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Abstract— The of the quality of odors emitted from automobile
cabin interiors is an important element for the design of vehicles
that meet prospective customers’ expectations. Extending our
previous work on machine-versus-human odor assessment for
intact automobile cabin interiors, in this paper, we evaluated
odors generated from individual interior parts using a human
panel and field asymmetric ion mobility spectrometry (FAIMS).
We used image processing techniques to extract geometric fea-
tures from FAIMS dispersion fields, and built the predictive mod-
els for three odor assessment parameters (intensity, irritation,
and pleasantness) by means of partial least squares regression.
The best feature set was chosen by backward sequential feature
selection. Using k-fold cross validation, we achieved statistically
significant correlation 0.95 between human panel measured and
machine olfaction predicted odor assessment scores with a sample
set of 48 interior automobile parts. These results, generated using
the geometric image processing methods demonstrated herein,
further support the feasibility of replacing a human panel by
machine olfaction for the assessment of odor quality of interior
automobile parts.

Index Terms— Automobile odor assessment, field asymmetric
ion mobility spectrometry, machine olfaction, image processing,
partial least squares regression, k-fold cross-validation.

I. INTRODUCTION

N ADDITION to reliability and safety, odor quality has

become an important factor in customers’ preferences when
they acquire new automobiles. Odors inside automobiles are
complex mixtures of volatile organic compounds (VOCs) that
come in part from the materials of various interior parts.
In order to improve customers’ impressions of a manufac-
turer’s automobile offerings, the odor (gas mixture) emitted
from each part should be evaluated for its contribution to
collective cabin odor. Conventionally, human panels are used
to identify and evaluate odors. The interactions between the
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VOCs and the mammalian odor receptors create the human
panelists’ perceptions of the odor. However, because human
panels are expensive and time-consuming [1], alternative
sensor-based approaches are needed for detecting and iden-
tifying the odorous VOCs in a cost-effective and reliable way.
Previously reported studies of automobile odors investigated
the chemical compounds inside the cabin emitted by certain
individual parts using gas chromatography-mass spectrom-
etry (GC-MS), without addressing the accompanying odor
quality attributes [2], [3].

Machine olfaction is a promising approach for this
application. Traditional machine olfaction systems have
been based on arrays of cross-selective sensors and pattern
recognition methods, and have been called electronic noses
(e-noses) [4]. Commonly employed cross-selective sensing
technologies have included metal oxide semiconductor
(MOS), MOS field effect transistor (MOSFET), conducting
polymer (CP), surface and bulk acoustic wave (SAW, BAW),
fluorescence (FL), infrared (IR) absorption, and photonics [5].
These sensing techniques have been employed in a wide
range of application types with varying levels of success.

The odors inside automobile cabins for any specific man-
ufacturer’s model are generated by a wide range of different
chemical compounds [2], so a very sensitive and broad chem-
ical sensing technology is needed. In this work, we propose
a machine olfaction system using a Lonestar field asymmetric
ion mobility spectrometer (FAIMS) by Owlstone, Inc., and
employ it to examine odors generated from different automo-
bile parts. The Lonestar FAIMS generates two distinctive color
images for each measurement test. In our case, we tested the
odor of automobile interior materials before and after sub-
jecting them to a company-specified heating cycle, a process
that increased the available VOC concentrations. Changing
VOC concentrations alters the shapes of features in the
FAIMS-generated images. Since numerous VOCs emitted
from automotive parts are known to occur in low concentra-
tions [6], image processing methods that detect small changes
in the image shapes were used to extract odor-relevant infor-
mation from the acquired FAIMS spectral signals. Regression
models based on selected features were built to predict stan-
dard odor sensory parameters for each automobile interior
part. The models’ performances were validated by k-fold
cross-validation with the original professional human panel
evaluation as a reference.
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An early version of this work was presented at IEEE
SENSORS 2015 [7]. This paper is organized as follows.
Section II provides background of ion mobility spectrome-
try (IMS) and FAIMS. In Section III, we introduce related
published literature on detection and identification of chemical
compounds by IMS and FAIMS. Section IV describes the
experimental setup and detailed procedures for data collection
by our machine olfaction system. In Section V, we present
the image-based feature extraction methods adapted for our
FAIMS data, followed by a discussion of feature selection and
model performance in Section VI. Finally, Section VII draws
conclusions from our study.

