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JOINT OPTIMIZATION OF ANATOMICAL AND GESTURAL PARAMETERS 

IN A PHYSICAL VOCAL TRACT MODEL  

Christopher Liberatore, Ricardo Gutierrez-Osuna 

Department of Computer Science and Engineering, Texas A&M University, College Station, TX 

ABSTRACT 

We describe a method for adapting a physical vocal tract 

model’s anatomical and gestural parameters using acoustic 

information to match a target speaker. Physical vocal tract 

models are hard to adjust to match a speaker, as doing so 

requires information which is difficult to capture, such as X-

Ray or MRI information. We propose an analysis-by-

synthesis approach to adjust the parameters of the 

VocalTractLab (VTL) physical vocal tract model, 

optimizing on an acoustic distance objective function. We 

compare our method with one which does not adjust 

anatomy parameters, just gestural parameters, and find that 

the proposed method results in a net improvement. We also 

test our method’s ability to recreate a synthetic speaker for 

which the ground truth parameters are known, and find that 

the method can reproduce the speaker if parameters 

pertaining to teeth and lips are fixed. 

Index Terms—optimization, vocal tract model, gestures, 

speaker inversion 

1 INTRODUCTION 

Physical models of the vocal tract rely on detailed 

representations of the tract for synthesis of acoustics. They 

simulate the anatomy and articulatory gestures by modeling 

vocal tract features as two or three-dimensional meshes, 

computing the cross-sectional volume on the midsagittal 

plane, and approximating this volume as a series of 

connected tubes. The modeled volume then filters an 

excitation signal generated by a simulated glottis. One such 

vocal tract model is VocalTractLab (VTL) [1, 2], which 

presents the vocal tract as a set of seven distinct 3-

dimensional meshes, a separate glottis model, and a model 

of vocal tract dynamics.  

 Tuning such vocal tract models to match the voice quality 

of a particular speaker requires manual adjustment of the 

parameters, which usually require access to specialized tools 

such as MRI or X-Ray imaging [3]. A method that could 

adapt a model’s parameters to estimate a speaker’s 

underlying anatomical and articulatory parameters without 

requiring such imaging would make physical models more 

accessible to multiple applications of speech synthesis, 

speech recognition, or speaker recognition. 

 Previously, Birkholz and Kröger [3] matched VTL 

anatomy and gestural parameters by manually-aligning the 

model parameters from X-Ray or MRI information. In later 

work [4], the authors used VTL to examine articulatory 

differences between a child speaker and adult speaker by 

adjusting the anatomical and gestural parameters. They 

parameterized the anatomy of VTL by scaling the anatomy 

meshes. The authors scaled the anatomy and gesture 

parameters of a model of a German male to a reference 11-

year-old boy and found that the scaled model produced 

different formants compared to the expected scaled 

formants, suggesting that children’s gestures are not simply 

scaled representations of the corresponding adult shapes.  

To recreate the process by which humans acquire speech 

production knowledge, Prom-on et al. [5] demonstrated a 

method to optimize VTL to learn articulatory configurations 

of a vocal tract from acoustic features. Using an analysis-by-

synthesis approach, they minimized the sum-squared-error 

of the synthesized Mel Frequency Cepstral Coefficients 

(MFCC) against target MFCCs. The authors showed it was 

possible to begin from a random vocal tract configuration 

and iteratively optimize the model until an acceptable 

configuration was reached with similar acoustics. In a 

follow-up study [6], the authors showed that this method 

had cross-language potential, using a similar distal method 

to learn articulatory configurations of Thai vowels. 

 Relation to prior work: Our proposed method is similar 

to the optimization methods in these prior studies. However, 

it differs in that we seek to learn not only the articulatory 

configurations for particular speech sounds but also the 

overall anatomy of the speaker via analysis-by-synthesis. 

We find that including an anatomical optimization step prior 

to optimizing specific vowel shapes reduces the mean 

acoustic error when compared to optimizing vowel shapes 

alone. To test the method’s ability to reproduce a speaker, 

we created a synthetic speaker based upon the default VTL 

model and optimized the anatomy parameters against 

acoustics from this model. We found that our method could 

find the synthetic model parameters best if teeth and lip 

parameters were not included in optimization. 

 The remainder of the paper is outlined as follows. First, 

we review VTL physical model and our analysis-by-

synthesis optimization process. Following this, we discuss 

and review the results of our method on vowel samples from 

three speakers and from a synthetic speaker. Finally, we 

discuss future refinements of our proposed method. 

