error estimates establish that more features are 
needed, some other methods must be employed to provide 
additional features. LDA will fail when the discriminatory 
information is not in the mean of the data but rather in the 
variance. 

Raw features might be expensive to obtain and might not 
be numeric. Also, in some applications it may be important to 
extract meaningful rules from the classifier results. In such 
situations, feature extraction methods will not work. Hence, 
feature subset selection (FSS) methods must be employed. 
Feature subset selection requires a search strategy to select 
candidate subsets and an objective function to evaluate these 
candidates. There are a large number of search strategies 
among which Sequential Forward Selection (SFS) a simple 
greedy approach was used in this work. More details about 
these methods can be found in [2] and [3] where statistical 
pattern recognition techniques are well introduced or 
reviewed. 

Objective functions are divided into two groups, filters and 
wrappers. Filters evaluate feature subsets by their information 
content; typically interclass distance, statistical dependence or 
information-theoretic measures. Wrappers are essentially 
pattern classifiers, which evaluate feature subsets by their 
predictive accuracy by statistical resampling or cross- 
validation. Filters are fast to be executed and their results 
exhibit more generality. However, they tend to select the full 
feature set as the optimal solution. On the other hand, 
wrappers generally achieve better classification rates than 
filters and have mechanism to avoid overfitting. The main 
disadvantage is slow execution. 

D. Model Selection and Classifier Design 
Once the extractedhelected features are obtained, the data 

set is organized into classes as shown in Fig. 4. There are two 
broad classes, load change transients and incipient 
abnormalities. Each class in turn contains four subgroups, 
Phase Notch High Frequency (PH-NHJ?), Neutral Notch High 
Frequency (NE-NHQ, Phase Notch Low Frequency 
(PH-NLF), and Neutral Notch Low Frequency (NE-NLF). 
Based on these categories, three pattern analysis problems are 
defined. Two 4-class problems for each of load change 
transients and incipient abnormalities, whether the 
abnormality is manifested in PH-NHF, PH-NLF, NE-NHF or 
NE-NLF signals. The third problem is a 5-class problem for 
which the four classes of the load change transients are 
considered as one class and categories of incipient 
abnormalities form the remaining four classes. 

Once a feature selection or extraction procedure finds a 
proper representation, a classifier can then be designed using 
a number of possible approaches. In practice, the choice of a 
classifier is based on which classifiers happen to be available, 
or best known to the user. In this study, k-nearest neighbor 

(KNN) classifiers were used. In these classifiers, the K closest 
examples in the training data set are found and the majority 
class is determined and assigned to the unlabeled example. 

Fig. 4. ProblemFormulation as a Classification Problem 

In. CLASSIFICATION RESULTS . 

The classification results for each of the problems are 
shown in the following figures. The term original in the 
figures implies that all seventeen features in the original 
feature space are used in the classification without 
dimensionality reduction. The classification rate (CR) is a 
measure of the performance of the classifier defined by: 

(4) number of correct assignments 
number of total assignments 

C R =  

A. Results of the 4-Class Classijication Problem for  Load 
change transients 

fig. 5 summarizes the classification results for the 4-class 
problem with load change transients. As seen in the figure, the 
classification rate for classifying data in the original space 
was 66%. Applying PCA, the classification rate rose to 68%. 
The two largest eigenvalues were 89.22% and 5.51% 
responsible for the variance of the data. Hence, using PCA, 
only two features were determined to represent the data in the 
feature space. Applying LDA, the classification rate was 
around 57%, which means that the discriminatory information 
is not only in the mean of the data. 

4-Class Problem (Load) i 100, 

Original PCA LDA Fss 
Feature ExtractionlSelectlon Method 

J 

Fig. 5. Classification Results for Load 4-Class Classification Problem 

Sequential forward feature selection with wrapper objective 
function selected features 17, 3, 11, and 12. From the 
frequency range mentioned earlier, it is inferred that features 
3, 11 and 12 represent the contribution of the third, eleventh 
and twelfth harmonics, respectively. Feature 17 represents the 
contribution of all harmonics in the signal. The classification 
rate rose up to 82% when only those four features were used. 
Not only does FSS provide better performance than PCA or 
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LDA, but also selected features can be technically interpreted 
in terms of harmonic contents of signals. 

B. Results of the 4-Class Classification Problem for  
incipient Abnormalities 

Fig. 6 summarizes the classification results for the 4-class 
problem on incipient abnormalities. Classification rate in the 
original space was 68%. After applying PCA, the 
classification rate rose to 73%. The four largest eigenvalues 
were 82.75%, 6.87%, 2.44%, and 1.41% responsible for the 
variance of the data. Applying LDA, the classification rate 
was not improved, which means that again the discriminatory 
information for this class is not only in the mean. Sequential 
forward feature selection with a wrapper objective function 
selected features 17, 13, 11, and 12 which correspond to the 
normalized magnitude of the spikes in the original signal and 
its 11*, 12*, and 13'h harmonics. The classification rate 
increased up to 82% using these four features. 

0.8 
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classified. The first reason has to do with the number of 
existing examples from load change transients relative to the 
number of incipient abnormalities, which are dominant. 
Second reason lies in the fact that the best feature (the 
magnitude of the main frequency component) to distinguish 
load change transients from incipient abnormalities is not 
included in the set of features. Recall that all the signals were 
filtered by a notch at 60 HZ. In general, the magnitude of 
spikes in the incipient abnormalities is smaller than that of 
load change transients. As the order of harmonics increase, 
the spike magnitude becomes smaller and smaller. Therefore, 
it is quite reasonable to assume that the main frequency 
component will carry discriminatory information. It was 
observed that the classification rate is raised to 83% after 
adding this feature to the KNN classifier. 

Fig. 8 shows scatter plot for two features selected by FSS 
method. As shown, the boundary that separates the two 
classes is nonlinear. 

L 
- 

- 

- 
~ 

- 

4-Clas s Problem (Incipient) 

90 , I 

Original PCA LDA FSS 

Feature ExtractionlSeIection Method 

Fig. 6. Classification Results for Incipient 4-Class Classification Problem 

C. Results of the 5-Class Problem for Load Change 
Transients and Incipient Abnormalities 

Fig. 7 depicts the classification results for the 5-class 
problem defined earlier. In this case, the classification rate in 
the original space was 57%. After applying PCA or LDA, the 
classification rate was not improved. Sequential forward 
feature selection with a wrapper objective function selected 
features 17, 13, 2, and 1 resulting in 72% classification rate. 

5-Class Problem 

Original PCA LDA FSS 

Feature ExtractionlSelection Method 

Fig. 7. Classification Results for 5-Class Classification Problem 

As it is seen, the classification rate is lower than the other 
4-class problems. By further investigation, it was found that 
the misclassified examples mostly belonged to the load 
change transient class whereas incipient ones were correctly 
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Fig.8. Scatter Plot of Two Selected Features 

IV. CONCLUSIONS 
Three classification problems to categorize load change 

transients and incipient abnormalities in the underground 
distribution cable were defined and solved. The classification 
was performed using seventeen features obtained from 
wavelet packet analysis. In each classification. problem, 
methods of dimensionality reduction were employed. It was 
observed that the feature subset selection method had a better 
performance as compared to PCA or LDA feature extraction 
methods. The final classification results using KNN classifiers 
were encouraging in all three cases. Future work includes 
exploring additional features and utilizing powerful classifiers 
such as Support Vector Machines (SVM) [8] to further 
improve the classification rate. 
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