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ABSTRACT
Registration between low-resolution images is a crucial step in
super-resolution. Conventional methods tend to separate scale esti-
mation from translation and rotation estimation. This is because the
scale parameter is inherently related to the image resolution. In this
paper, we present an area-based image registration technique that
can simultaneously estimate translation, rotation, and scale parame-
ters and also take into account differences in resolution between two
images. We first develop a scale-space model that relates each refer-
ence pixel to a single observation pixel with a scale parameter. This
model is then easily generalized to include x-y shift and rotation
parameters. By integrating the scale-space model into a non-linear
least squares method, the method can iteratively estimate the trans-
formation (x-y shift, rotation, and scale) in an accurate and efficient
manner. We compare our proposed scale-space integrated Lucas-
Kanade’s method (SILK) against Lucas-Kanade’s optical flow and
scale-invariant feature transform (SIFT) matching and show that
our method is suitable for super-resolution from very low resolution
image sequences.

Index Terms— Image registration, super-resolution, scale-
space, non-linear least squares

1. INTRODUCTION

Image registration is a crucial step in a variety of computer vi-
sion tasks, from image stitching to object recognition and super-
resolution (SR). In general, registration aims to align two images
(the reference image and the observed image) by estimating transla-
tion, rotation, and scale. Mainly two image registration approaches
exist: feature-based and area-based methods; the former tries to
align images using local features, whereas the latter uses the whole
image region [1]. Classical examples of each approach are scale-
invariant feature transform (SIFT) matching [2] and Lucas-Kanade’s
(LK) method [3], respectively.

In SIFT matching, scale-invariant local features are extracted
from the two images using a scale-space model [4] and then cor-
responding features are matched. The advantages of SIFT are that it
can register images with high disparity and that it is robust to occlu-
sion. However, if the image region is small, as is the case of very low
resolution images, SIFT becomes problematic since the images will
not contain enough features to be matched. SIFT is also computa-
tionally intensive because it first builds an explicit image pyramid [5]
structure, which approximates the scale-space, by downscaling the
images and then estimates scale changes at every level. In case of
a video, where neighbouring frames have similar scale, estimating
scale changes at every level becomes unnecessary. Also, since fea-
ture matching is usually followed by RANSAC [6], to reject outlier
correspondences, the computational load will increase.

On the other hand, the LK method jointly optimizes the affine
registration parameters with an area-based approach. The advantage
of this method is that it can efficiently register images by searching in
the gradient direction and that it avoids the feature correspondence
problem by using the whole image. In the LK method, the rela-
tionship between the reference image Ir and observed image Io is
expressed as

Io(x) = Ir(w(x;p)) , (1)

where w(x;p) warps the two-dimensional coordinate x with affine
transformation parameters p [7]. The algorithm iteratively estimates
p by minimizing ‖Io(x) − Ir(w(x;p))‖2. A drawback of this ap-
proach, however, is that equation (1) does not consider changes in
image intensity as in SIFT, which occur when the scale changes (i.e.,
due to image resolution) [8].

Motivated by the limitation of these two classical problems
when dealing with LR video, we present an image registration tech-
nique for SR that integrates the scale-space model of SIFT into the
LK framework; this is achieved by embedding the Gaussian kernels
used in the scale-space model into a non-linear least squares esti-
mation. We adopt the area-based approach since the method has
to work on very small image regions without many features, while
the scale-space model is adopted to handle scale changes correctly.
Additionally, the non-linear least squares framework allows us to
avoid building a predetermined pyramid structure and compares the
two images only at the scale levels selected by the gradient direction.
Thus, the method has the efficiency of LK and can simultaneously
estimate sub-pixel translation, rotation, and scale while still address-
ing the resolution issue of equation (1). Though the latter issue
can be somewhat alleviated by interpolation or smoothing, our ap-
proach handles this issue naturally by explicitly relating the image
scale to image resolution. This allows the method to automatically
smooth and downsample (anti-alias) correctly in scale-space for
each iteration update.