2 METHODS 

2.1 Vocal tract model 

Our work is based on VocalTractLab (VTL), a physical 

vocal tract model developed by Peter Birkholz [1, 2]. VTL 

4250978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



represents the vocal tract using seven wireframe meshes, 

and controls the articulation of these surfaces with 23 tract 

parameters. VTL also includes a synthesizer that filters a 

source signal from an included glottis model through the 

vocal tract by extracting a tube model from a specific vocal 

tract configuration. 

 The default VTL model is based on a German speaker 

[3], and includes many gestural targets (called “shapes” in 

VTL parlance). Of the 23 shape parameters in VTL, we 

were concerned with only of 18 of these parameters, shown 

in Table 1.  The remaining 5 parameters, which we do not 

consider here, affect dynamics (i.e. motion) or the tongue 

root position, the latter of which VTL can infer from other 

tongue parameters. Following Birkholz and Kroger [4], we 

parameterize the anatomy with 13 scaling parameters 

describing the scaling of the mesh of a default anatomy 

model; see Table 1. The API for VTL allows two synthesis 

methods: one which outputs acoustics of an entire series of 

gestures, and one which allows for the user to specify the 

value of each articulator in 5-ms intervals. The latter method 

also returns the cross-sectional tube areas in addition to 

synthesized acoustics, and is the method we use here. 

2.2 Analysis-by-synthesis 

Our proposed analysis-by-synthesis approach consists of a 

two-tiered, iterative optimization method. The first tier 

treats the speaker as a collection of shapes associated with 

anatomy parameters, and optimizes the parameters 

associated with anatomy in this context. The second tier 

examines individual vowel shape configurations, optimizing 

them atomically. After shape optimization, we began 

another iteration of optimization, starting again with the 

anatomy. We approached the optimization in this two-tiered 

fashion as it would be difficult to attempt to optimize the 

anatomy and shape parameters simultaneously. 

 For both tiers of optimization, we used pattern search 

(PS), a form of direct search, to optimize the parameters for 

both anatomy and individual vowel shapes. PS is a form of 

direct search that does not require a local gradient to 

optimize objective function parameters. PS is also robust to 

noise that otherwise negatively affects methods requiring 

gradient computation [7]. Though PS does not require a 

local gradient, it behaves in a similar manner to gradient 

descent; an in-depth discussion is presented in [8]. 

 PS navigates the error surface by creating a mesh of 

nearby points by permeating the current solution on each 

vector in a set of basis vectors. Typically, this basis consists 

of the unit vectors of each dimension of the parameter 

space. PS evaluates each of these permeations by the 

objective function in what is called a “polling” step. PS 

chooses the point with the greatest reduction in the objective 

function as the center of the mesh for the next iteration. 

Following a poll, PS scales the mesh in response to 

Figure 1: VocalTractLab shape parameters. All parameters 

are in centimeters except for VS and VO, which are unitless, 

bounded [0,1], and JA, which is in degrees. (From [3]) 

 

Figure 2: parameterization of VTL anatomy mesh. This 

parameterization represents various scaling dimensions of 

the default vocal tract model. All units of these parameters 

are in centimeters, except for A0, which is in degrees. (From 

[4]) 

 

 

 

Param Description Param Description  Param Description Param Description 

HX, HY Hyoid  TTX, TTY Tongue tip  H1 Larynx length W0 Lip width 

JX Jaw position TBX, TBY Tongue body  H2 Palate height W1 Hard palate length 

JA Jaw angle TCX, TCY Tongue center  H3 Upper molars  W2 Soft palate length 

LP Lip protrusion TS1-4 Tongue side height  H4 Lower molars  W3 Vocal fold length 

LD Lip distance VS Velum shape  H5 Mandible height W4 Larynx width 

  VO Velic opening  D0 Palate depth A0 Oral-Pharyngeal 

angle        
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observations in response to the error surface. In the event of 

a successful poll, the mesh size is expanded by a constant 

factor (bounded by a maximum size parameter) to speed up 

convergence. However, in the case of an unsuccessful poll, 

the mesh is contracted. PS converges once the mesh size 

contracts to below a specified size. 

 In our case, the objective function is the acoustic 

difference between a target vowel and the synthesized 

vowel, which we compute as the sum-squared error between 

the mean of the synthesized MFCCs and the mean of the 

target vowel’s MFCCs. Specifically, we synthesized 150 ms 

of the vowel acoustics, ignoring the first 25 ms due to a 

documented transient in the signal, and use the remaining 

125 ms. We computed MFCC1-24 using RASTAMAT [9] 

over 35 ms windows, sliding at 10 ms intervals, and drop 

the first coefficient as we wish to ignore the synthesis 

energy. We use no liftering in MFCC computation. 