II. BACKGROUND

Ion mobility spectrometry (IMS) is an alternative chem-
ical characterizing technique to detect a wide variety of
organic chemicals [8]. Developed for gas sensing in the
early 1970s [8], [9], IMS has been used in prototype con-
figurations for routine clinical, diagnostic measurements, and
detection of chemical warfare agents, toxic industrial com-
pounds, explosives and drugs of abuse [10]. Over the years,
several types of ion mobility spectrometers have emerged. The
term IMS is frequently associated with drift-time based sys-
tems, with other configurations being described as differential
mobility spectrometers (DMS), travelling wave ion mobility
spectrometers (TWIMS), and field asymmetric ion mobility
spectrometers (FAIMS).

In this study, we employed a FAIMS device. FAIMS was
introduced in the early 1990s. Its operation is based on the
nonlinear behavior of ions in asymmetric electric fields [11].
Compared to traditional IMS, that injects ions into the drift
region using an ion shutter and then separates ions by their
mobility differences, FAIMS has no ion shutters and ions are
continuously introduced into the analyzer. The asymmetric
electric field, applied for nanoseconds with voltages up to
20,000 V/cm, accelerates the ion separation. These key dif-
ferences improve the sensitivity and reduce the operational
complexity. The commonly deployed ion sources for FAIMS
are radioactive, corona discharge, photo discharge lamps,
lasers and variations of ion electrosprays [8]. Many factors can
affect the spectra, including the dispersive effects of diffusion
and ion-ion repulsion [12], ion source saturation, as well as
experimental parameters such as compensation voltage, tem-
perature, moisture, pressure and sample impurities [13]. Unfor-
tunately, no standard guidelines exist to optimize experimental
conditions for ion mobility spectra. As such, finding odor-
relevant information under different experimental conditions is
the key challenge when using FAIMS for machine olfaction.

III. RELATED WORK

Low cost, portability, flexibility, sensitivity and selec-
tivity make IMS an attractive technique for on-site, real
time environmental monitoring and chemical detection.
Tuovinen et al. [14] detected several pesticide compounds
individually from liquid matrices using a six-electrode, flow-
through type IMS model MGD-1. Three compounds (sulfotep,
propoxur and nicotine) with 2-propanol as their solvent were
tested at different concentrations. Based on the collected
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responses from six different IMS channels, a self-organizing
map and Sammon’s mapping methods provided by commercial
Visual Nose software were used to find similarity between
samples. The results show clear separation among the three
pesticide compounds and their solvent.

A larger study of IMS detection of individual chemicals
was carried out by Bell et al. [15]. They investigated the
classification of 204 chemicals, each at various concentra-
tions, from a standardized database of 3,137 IMS spectra.
A two-tiered backpropagation neural network was proved to
successfully detect 195 compounds represented by 1,293 spec-
tra. A log transformation of acquired spectral data improved
the performance of the neural network. They also found that
features including drift times, peak numbers, peak intensity
and peak shape were efficient for differentiating chemicals.
A fixed feature combination was not capable of separating
all classes of chemicals. Different feature combinations were
needed for each class.

The determination of analytes in complex samples, or the
mixtures of various target compounds, leads to complicated
IMS signals. This may arise from multiple and competitive
ionization interactions as a consequence of limited reactant
ions in chemical-based sources or limited energy available
in the ionization source. When a radioactive source is used,
Mairquez-Sillero et al. [16], noted that ionization of substances
with low proton affinity is reduced when compounds with
higher proton affinities are present. Similarly, in negative
polarity, ionization of substances with higher electron affinities
can hinder the ionization of analytes with lower electron
affinities. Additionally, it is possible that different compounds
having the same drift time are falsely identified as the same
target analytes, leading to a false-positive response.

For gas mixtures, Snyder et al. [17] used a hand-held
gas chromatography-ion mobility spectrometer (GC-IMS)
combined with principal component analysis and discrim-
inant analysis to separate compounds from three different
types of gas mixtures. Gas mixture samples consisted of
(1) fifteen compounds representative of illegal drug synthe-
sis precursors/purification solvents; (2) eighteen compounds
that are airborne contaminants in the NASA space shuttle;
and (3) benzene, toluene, xylenes and six polyaromatic
hydrocarbons among 41 alkane, alkene and alkylaromatic
compounds typical of petroleum-based environmental conta-
minants. For dataset (1), principal component (PC) 1, 2 and 5
were capable of separating all types of compounds, which
was similar to results by discriminant analysis. These three
PCs accounted for about 76% of total variance in this dataset.
In dataset (2), discriminant analysis provided clear separation
of compounds, whereas principal components did not. For the
third dataset, discriminant analysis identified more types of
compounds than did principal components.