Relation to prior work: Our work is related to SR registration
methods based on the LK algorithm. One of the earliest algorithms
was proposed by Keren et al. [9]. To obtain high-accuracy sub-pixel
motion, the authors developed a spatial domain technique that it-
eratively estimates translation and rotation. The classical work by
Irani and Peleg [10] also applied this registration method and used
a back-projection kernel to update the SR image. Recently, Costa
et al. [11] examined the effect of registration errors under x-y trans-
lation using the LK method; the authors show that some degree of
registration errors can be advantageous for SR since they provide
some degree of regularization. These previous studies, however, do
not consider the pixel intensities affected by image resolution and
scale; which our proposed method takes into account. Besides the
LK registration, SIFT matching has also been used recently for SR
registration. Vrigkas et al. [12] have used SIFT matching to esti-
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mate registration parameters and generate higher-resolution images
using mutual information. Ferreira et al. [13] present an example-
based video super-resolution method with mixed-resolution image
sequences. However, the images used in these studies are of suffi-
cient resolution to contain many features. In contrast, our aim is to
super-resolve images with a small image size with very low reso-
lution, where a 2-fold increase in resolution can have a significant
impact.

This paper is organized as follows. Section 2 describes the pro-
posed model for simultaneous estimation of scale, translation and
rotation parameters; the method relates a reference image to an ob-
served image with a single scale parameter and incorporates trans-
lation and rotation parameters. Section 3 describes how registration
parameters are estimated using non-linear least squares. Experimen-
tal results on simulated and real data are shown in section 4. We
conclude this study and provide future work in section 5.

2. THE IMAGE MODEL

Consider the problem of registering two images Io(x, y) and
Ir(x, y), defined by their pixel intensities at index (x, y). Namely,
we wish to find the registration parameters tx, ty , θ, and s that
minimize the difference between Ir and Io where (tx, ty) is the x-y
translation, θ is the rotation angle, and s is the scale factor.

The scale factor between Ir and Io determines the inherent im-
age resolution. The relationship between these two images can be
expressed as

Io(i, j) =
∑
x,y

G(x, y; i, j, s)Ir(x, y) , (2)

where (x, y) are the indices of reference image Ir , and (i, j) are the
indices of image Io, and the scale parameter s determines the width
of a two-dimensional Gaussian kernel G:

G(x, y;xm, ym, σ) =
1

2πσ2
e
− (x−xm)2+(y−ym)2

2σ2 , (3)

where σ is the standard deviation and (xm, ym) is the mean vec-
tor. By using a Gaussian kernel, we ensure that the number of local
extrema of image intensity does not increase at coarser levels [4].
The model in equation (2) represents a single observation pixel as a
weighted sum of all the pixels in the reference image.

For convenience, we assume that the pixel width and height of
the reference image Ir(x, y) are set to unit length. Thus, if the ob-
served image is scaled by a factor s relative to the reference image,
an observed pixel will cover a width of 1/s in the reference image.
Since most of the mass in a Gaussian density is contained within
±3σ, equating the observation pixel and the Gaussian window yields
6σ = 1/s. Therefore, the standard deviation σ can be expressed in
terms of the scaling factor s as σ = 1/(6s).

The mean location of the kernelG(x, y; i, j, s) can be expressed
in terms of the observed image coordinates (i, j) and the observed
image pixel width 1/s as[

xm
ym

]
=

[
xo + (i− 1)/s+ 1/(2s)
yo + (j − 1)/s+ 1/(2s)

]
, (4)

where (xo, yo) are the coordinates of the image origin of the ob-
served image. Substituting expressions σ and (xm, ym) in the kernel
equation (3) yields

G(x, y; i, j, s) =
1

2π
(

1
6s

)2 e−
(x−xo− 2i−1

2s )2+(y−yo− 2j−1
2s )2

2( 1
6s )2 .

(5)

The above equation expresses the Gaussian weights as a function
of the observation pixel locations and scale parameter. Therefore,
when combined with equation (2) we are able to relate Ir and Io
with a single scale parameter s. More importantly, because the scale
parameter is a continuous variable, the observed image Io can be
simulated at any scale in the scale-space of the reference image Ir .
When compared to equation (1), though, the scale parameter is no
longer linear as in the transformation w(x;p).

