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Abstract

Registration between two images is a key problem in
computer vision. Current methods tend to separate the scale
estimation process from translation and rotation estimation.
This is due to the fact that the scale parameter is inherently
related to the image resolution. In this paper, we present an
area-based image registration technique that can simulta-
neously estimate translation, rotation, and scale parameters
and take into account differences in resolution between two
images. We first develop a scale-space model that relates
the entire reference image pixels to a single observed image
pixel with a scale parameter. This model is then easily gen-
eralized to include x-y translation and rotation parameters.
By embedding this scale-space model into a non-linear least
squares method, we can iteratively estimate the four regis-
tration parameters (x-y shift, rotation, and scale) in a unied
manner. We test the validity of the proposed method on both
simulated and real image data.

1. Introduction

Image registration is a crucial step in a variety of com-
puter vision tasks, from image stitching to super-resolution
and object recognition. In general, registration aims to align
two images (the reference image and the observed image)
by estimating translation, rotation, and scale. However, be-
cause of the inherent relationship between scale and image
resolution [4], current methods tend to separate scale esti-
mation from translation and rotation estimation.

To find a match between two images, conventional meth-
ods first construct an image pyramid by downscaling the
reference image [1]. Then, an observed image is matched at
each level by searching the translation and rotation parame-
ters. The level at which the best match is found determines
the scale factor between the reference and observed image.
The disadvantage of this approach is that (1) the scale can
be estimated at only fixed levels and (2) the scale is esti-

Figure 1. Comparison between the pyramid and scale-space ap-
proach for image matching. In the conventional approach (a) trans-
lation and rotation parameters are estimated at each level; scale
estimation is performed independently. In the proposed approach
(b) a scale-space model is embedded in the estimation process; this
allows simultaneous estimation of translation, rotation, and scale
parameters.

mated independently from other registration parameters. In
this paper, we present an iterative image registration tech-
nique that can estimate translation, rotation, and scale in
a unified manner. This is achieved by embedding a scale-
space model into a non-linear least squares framework. The
approach is illustrated in Figure 1.

Image registration can be broadly categorized into area-
based (or pixel-based) and feature-based methods [10].
Area-based methods work by directly matching pixel inten-
sities of the two images as a whole. In contrast, feature-
based methods extract higher-level structures from the two
images and find the corresponding features to perform reg-
istration. Thus, feature-based methods are useful when cor-
responding features can be reliably detected [10]. How-
ever, if the reference image and the observed image are both
in low-resolution, corresponding feature points may not be



Department of Computer Science and Engineering, Texas A&M University, Technical Report tamu-cs-tr-2011-12-1
detected accurately. For this case, our area-based method
can also be used to register low-resolution images with sub-
pixel accuracy.

This paper is organized as follows. Section 2 reviews
previous image registration methods that incorporate scale
estimation. Section 3 describes the proposed model for si-
multaneous estimation of scale, translation and rotation pa-
rameters; the method relates a reference image to an ob-
served image with a single scale parameter and incorporates
translation and rotation parameters. Section 4 describes
how registration parameters are estimated using non-linear
least squares. Experimental results on simulated and real
data are shown in Section 5. We conclude this study and
provide future work in the last section.

2. Related work
Different image representations have been used for scale

estimation. A classic method for scale estimation is to use
an image pyramid structure [1]. This method first builds a
pyramid of reference images of decreasing scale, and then
matches the observed image at each level. The level with
the best match is taken as the scaling factor between the
observed and reference image. Because the scale change at
each level is discrete, the actual scale may not be precisely
determined.

An improvement over pyramid representations is the
scale-space representation [5]. Scale-space representations
use a continuous scale parameter to express the possible
scales of an image but, as a result, the search through the
possible scale levels becomes prohibitive. Feature-based
image registration methods such as [6, 4] use the scale-
space concept in their approach. However, these methods
still build an explicit pyramid structure that is discrete. Our
method is able to efficiently search the scale parameter us-
ing the continuous scale-space model and avoid building a
predetermined pyramid structure for the reference image.