FAIMS has been employed in medical applications to
differentiate patients during treatment. Covington et al. [18]
used an electronic nose and FAIMS to analyze stool samples
to detect patients at risk of gastrointestinal toxicity during
pelvic radiotherapy. Fisher discriminant analysis of wavelet-
transform processed FAIMS data showed the sample dataset
was classified into four groups: low toxicity pre-treatment,
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TABLE I
AUTOMOBILE PART SAMPLE IDENTIFIERS

Vehicle Model
Sample No.

A B C D E
a. Floor carpet 9 23 37 34 42
b. Floor mat 44 11 25 22 8
c. Headliner 45 24 26 1 43
d. Instrument panel 32 7 13 10 31
e. Rear package tray 33 12 14 none none
f. Cloth bolster for seat cover 15 48 18 17 16
g. Cloth insert for seat cover 3 36 6 5 4

h. Leather bolster for seat cover 39 47 38 41 40
i. Leather insert for seat cover 27 35 30 29 28
j. Seat foam 21 19 2 46 20

high toxicity pre-treatment, low toxicity post-treatment, and
high toxicity post-treatment.

In our previous study [19], we used FAIMS and pho-
toionization detection to assess odors inside automobile cab-
ins. Results showed a correlation (0.67-0.84) between model
predictions and ground truth from a trained human panel.
This study suggested that FAIMS can be used to predict odor
sensory evaluations traditionally generated by a trained human
panel.

As the above literature survey shows, prior work on IMS
literature has focused on identifying and classifying VOC
chemicals or biomarkers. While a handful of studies have
explored the relationship between sensor signals and odor
sensory quality evaluation [20]-[22], none with the exception
of our prior work [19] have used FAIMS. So, we adopted the
use of FAIMS in this application.

IV. EXPERIMENTS

In this project, North Carolina State University and Hyundai
Motor Group partnered to explore the use of FAIMS in
evaluating odors generated by heat-cycled interior cabin parts.
Our goal was to develop signal processing algorithms to
predict odor ratings of a trained human panel from FAIMS.
In the experiments below, we describe our progress toward
that goal.

A. Samples

Odor can emanate from a variety of parts comprising an
automobile’s interior cabin. Table I lists our selection of
10 types of parts (labeled from a to j) from five different
automobile models (labeled from A to E). The selected parts
were: floor carpet, floor mat, headliner, instrument panel, rear
package tray, cloth bolster for seat cover, cloth insert for seat
cover, leather bolster for seat cover, leather insert for seat
cover, seat foam. Two of the models had no rear package tray,
so a total of 48 samples were tested (each sample’s identifying
number is listed in Table I).

B. Human Panels

Our odor panel consisted of four trained evaluators.
The detailed human panel training procedure can be
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found [19], [22]. During the experiments, each panel member
sniffed each of the 48 samples and rated it for intensity,
irritation, and pleasantness. For each evaluation parameter,
panelists scored odors using a standard scale from O to 8§,
where a rating of 0 denotes no intensity, no irritation and
extremely pleasant, and a rating of 8 means maximal odor
intensity, maximal irritation and extremely unpleasant; neutral
pleasantness is rated as four [23], [24].

C. Experimental Procedure

A four-liter glass jar was used as the sample container. The
jar had a custom Teflon disc fashioned as a cover with two
ports, one for extracting headspace odor samples and the other
resupplying odorless clean dry air. Prior to each sample test,
the jar’s interior and exterior were cleaned using a standard
company protocol using deionized water and ethyl alcohol
(EtOH). This step removed odor residues left in the jar during
previous tests. The clean empty jar was sealed and placed in a
heated oven at 80°C for one hour. After removing the jar from
oven, a SKC pump was used to transfer the headspace gas from
jar to the FAIMS (Lonestar; Owlstone, Inc.) Three FAIMS
measurements (each taking three minutes) were collected for
the clean empty jar. These three measurements are used
as background odor since in case some lingering residues
survived our jar-cleaning process and introduced trace VOCs
during the one-hour heating cycle.

Next, a representative piece from one of the 48 parts
was placed inside the jar (typically cut in the shape of a
small rectangular block &~ 3”x4”x2”). The jar containing the
sample piece was sealed and placed into an oven at 80°C
for two hours. Following heating, the sealed jar with sample
piece was removed from the oven and allowed to cool at room
temperature for another hour. Then the four human panelists
sniffed the odor from inside the jar by sliding the Teflon®cover
slightly to the side, minimizing headspace dilution. Finally,
the FAIMS measured the odor sample after human panelists
finished their evaluation. For each sample piece, the FAIMS
also acquired three measurements (each taking three minutes).
This procedure was repeated for all 48 samples.