 To prevent the optimization algorithm from choosing a 

state that would generate turbulent airflow, we added a 

penalty factor in our acoustic error measure if the minimum 

tube area is less than 0.25 cm
2
. Our error function for a 

given vowel can be expressed in the following form: 

       {
   ( ̂   )   if   ( )      

 ( ̂   )   otherwise
 (1) 

where n is the nth vowel,   is the penalty factor,  ̂ are the 

mean MFCCs of the synthesized acoustics,   are the mean 

MFCCs of the target acoustics, and   is a vector containing 

the cross-sectional areas of the tube model in cm
2
 units. We 

found it most effective if   is set to a value large enough 

that it dominated the error of nearby articulatory 

configurations, creating a constraint on the search space. 

VTL exhibited variability in synthesis, resulting in noise in 

the objective function, with a standard deviation of 

approximately       . 

2.2.1 Anatomy Optimization 

In the first optimization step, we optimize the anatomy 

parameters on the sum of the errors (as computed from eq. 

(1)) across all the vowels we seek to optimize. The anatomy 

parameters define the scaling of various meshes of the vocal 

tract model, but they also affect the upper and lower bounds 

for each articulator in the vocal tract—as anatomy 

parameters change, so do the bounds of articulators 

associated with those parameters. Because each anatomy 

parameter has different bounds with varied parameter 

ranges, we adjust each step size to be a proportion of the 

range of that parameter. The parameters for pattern search 

are shown in Table 1. 

 To capture this fact in our optimization process, whenever 

anatomy parameters are updated we also scaled the vowel 

shapes linearly with the changes in these bounds: 

 ̂  (     ) (
 ̂   ̂  

     
)   ̂  (2) 

where   is the i
th

 shape parameter,   and    are the old lower 

and upper bounds, and  ̂ and  ̂  are the new lower and upper 

bounds. 

2.2.2 Shape optimization 

Following anatomy optimization, we optimize each vowel 

shape using pattern search against the objective function in 

eq. (1). To capture correlations in the positioning of vowel 

shapes, we perform Principal Components Analysis (PCA) 

on the 23 vowel shapes included in VTL. PCA extracts an 

orthogonal basis that represents the dimensions of maximum 

variance by computing the eigenvectors of the covariance 

matrix of a dataset. As we have more vowels than 

dimensions, the covariance matrix has full rank and we 

extract 18 components. We scale these components by their 

observed standard deviations (σ) and use them as the basis 

for the PS mesh; the unit for each vector then becomes one 

standard deviation along that component. The parameters 

were chosen so as to allow for features as small as 1 mm to 

be captured by the PS mesh. The remaining PS parameters 

are summarized in Table 1. 

3 EXPERIMENTS AND RESULTS 

We extracted vowel samples from three male speakers 

(JW11, JW12, and JW15) in the University of Wisconsin 

XRay Microbeam (XRMB) Database [10]. These speakers 

were selected as they were all male speakers, as we wanted 

to minimize any cross-gender effects, as VTL’s default 

model is based on a male German speaker.  We used 5 

vowels from task TP14 and manually selected segments 

which had the most constant formant trajectories, extracting 

MFCCs from these segments. We also extracted the average 

pitch over that same segment using STRAIGHT analysis 

 
Figure 3: block diagram of optimization method. For 

Anatomy-Shape optimization, we exited the optimization loop 

after 2 iterations.  

Anatomy Shape 

Initial size 5% Initial size 0.1σ 

Scale factor 2 Scale factor 2.1544 

Max size 5%  Max size 1σ 

Converge 1.25% Converge 0.01σ 

Table 1: pattern search parameters. Anatomy optimization 

has step sizes which start at 5% of the total range of each 

parameter, and converge when the size is below 1.25%. We 

chose the scaling factor of the Shape optimization to provide 

7 steps, between 0.01σ and 1 σ, where σ is the standard 

deviation of the associated search vector, as computed from 

the vowels included in the VTL speaker model. 
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[11]. The acoustic targets for each vowel were encapsulated 

as the mean MFCCs and mean pitch value of the segment. 

During optimization, synthesized vowels used this mean 

pitch value. 

 To provide a baseline for comparing the performance of 

our proposed algorithm, we performed an experiment where 

we compared our proposed method with a shape-only 

optimization method. We used the default anatomy 

parameters for the shape-only method, and in both instances, 

the initial configurations for all vowels were the same. 

3.1  Results 

The proposed algorithm reduced the sum of errors over the 

baseline, shape-only optimization; however, not every 

vowel was improved—see Table 3. Some shapes, such as /ɑ/ 

in JW15 and /i/ in JW12, were significantly improved by 

including an anatomy optimization step, but /æ/ in JW12 

and /ʊ/ in JW15 were not. 