Besides the pyramid-like representations, other image
representations have also been used to address the scale es-
timation problem. In [8], scale estimation for object dis-
tance measurement was performed using a wavelet trans-
form. Correlation techniques such as in [9, 2] use polar
representations which enable rotation and scale invariance
matching. Although, the polar representation can unify ro-
tation and scale estimation, the translation component needs
to be estimated separately. Our method estimates transla-
tion, rotation, and scale simultaneously in the Cartesian co-
ordinates.

Although Lucas and Kanade [7] do not use the above im-
age structures, their method provides a unified framework
to simultaneously estimate translation, rotation, and scale
parameters. In their method, the objective function is set as

J =
∑
x

[Ir(Ax+ t)− Io(x)]
2

Figure 2. The relationship between a reference image and an ob-
served image. (a) Each observation pixel is the weighted sum of
reference pixels covered by the Gaussian window. (b) The obser-
vation image. (c) As the size of the Gaussian window G decreases,
the number of effective reference pixels in Ir(x, y) that are cov-
ered decreases.

where Ir and Io are the reference and observed image, re-
spectively. The Ax + t expresses the affine transforma-
tion of the two-dimensional coordinates of x. However,
this objective function does not consider the fact that when
the scale changes, the image intensity for the correspond-
ing pixels at x changes due to the difference in resolution.
Our method is related to [7] in that we also use non-linear
least squares to simultaneously estimate translation, rota-
tion, and scale parameters. However, we embed the scale-
space model into the objective function to handle images
with different resolution. As in [7], we assume that a rough
registration between the reference and observed image is
provided.

3. Image scaling model
Consider the problem of registering two images Io(x, y)

and Ir(x, y), defined by their pixel intensities at index
(x, y). We want to find the registration parameters that min-
imize the difference between Ir and Io. Depending on the
scale factor between these two images, Ir and Io may be in
different resolution. If we set Ir in a higher-resolution grid,
we can define a transformation from Ir(x, y) to Io(x, y) us-
ing a single scale parameter. This transformation can be
further generalized to incorporate translation and rotation
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parameters.

3.1. Image scale parameter

The relationship between the reference image and the ob-
served image can be defined by

Io(i, j) =
∑
x,y

G(x, y; i, j, s)Ir(x, y), (1)

where (x, y) represent the column and row indices of refer-
ence image Ir, and (i, j) are the column and row indices of
image Io. The scale parameter s determines the width of a
two-dimensional Gaussian kernel G

G(x, y;x0, y0, σ) =
1

2πσ2
e−

(x−x0)2+(y−y0)2

2σ2 , (2)

where σ is the standard deviation and (x0, y0) is the mean
vector. The model in equation (1) represents a single ob-
servation pixel as a weighted sum of all the pixels in the
reference image. This is illustrated in Figure 2.

For convenience, we assume that the pixel width and
height of the reference image Ir(x, y) are set to unit length.
Thus, if the observed image is scaled by a factor s rela-
tive to the reference image, an observed pixel will cover
a width of 1/s in the reference image. Since most of the
mass in a Gaussian density is contained within ±3σ, equat-
ing the observation pixel and the Gaussian window yields
6σ = 1/s. Therefore, the standard deviation σ can be ex-
pressed in terms of the scaling factor s as:

σ =
1

6s
. (3)

Assuming a rectangular image, the mean location of the
G(x, y; i, j, s) can be expressed in terms of the observed
image coordinates (i, j) and the observed image pixel width
1/s as [

x0

y0

]
=

[
x1 + (i− 1) 1s + 1

2s

y1 + (j − 1) 1s + 1
2s

]
(4)

where (x1, y1) are the left-top coordinates of the observed
image1. Substituting expressions (3) and (4) into the kernel
equation (2) yields

G(x, y; i, j, s) =
1

2π
(

1
6s

)2 e
− (x−x1− 2i−1

2s )
2
+(y−y1− 2j−1

2s )
2

2( 1
6s )

2

.