V. METHODS

To generate odor assessment parameters from FAIMS data,
we extracted properties from the dispersion field matrix (DFM)
images as described below. The goal was to build models gen-
erating highly correlated odor assessment predictions relative
to ground truth human panel scores. Correlation coefficients
higher than 0.95 were targeted. Before describing the signal
processing algorithm, we summarize the specific parameters
of the FAIMS unit used.

A. Lonestar Sample Data

The Lonestar FAIMS uses a flat-plate IMS technology in
which ions move in a channel under strong electric field condi-
tions. A Ni®? radiation source is employed to ionize the mole-
cules in a pressurized air stream. This airstream transverses a
conductive channel in which an alternating asymmetric electric
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TABLE 11
EXPERIMENTAL SETTINGS FOR LONESTAR FAIMS

Parameter Value
Dispersion field 0%~100%
Compensation voltage -6 V~+6V
Flow rate 1 L/min
Sensor temperature 60 °C
Pressure -0.12 barg

Positive DFM (Linear) Negative DFM (Linear)

0.8

0.6

0.4

0.2

Dispersion Field, row number
Dispersion Field, row number

Compensation voltage, column number Compensation voltage, column number

(a) (®)

Fig. 1.
DFM.

DFM of one floor mat sample piece. (a) Positive DFM. (b) Negative

field is applied along with a sweeping DC bias, which is swept
as the amplitude of the alternating field is increased. Ions that
reach the end of the channel (those that avoid colliding with
the walls) generate a current proportional to the number of
ions surviving the channel’s electric field dynamics. A DFM
for positive ions and negative ions respectively is the measured
ion current as a function of applied DC bias and the amplitude
of the applied asymmetric alternating electric field [25]. This
leads to a unique identification for ions with the same mobility.
The DC bias is swept from —6V to +6V in our experi-
ments. All our parameter settings for the Lonestar are shown
in Table II.

The positive and negative DFMs for one sample part
are shown in Fig. 1. For different chemicals, the infor-
mation shown in the positive and negative DFM may be
different if they have different proton or electron affinity.
In our measurements, each DFM has dimension 51 x 512.
These data dimensions can be compared to a typical
e-nose instrument that might generate data sets with dimension
16 x 30 (16 sensors sampled for 30 seconds) [21]. Therefore,
finding a good feature extraction algorithm to reduce the
FAIMS dataset to a limited number of highly related indicators
of odor quality is even more important than for a typical
e-nose instrument.

B. Image Features

As shown in Fig. 1, positive and negative DFMs can be
plotted as images. Since the spectral profile is related to
ion mobility, the shapes and positions of image features are
determined by the specific chemicals in the gas mixture.
We employed and compared 10 different feature subsets
summarized in Table III, each containing 1 to 52,224 elements.
We used MATLAB image-processing tools [26] to extract the
feature elements as follows.

1) DFMs: For each odor sample, there is one 51 x 512
matrix for the positive DFM and one for the negative DFM.
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TABLE III
SELECTED FEATURES FOR EACH ODOR SAMPLE

Feature Subset No. Feature Subset Name Dimension
1 DFMs 1x52224
2 Binary DFMs 1x52224
3 Total area of binary DFMs 1x1
4 Centroid 1x4
5 Boundary 1x52224
6 Perimeter of the boundary 1x1
7 Corner location 1x48
8 Bounding area parameters 1x10
9 Peak location and amplitude 1x110
10 Peak migration 1x4
Positive ion mobility spectrum Negative ion mobility spectrum
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Fig. 2. Ion mobility spectrum of one floor mat sample piece (DFM row 20).
(a) Positive. (b) Negative.
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Fig. 3. Binary DFMs. (a) Positive. (b) Negative.

By considering each component in the matrix as one feature
property, the matrix of positive and negative DF was trans-
formed into 1-D 1 x 26, 112 vector, respectively, then com-
bining two 1-D vectors to form a 1-D (1 x 52,224) vector,
which we denote as feature subset “DFMs”.

2) Binary DFMs: Each row in a DFM is a spectral plot
as shown in Fig. 2. In order to capture the spectral profile
information of the DFM and remove noise signals, we turned
the positive and negative DFMs into binary images by setting
a threshold with absolute value 0.075 A.U. in Fig. 2. This
process turns the DFMs into binary images (see Fig. 3), which
we then process as done previously for the original DFMs to
generate a 1-D 1 x 52,224 vector for each sample. Although
the binary DFMs have same dimension as the original
DFMs, the binary DFMs are sparser than the original DFMs
(i.e., black pixels are set to zero); the main effect of binariza-
tion is to remove low-level noise.