 To verify the ability of pattern search to reach known 

anatomy configurations, we created a synthetic speaker with 

longer hard and soft palate parameters, and ran anatomy 

optimization on the synthetic speaker. We used four vowels 

representing the extrema of the vowel space (/i/, /a/, /ɑ/, /u/), 

as well as schwa, in the optimization. We found that when 

we included all anatomy parameters in the optimization 

process, before reaching the known global minimum, PS 

would adjust lip width (W0) or tooth height parameters (H2, 

H3), before continuing to adjust the hard and soft palate 

lengths. This would result in the search algorithm 

converging at a local minimum to different parameters than 

the known ground-truth speaker. When we tested the 

optimization method fixing the dental, lip, and jaw 

parameters (W0, D0, H2-H5) only allowing optimization on 

the palate, larynx, and pharynx parameters, we found that 

the search algorithm was able to find a similar configuration 

as the synthetic speaker—see Table 2. This suggests that the 

method is capable of navigating the error surface and 

finding known ground-truth values, but that it is sensitive to 

the parameters of the model being optimized, or the mesh 

size for each parameter. Further refinements to the anatomy 

optimization procedure, either by choosing more precise 

mesh sizes or optimizing different anatomy parameters 

separately may improve results. 

4 DISCUSSION AND FUTURE WORK 

We found that our proposed optimization method, which 

adjusted both anatomy and gestural parameters, improved 

the observed total acoustic errors over just adjusting gestural 

parameters on a default anatomy model. However, even 

though the sum of errors was improved, not all vowels 

showed improvement. Additionally, we found that pattern 

search was able to find the known correct parameters for a 

synthetic speaker, provided we restricted the search space.  

Problems with not all vowels showing an improvement 

over the shape-only optimization method may be explained 

by the anatomy parameterization: they simply scaled the 

default mesh and not finer details such as anatomy curvature 

which may be specific to a given speaker. Moreover, when 

comparing the optimization results to a synthetic speaker for 

which we knew the ground-truth parameters, including teeth 

and lip parameters in the optimization process hampered the 

search algorithm, forcing it into a local minimum. 

4.1 Future Work 

Our results suggest some additional ways to improve the 

performance of our proposed method. First, splitting up the 

anatomy optimization to focus on vocal tract parameters 

(ignoring lip and teeth parameters) may improve the 

optimization results. Evaluating the AS method on VCV and 

CVC sequences could further improve results, as consonant 

constrictions are more sensitive to the dimensions of the 

vocal tract. Further dimensionality reduction by optimizing 

on dimensions of known correlation in the vocal tract (e.g.  

principal components of the vocal tract area function [12]) 

would also serve to decrease the total optimization time. 

Learning vocal tract parameters in this distal manner 

would be useful in synthesis and conversion applications. 

Accent conversion [13, 14], requires the synthesis of 

acoustics with a target speaker’s voice quality, but using 

acoustics which that speaker has not uttered. Using this 

method to modify a physical vocal tract model to match a 

target speaker, one could simulate native phonemes with the 

target speaker’s voice quality, potentially overcoming a 

current issue in accent conversion methods [14].  

 All Limited Target 

W1 5.15 cm 5.13 cm 5.1 cm 

W2 2.69 cm 3.09 cm 3.1 cm 

Error 13.86 0.74  

Table 2: effect of dimensions on anatomy optimization using a 

synthetic speaker. A synthetic speaker was made based upon 

the default VTL model, but with hard and soft palate (W1 and 

W2) lengthened—see target parameters in the last column. 

“All” is the result of anatomy optimization on all dimensions of 

the anatomy parameterization, while “Limited” fixed the 

values of the lip, jaw, and dental parameters. The error metric 

is derived in the same manner as equation (1). 

 
 JW11 JW12 JW15 

  ASO SO ASO SO ASO SO 

ae [æ] 19.7 20.6 32.9 32.4 26.8 38.9 

ah [ɑ] 39.7 48.9 14.7 27.9 27.9 72.6 

ee [i] 29.8 30.7 34.2 51.5 57.4 66.2 

eh [ε] 18.9 33.3 21.3 29.1 18.3 24.4 

oo [ʊ] 31.4 32.7 33.3 54.9 38.3 34.7 

Total 139.5 166.2 136.4 195.8 168.7 236.8 

Table 3: detailed results of the first experiment, comparing AS 

optimization (ASO) with Shape optimization (SO). While the 

sum of the errors was reduced in all cases using the AS method 

over the SO baseline, the reduction was not uniform across all 

vowels. The first column is the XRMB prompt in task TP14, 

the second being the corresponding IPA vowel label. 
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