(5)
Although the model equation (5) is continuous, the refer-

ence image is discrete. For an observed image pixel Io(x, y)
to be a valid intensity, the Gaussian weights in equation (1)
need to sum up to 1. However, as shown in Figure 3(a), if

1If an m× n image is centered at the origin (0, 0), the left-top coordi-
nates are x1 = −m/2 and y1 = n/2.

Figure 3. A one-dimensional view of the continuous Gaussian
kernel on a discrete reference image. Only a few reference pixels
are covered by the Gaussian kernel in (a) whereas enough refer-
ence pixels are covered by the Gaussian kernel that the sum of
weights becomes close to 1.

Figure 4. The relationship between the reference image and obser-
vation image. The observed image is a scaled, rotated, and trans-
lated version of the reference image.

the number of reference pixels that is covered by the Gaus-
sian kernel is too small, the weights will not add up to 1.
Therefore, the reference image should be sufficiently up-
sampled as shown in Figure 3(b) so that σ is not too small.

3.2. Generalization to translation and rotation

As shown in Figure 4, the mean location (x0, y0) of the
Gaussian window can be affinely transformed by

[
x′
0

y′0

]
=

[
cos θ sin θ
sin θ cos θ

] [
x0

y0

]
+

[
tx
ty

]

where θ is the rotation parameter and tx and ty are the hori-
zontal and vertical translation. Therefore, we can generalize
equation (5) as

G(x, y; i, j, tx, ty, θ, s) =
1

2π
(

1
6s

)2 e
− (x−x′

0)2+(y−y′
0)2

2( 1
6s )

2

.

Finally, the model equation (1) for the reference image
and the observed image becomes

Io(i, j) =
∑
x,y

G(x, y; i, j, tx, ty, θ, s)Ir(x, y). (6)
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Io(1, 1) = G(1, 1; 1, 1,x)Ir(1, 1) +G(1, 2; 1, 1,x)Ir(1, 2) + · · ·+G(q, p; 1, 1,x)Ir(q, p)

Io(1, 2) = G(1, 1; 1, 2,x)Ir(1, 1) +G(1, 2; 1, 2,x)Ir(1, 2) + · · ·+G(q, p; 1, 2,x)Ir(q, p)

Io(1, 3) = G(1, 1; 1, 3,x)Ir(1, 1) +G(1, 2; 1, 3,x)Ir(1, 2) + · · ·+G(q, p; 1, 3,x)Ir(q, p) (7)
...

Io(n,m) = G(1, 1;n,m,x)Ir(1, 1) +G(1, 2;n,m,x)Ir(1, 2) + · · ·+G(q, p;n,m,x)Ir(q, p)

which, for a p× q reference image and an m× n observed
image, yields the system of equations (7), where the column
vector x denotes

x = [tx, ty, θ, s]
T .

4. Image registration algorithm
Given the model equation (6), image registration param-

eters (tx, ty, θ, s) are estimated through an iterative non-
linear least squares algorithm2. Namely, we seek to find
an estimate x̂ that minimizes the objective function

J =
1

2
[ỹ − g(x̂)]T [ỹ − g(x̂)]

where ỹ is the observed image in raster scan order and,
through equation (6), g(x̂) is a transformed image of the
reference image with registration parameters x̂.

An initial value xc for x̂ is required to start the estimation
process. We assume that a good initial estimate is provided.
For a given estimate xc, its goodness is computed by the
error term

∆yc = ỹ − g(xc)

and the Jacobian matrix, which expresses the linear change
of the predicted image at current state xc, is computed as

H =



∂g(1, 1)

∂x1

∣∣∣∣
xc

· · · ∂g(1, 1)

∂x4

∣∣∣∣
xc

∂g(1, 2)

∂x1

∣∣∣∣
xc

· · · ∂g(1, 2)

∂x4

∣∣∣∣
xc

...
. . .

...