3) Total Area of Binary DFMs: The total area of binary
DFMs is the sum of non-zero (i.e., white) pixels in the binary
DFM vector. Thus, this step generates a feature subset with
one element.
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Fig. 4. Image features of DFM images of one floor mat sample piece.

(a) Positive. (b) Negative. (Blue dot is centroid; green rectangle is bounding;
green small circle is corner).

4) Centroid: The centroid is the center of the region of
interest (over non-zero pixels), and can be derived as

1 & 1 &
szﬁgllxi, Cy:ﬁgl:yi

ey

where (x;, y;) is the location of a white pixel and N is the
total number of white pixels. The centroids of binarized DFM
images can capture the spectral profile change among different
odor samples. The centroids of the selected floor mat odor
sample are shown as blue dots in Fig. 4. This feature subset
contains four elements.

5) Boundary: The boundary of the DFM is detected using
the Canny edge detection algorithm [27]. The Canny operator
convolves the image with a symmetric 2-D Gaussian func-
tion and then differentiates the image along the normal to
the edge direction. With the same standard deviation ¢ for
both directions x and y, a 2-D Gaussian function can be
defined as:
x?+y?

55 @)
The direction n is oriented normal to the direction of an edge
to be detected:

G = exp(—

V(G * 1)

n=-—=———

V(G * D)

where [ is the image data and *x denotes convolution. An edge

point is defined to be a local maximum of the image / along

direction n after the operator G applied. Therefore, the edge
can be calculated based on:

82

The boundary of DFM collected from the clean empty jar
was also extracted. The common signal between the boundary
from the clean empty jar DFM and the boundary from the
odor sample DFM was subtracted from the boundary of
sample DFM, removing signals generated by any possible
odor contaminants that were missed in the cleaning process.
Fig. 5 shows the boundary of one odor sample, the boundary
of corresponding clean empty jar, and the boundary of odor
sample after removing common signals. The processed bound-
ary matrices including positive and negative DFM are also
transformed into 1-D vector. This generates a feature subset
with 52,224 elements.

3)
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Fig. 5. Boundary. Odor sample: (a) Positive. (b) Negative. Clean
empty jar: (c) Positive. (d) Negative. Odor sample after removing common
signal: (e) Positive. (d) Negative.

top-left

top-right

left-top right-top

lefi-bottom right-bottom

bottom-left bottom-right

Fig. 6. Corner definition [26].

6) Perimeter of the Boundary: The perimeter of the bound-
ary is calculated by summing the 1-D 1 x 52,224 boundary
vector. As with the area feature subset, this process creates a
feature subset with only one element.

7) Corner Location: The corner locations in each DFM
binary image are capable of representing the tip location
of branches, which is related to types of chemicals in the
gas mixture. Consequently, an example of the eight corner
positions of region of interest are chosen from the following
points shown in Fig. 6: top-left, top-right, right-top, right-
bottom, bottom-right, bottom-left, left-bottom, and left-top.
The identified eight corner points in the selected sample are
shown as small green circles in Fig. 4. In this feature subset,
the locations of each identified corner on the x,y axes are
extracted and ordered anti-clockwise from the bottom-left
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corner to left-bottom corner. This generates 16 elements for
each of the two DFMs. In addition, the distance between each
corner and the centroid of white region was also calculated
(shown as black dash lines in Fig. 6) and ordered in the same
as described above. This generates eight more elements for
each of the two DFMs. Therefore, the corner location feature
subset contains 16 x 2 4+ 8 x 2 = 48 elements.

8) Bounding Area Parameters: This feature calculates the
area of a rectangular box enclosing the region of interest. The
rectangular box for the example sample is shown in green in
Fig. 4. The location of the box area is defined by the x and y
position of the box’s lower-left corner. The area is computed
as the product of the length and width of the box. The benefit
of this method is to extract concurrently the region location,
dimension ratio, and area. So, this feature subset includes five
elements (the x and y position of the box’s lower-left corner,
the length and width of the box, and the area of the box) for
each of the two DFMs, for a total of 10.