∂g(n,m)

∂x1

∣∣∣∣
xc

· · · ∂g(n,m)

∂x4

∣∣∣∣
xc


,

where [x1, x2, x3, x4]T = [tx, ty, θ, s]
T . Once ∆yc and H

have been computed, the correction term, which gives the
minimum error by the weighted least squares solution [3],
can be expressed as:

∆x = (HTWH)−1HTW∆yc

2Note that although the weights G(x, y) are linear in equation (7), the
registration parameters tx, ty , θ, and s are non-linear terms.

Figure 5. Reference (a) and observed image patch (b). The ob-
served patch was obtained by down-sampling the 512×512 refer-
ence image by a factor of 0.1 followed by cropping. The observed
image is 15× 15.

where the weight matrix W allows us to emphasize certain
observed pixels. As an example, if the region of interest
we seek to register does not occupy the whole image, the
weight matrix can be used as a mask. For the experiment
in this study, we use an identity matrix which puts equal
weight to each observed pixel.

With the correction term ∆x, the current state estimate
xc is iteratively updated by

xc = xc + ∆x.

The iterative process continues until a stopping condition
is satisfied or after a fixed number of iteration is reached [3].
As an example, if the predicted residual at each iteration i
is defined by

Ji = ∆yT
c W∆yc,

the stopping criteria is given by

|Ji − Ji−1|
Ji

<
ε

‖W‖
,

where ε is a small value that determines the tolerance.

5. Experimental results
We will demonstrate the proposed technique on two case

studies that require simultaneous estimation of translation,
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Figure 6. The ground-truth position of the observed image (blue)
and its updated positions at the 10th and 20th iterations (red). In this
case, the initial position starts with a 20% error (by multiplying 0.8
to the ground-truth values) for each registration parameter.

rotation, and scale parameters between two images with dif-
ferent resolution. For the first case study, we generate an
observed image by scaling, rotating, and translating the ref-
erence image. This allows us to compare registration re-
sults against ground truth. For the second study, we use two
aerial images captured at different times and use one for the
observed image and the other for the reference image.

5.1. Simulated problem

We will illustrate the performance of the method on two
image registration scenarios: (1) when the observed image
has lower resolution than the reference image, and (2) when
both images are in low-resolution. Figure 5 shows the ref-
erence and observed images. To provide an initial estimate,
the observed image is manually positioned on the reference
image.3 Then the observed image was iteratively registered
on the reference image that was upsampled by a factor of
2 using bicubic interpolation. The upsampling was applied
so that the sum of the reference pixel weights covered by
the Gaussian kernel approaches 1 (Figure 3). Registration
results are shown in Figures 6 and 7; given a rough initial
registration, the proposed method finds the correct registra-

3The initial estimates can be obtained from other image processing
steps by using an automatic detection system. Our method can be used
to perform finer registration.

Figure 7. Estimated values for translation (x-shift, y-shift), rota-
tion, and scale in each iteration (blue). The ground-truth values
were tx = 50, ty = 50, θ = −30, s = 0.1 (red). The initial
estimate starts with a 20% error for each registration parameter.

tion parameters.
For a quantitative evaluation of our method, we mea-

sured the number of registration successes in 300 trials for
eight different configurations (Figure 8). Thus, there were
300 × 8 = 2, 400 trials in total. Figure 5(a) was set as
the reference image, and for each trial, an observed image
was cropped from the reference image at random locations
and scaled by a factor of 0.1. Registration was performed
after displacing the observed image from its true position
by adding random translation, rotation, and scale. For each
configuration, the amount of displacement was increased to
make the registration increasingly difficult. The displace-
ment added for each configuration was within 0, ±5, ±10,
±15, ±20, ±25, ±30, and ±35 for x-y translation and rota-
tion. The scale factor was randomly initialized between 0.5
and 1.0 for all configurations. Figure 8 shows registration
performance as a function of level of difficulty. In the first
configuration, out of 300 trials, 80(26.67%) failed to con-
verge to the true position while 198(66%) failed for the last
configuration.