9) Peak Location and Amplitude: The peak locations are
related to the types of positive or negative ions. Their ampli-
tudes are correlated with the concentration of ions. The
peak locations and amplitudes move around under different
dispersion field conditions and can provide information highly
related to characteristics of chemical components of the gas
mixture. An example of detected peaks is shown in Fig. 2 as
small red circles. The smaller peak in the negative DFM is a
reactive ion peak related to the moisture level instead of the
target chemicals, so it was not considered in our study. Based
on spectral density of DFMs collected in our experiments,
peak location and peak value were collected from rows 1 to
35 for the positive DFM and from rows 1 to 20 for the negative
DFM, so the number of elements in the peak feature subset is
(354 20) x 2 =110.

10) Peak Migration: Peak migration is defined as the
change of location and value between the peak in the first
row of DFM and the peak in the last selected row of DFM
(row 35 for the positive DFM and row 20 for the negative
DFM). This generates a feature subset with four elements for
each sample.

C. Signal Processing

The variability of collected FAIMS data was calculated
among three measurements of each sample for all 48 parts.
Each measurement was represented by the Euclidean norm
of its DFMs. To build regression models, both the “snap-
shot” principal component analysis (PCA) regression and the
partial least squares (PLS) regression method were applied.
By comparing the results from two regression methods, we
were able to verify the feasibility of our methodology. In the
PLS regression models, image features or feature subsets were
used as independent variables instead of original FAIMS DFM
data. The details and related results are introduced in next
section.

VI. RESULTS AND DISCUSSION

Here will present our results in the following order. First, we
demonstrate the stability of our data. Then we compare the two
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Fig. 7. Euclidean norm of measurements for each odor sample.

methods for analyzing the FAIMS data: 1) “snapshot” princi-
pal component analysis (PCA) and 2) geometric image feature
extraction on FAIMS DFMs as described above. We found that
geometric image feature extraction yields significantly better
results.

First, to ensure reliable measurements, the variability of
our acquired Lonestar FAIMS data for each automotive part
was tested by finding the Euclidean norm of three con-
secutive measurements. The positive and negative DFMs of
each measurement were concatenated into a single 1-D vec-
tor with 52,224 elements, and then the Euclidean norm of
each 1-D vector was calculated to represent each measure-
ment. Differences among three consecutive measurements of
all 48 samples are shown in Fig. 7 below.

In Fig. 7, the mean of Euclidean norm among three mea-
surements for each of the 48 samples is marked by asterisk.
The error bar shows the maximum and minimum norm value.
The Euclidean norm X; of the ith measurement is calculated
as:

i=1,-,m (5)

where j is the jth dimension, and m is the total number
of measurements (3 x 48 = 144). The sample identification
number is shown along the horizontal axis. All samples have
deviation within 5% among their three measurements except
Samples 3 and 11. Therefore, we used the arithmetic average
of three measurements of each sample to reduce measurement
noise.

A. Principal Component Analysis

Principal component analysis (PCA) is a commonly used
e-nose feature extraction method. We used PCA on our
FAIMS DFM data and then compared to the results of pro-
posed image processing methods. In particular, we employed
“snapshot” PCA [19], [28]. This method projects an average
of three DFM measurements of each sample into independent
directions based on their maximum variance matrix among
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TABLE IV

CORRELATION BETWEEN LONESTAR MEASUREMENTS
AND HUMAN PANEL DATA
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TABLE VI
FEATURES SELECTED FOR INTENSITY

Feature Subsct Total Number of
Principal . - Feature No. Available Selected
Intensity Irritation Pleasantness Name
Components Elements Elements
1 0.050 0.382 0.299 6 Perimeter of 1 1
2 0.173 0.325 0.403 the boundary
3 0.017 -0.041 0.073 7 Corqer 48 17
location
Bounding area
TABLE V 8 paramegters 10 3
CORRELATION BETWEEN PREDICTIONS AND 9 Peak location 110 o
ORIGINAL HUMAN PANEL DATA and amplitude
10 Peak migration 4 2
No. Feature Subset Name Intensity  Irritation  Pleasantness
1 DFMs 0.275 0.431 0.441
2 Binary DFMs 0433 0516 0.657 ot il
3 Total area of binary DFMs -0.048 0.418 0.422 FEATURES SELECTED FOR IRRITATION
4 Centroid -0.192 0.409 0.436
5 Boundary 0.352 0.456 0.374 Towl Number of
6  Perimeter of the boundary ~ -0.330  0.230 0392 Featurc No, [ cature Subset Available Selected
7 Cf)rner location 0.330 0.527 0.418 Name Elements Elements
8 Boundmg area parame.ters 0.286 0.484 0.391 4 Centroid 4 B
9 Peak location gnd a}mphtude 0.534 0.611 0.511 Perimeter of the
10 Peak migration -0.313 0.364 -0.437 6 boundary 1 1
7 Corner location 48 20
3 Bounding area 10 6
parameters
all 48 samples. The eigenvector for each direction is calculated 9 Peal;fpcﬁgzr;and 110 41

by a linear combination of our averaged sample data; this
avoids having to invert a large matrix. For our dataset, the
first three out of 48 principal components (PCs) capture more
than 90% of the variance and were used for all subsequent
processing. The correlation between these three PCs and
human panel evaluation scores is listed in Table IV.

Odor quality predictions, generated by principal component
regression models based on these first three PCs, are correlated
with human panel evaluation scores as —0.307 for intensity,
0.362 for irritation, and 0.287 for pleasantness after k-fold
cross-validation (k = 48), with p-value are p = 0.72,
p < 001, and p < 0.01, respectively. These correlation
coefficient values are smaller than our goal 0.95, so we
conclude that PCA is unable to extract highly relevant odor
assessment information.

B. Partial Least Squares Regression
Models Using Image Features

Partial least squares (PLS) can process collinear data and
also reduce the number of required training samples [29].
Our previous study [19] shows that PLS works well for
modeling and predicting odor sensory parameters for auto-
mobile cabin interiors. Therefore, in this study we also used
PLS to build predictive models for corresponding automobile
parts. PLS extracts “latent variables” from the directions
of maximum correlation between dependent and indepen-
dent variable matrices in a sequential fashion. In this study,
the independent variables are image features extracted from
FAIMS data and the dependent variables are human panel
odor evaluation scores. Each latent variable is generated
iteratively.

1) Models Using One Individual Feature Subset: The results
of regression model using PLS method for each feature subset

individually are shown in Table V. The regression model
is verified by k-fold cross-validation (k = 48) in a leave-
one-part-out fashion. The feature subset ‘“Peak location and
amplitude” generated the best regression models for intensity
and irritation, whereas the feature “Binary DFMs” generated
the best regression model for pleasantness. Although these
results are better than those using PCA, these models using a
single feature subset did not meet our performance goal.

2) Sequential Feature Selection: In order to find the “opti-
mal” subset that maximizes the predictive accuracy, sequential
feature selection was employed. Sequential feature selection
is a greedy search algorithm that finds a local optimum.
It has two methods: forward selection and backward selection.
Forward selection involves adding feature element sequentially
from none to all. Conversely, backward selection is reducing
feature element sequentially from all to none [4]. In our
case, we put all the elements from the 10 feature subsets
in Table III into one feature set with dimension 1 x 156, 850.
The model predictive accuracy was evaluated by k-fold cross-
validation with k = 48. By examining the results of features
selected from both the forward and backward methods, the
backward selection method generated the highest correlation
and predictive accuracy. The backward selected features for
the PLS models are summarized in Tables VI, VII and VIII,
for intensity, irritation and pleasantness, respectively. Feature
subsets 1, 2, and 5 were not selected for any of the PLS mod-
els. A possible reason is that the dimension of these feature
subsets is large and their represented information is included in
other selected features. Feature subset 3 was also not selected
for any model, which means the area of white pixels is not
highly correlated with three human assessment parameters.
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TABLE VIII
FEATURES SELECTED FOR PLEASANTNESS

Feature Subset Total Number of
Feature No. ca llilrzms s¢ Available Selected
Elements Elements
4 Centroid 4 2
Perimeter of the
6 1 1
boundary
7 Corner location 48 20
3 Bounding area 10 4
parameters
Peak location
? and amplitude 10 a2
10 Peak migration 4 2
TABLE IX
MODEL ACCURACY
Number of .
Parameter Latent Variables Correlation  p-value RMS
Intensity 15 0.951 <0.01 0.224
Irritation 12 0.951 <0.01 0.258
Pleasantness 28 0.950 <0.01 0.172

For the selected feature subsets 4, and 7-10, some of their
elements were not selected. For example, for the PLS model
for odor intensity, 1 +48 + 104 11044 = 173 total elements
were available from feature subsets 6-10, respectively, but only
1+ 1745+ 42+ 2 = 67 of these elements were used in
the model. For the PLS model for odor irritation, only 70 of
173 elements of the five selected feature subsets were needed.
Finally for the PLS model for pleasantness, only 71 of 177
elements of the six selected feature subsets were needed.