Figure 9 shows the two low-resolution images for the
second scenario. In this case, both images had the same
size but were generated with slightly different translation,
rotation, and scaling. The reference and observed images
were generated by downsampling the 512 × 512 image in
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Figure 8. The number of successful registrations for eight different
configurations. We defined success as x-y translation error less
than 3 pixels, rotation error less than 1 degree, and scale error less
than 0.01. The performance decreases as the registration problem
becomes more difficult.

Figure 9. Reference (a) and observed image (b). Both images
were obtained by down-sampling the 512×512 original image by
a factor of 0.1 and 0.15, respectively, followed by cropping. Both
images are 22× 22.

Figure 5(a). The observed image was manually positioned
on the reference image for initialization. Then the observed
image was iteratively registered on the reference image that
was upsampled by a factor of 50 using bicubic interpolation.
We used a larger scaling factor for upsampling compared to
the previous scenario since the reference image was in lower
resolution. The registration process is shown in Figures 10
and 11; with a rough initial estimate, the proposed method
is able to find the correct registration parameters. The re-
sults show that our method can simultaneously estimate the
sub-pixel level changes in translation, rotation, and scale
between the two images.

5.2. Real problem

Finally, we applied the method to register two aerial im-
ages taken at different instances. The two images are shown
in Figure 12. As before, we manually registered the ob-

Figure 10. Ground-truth position (blue) and updated estimates
of the observed image at the 10th, 20th, and 30th iterations (red).
Ground-truth values were tx = 0.5, ty = 0.5, θ = −2.5,
s = 1.05. The initial position starts with a 40% error for each
registration parameter.

served image to the reference image to give a rough initial
estimate.4 Then, we applied the image registration method
to update the estimates. Two estimation runs are shown:
in the first run (Figure 13) the initial scale factor is larger
than the true scale; in the second run (Figure 14), the initial
scale factor is smaller than the true scale and the observation
image was rotated differently. During the estimation pro-
cess, the x-y translation, rotation, and scale parameters of
the observed image were updated simultaneously. The re-
sults show that the proposed technique can match the aerial
images with different initializations.

4For this particular domain, initial registration estimates for the two
images can be obtained from GPS on an airborne sensor.
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Figure 11. Estimated values for x-shift, y-shift, rotation, and scale
in each iteration (blue). Ground-truth values were tx = 0.5, ty =
0.5, θ = −2.5, s = 1.05 (red). The initial estimate starts with a
40% error for each registration parameter.

Figure 12. The reference (a) and observed image (b). The ob-
served image is a downscaled and cropped version of the original
image. The downscaling was applied to change the scale factor be-
tween the two original images. The example images are Landsat 7
images from the U.S. Geological Survey.

6. Conclusions

In this paper, we presented an image registration tech-
nique that can estimate translation, rotation, and scale in a
unified manner and also take into account resolution differ-
ences caused by scaling. By assuming images are rectangu-
lar, we defined a scale-space model that relates the reference

image and the observed image with a single scale parameter.
This scale-space model is easily generalized to handle trans-
lation and rotation. The proposed model is embedded into
a non-linear least squares method for simultaneous transla-
tion, rotation, and scale estimation.

Although the proposed area-based image registration
technique can be used as a general image registration tool, it
can be especially useful for low-resolution image registra-
tion, where salient feature points are difficult to extract ac-
curately. Such situations occur in super-resolution problems
where sub-pixel accuracy alignment is required. Future re-
search will involve studies on the performance metrics of
the proposed registration method to improve convergence
speed and accuracy.
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Figure 13. The updated estimates of the observed image position
(red). The initial position starts from tx = −40, ty = 130, θ =
20, s = 1.7. The estimates at certain iterations are shown. The
estimation eventually converges and the observed image matches
the reference image.

Figure 14. The updated estimates of the observed image position
(red). The initial position starts from tx = −110, ty = 150, θ =
−10, s = 0.8. The estimates at certain iterations are shown. The
estimation eventually converges and the observed image matches
the reference image.