Table IX illustrates the performance of our PLS model for
each odor parameter based on the feature subsets in Tables VI,
VII, and VIII. In order to reach our goal of 0.95 correlation
between the human panel and our PLS models, the latent
variables were allowed to increase as needed. This resulted
in one set of 28 latent variables, slightly higher than half
of our 48 samples. Using k-fold cross-validation (k = 48),
the root mean square (RMS) error of model predictions of
testing samples is also listed in Table IX. The RMS of all
the three models is smaller than 0.26 units. Note that the odor
parameter range is from O to 8. Therefore, it can be concluded
that one may use a PLS regression model independently for
each human assessment parameter, and that those models are
capable of providing suitable predictions of odor intensity,
irritation and pleasantness.

3) Learning Curve of Regression Models: In order to inves-
tigate the models’ general performance, the learning curves
for the three models were generated by employing testing
sample sizes of 24, 16, 12, 8, 6, 4, 3, 2 and 1, and their
related training sample sizes of 24, 32, 36, 40, 42, 44, 45,
46 and 47. The testing samples were selected based on k-fold
cross-validation. The selected number of training and testing
samples covered all the possible choices of k with our total
sample size being 48. The training error and testing error were
calculated based on RMS. The correlation between the three
PLS models and the human panel, the training error, and the
testing error are shown in Fig. 8. Note that the correlation
results are above 0.90 for training sets greater than or equal 42.
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Fig. 8. Learning curve for three best regression models.
TABLE X
RATING STATISTICS OF HUMAN PANELISTS
Standard Deviation RMS Error Range
Parameter .. . . of Machine
Minimum  Median Maximum .
Predictions
Intensity 0.43 0.83 1.79 0.22-0.71
Irritation 0.43 0.83 1.79 0.26-0.78
Pleasantness 0 0.71 1.66 0.17-0.62

The testing error for three parameters is 0.26 units or smaller
for the same training sets, and is decreasing and approaching
the training error curve with increasing number of training
samples. Ideally, the difference between the testing error and
the training error should be less than the training error. Our
curves are trending towards that goal, indicating that there was
no overfitting in the three models and that a larger sample size
should improve model performance.

The rating statistics of the human panelists for all 48 sam-
ples is presented in Table X. As explained above, four trained
panelists were employed to evaluate each sample on three
criteria (intensity, irritation, and pleasantness) within a scaling
range from O to 8. The standard deviations among the four
panelists’ scores were calculated. The minimum value, median
value, and maximum value for each parameter are shown in
Table X. The entries compare the machine predictions’ RMS
error range with the human panel’s standard deviations. The
machine predictions’ RMS errors have smaller values. There-
fore, our sensor-based machine olfaction system generates
results with less variability than the human panel.

VII. CONCLUSIONS

This study showed that geometric image processing of
FAIMS data is a feasible method for replacing a human panel
for the assessment of odor quality of automobile component
parts within the vehicle’s cabin. This paper is an extension of
our previous work that demonstrated a FAIMS-based system
was able to predict human odor assessments of automobile
interior cabin environments [19]. Use of electronic systems
to evaluate odor quality of vehicle parts and cabins will
reduce human exposure to unpleasant mixtures of VOCs, some
of which have exposure limits due to their toxicity. Odors
generated by interior parts must not be regarded as offensive
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by prospective buyers of new automobiles. Identifying an
offensive odor source from multiple vehicle parts and evalu-
ating human olfactory preference for those parts are essential
steps in the testing process. Herein, we have designed a system
to mimic a human panel’s ability to perform these tests and
generate odor rating parameters in a reliable way.

To the best of our knowledge, we report in this project
the first application of image processing techniques to extract
features, and identify appropriate feature subsets, from FAIMS
measurements. The PLS regression method builds three pre-
dictive models estimating three human odor sensory rating
parameters of the target parts. Specific feature subsets were
chosen independently for intensity, irritation and pleasantness.
The regression model for each parameter generated by its
selected feature subsets can reach a correlation with human
panel scores higher than 0.95 with p-value smaller than 0.01.
The RMS error of the three models for testing samples is
smaller than 0.26 units on the 9-point odor scales. Even though
the learning curve in Fig. 8 did not completely converge with
our sample set totaling 48, it demonstrates that our regression
modeling method for the three odor parameters is applicable,
and should prove consistent and accurate when a larger sample
set is available.

In conclusion, machine olfaction based on FAIMS and
geometric image feature extraction has proven feasible as a
human-panel replacement to provide sensory ratings on odor
intensity, irritation and pleasantness for automobile interior
components.
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