In order to generalize equation (2), translation and rotation pa-
rameters tx, ty , and θ are incorporated into the Gaussian kernel mean
location. The mean location (xm, ym) of the Gaussian window can
be transformed by[

x′m
y′m

]
=

[
cos θ sin θ
− sin θ cos θ

] [
xm
ym

]
+

[
tx
ty

]
. (6)

Therefore, we can generalize equation (5) as

G(x, y; i, j, tx, ty, θ, s) =
1

2π
(

1
6s

)2 e− (x−x′m)2+(y−y′m)2

2( 1
6s )2 . (7)

Finally, the model equation (2) for the reference image and the ob-
served image becomes

Io(i, j) =
∑
x,y

G(x, y; i, j, tx, ty, θ, s)Ir(x, y) . (8)

As in equation (5), the translation and rotation parameters are no
longer linear terms. In contrast with the previous models, though,
equation (8) allows us to take into account the physical effects of the
scale parameter when representing each observed pixel Io(i, j) as a
weighted sum of the reference pixels Ir(x, y).

3. IMAGE REGISTRATION ALGORITHM

Since the registration parameters tx, ty , θ, and s are non-linear terms
of the model equation (8), we estimate them by non-linear least-
squares using Gauss-Newton method [14]. Namely, we wish to find
an estimate p̂ that minimizes the objective function

J =
1

2
[ỹ − f(p̂)]TW [ỹ − f(p̂)] , (9)

where ỹ is the observed image in raster scan order and f(p̂) is a
transformed image of the reference image with registration parame-
ters p̂; i.e., f(p̂) is obtained from equation (8). The weight matrix
W in equation (9) allows us to emphasize certain observation pixels.
For the experiment in this study, we use an identity matrix, which
puts equal weight to each observed pixel.

An initial value pc for p̂ is required to start the estimation pro-
cess. Since adjacent frames are close to each other, we assume that
a good initial estimate between the reference and observed image is
provided. For a given estimate pc, its goodness is computed by the
error term ∆yc = ỹ − f(pc). The Jacobian matrix ∂f

∂p
, which ex-

presses the linear change of the predicted image at current state pc,
is computed as

∂f

∂p
=



∂f1
∂p1

∣∣∣∣
pc

· · · ∂f1
∂p4

∣∣∣∣
pc

...
. . .

...

∂fm
∂p1

∣∣∣∣
pc

· · · ∂fm
∂p4

∣∣∣∣
pc


, (10)
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where [p1, p2, p3, p4]T = [tx, ty, θ, s]
T and m is the number of ob-

servation pixels. Once ∆yc and ∂f
∂p

have been computed, the cor-
rection term can be expressed as:

∆p =

[(
∂f

∂p

)T

W

(
∂f

∂p

)]−1(
∂f

∂p

)T

W∆yc . (11)

Once the correction term ∆p has been calculated, the current
state estimate pc is updated as pc = pc + ∆p. The above pro-
cess continues iteratively until the maximum number of iterations is
reached or when the stopping criteria given by |Ji−Ji−1|

Ji
< ε
‖W‖

is satisfied, where Ji = ∆yT
c W∆yc is the predicted residual at the

i-th iteration and ε is a small value that determines the tolerance [14].
How does the proposed update equation compare to the LK

method? In the original LK algorithm, the parameter p is updated
according to:

∆p =

[∑
x

(
∇Ir

∂w

∂p

)T (
∇Ir

∂w

∂p

)]−1∑
x

(
∇Ir

∂w

∂p

)
∆yc ,

(12)
where ∆yc = Io(x)−Ir(w(x;pc)). When compared to our update
equation (11), the LK update in equation (12) multiplies the gradient
image ∇Ir = ( ∂Ir

∂x
, ∂Ir

∂y
) with the Jacobian warp to compute the

steepest descent image ∇Ir ∂w
∂p

. The LK update has the advantage
that the gradient image is computed only once, and only the Jaco-
bian warp needs to be computed in each iteration. However, the LK
model does not correctly represent how the images are affected by
scale changes. Instead of using only the gradient image ∇Ir in the
x-y directions, our method directly computes the gradient ∂f

∂p
with

respect to x-y translation, rotation, and scale in scale-space.
To compare the computational cost with LK, assume n registra-

tion parameters and an image Io of size m. For each iteration, the
computational complexity of computing ∇Ir ∂w

∂p
in equation (12) is

O(mn) [7]. In our proposed method, when the Gaussian kernel size
is k at an iteration, the algorithm will take timeO(kmn) to compute
∂f
∂p

according to equation (10).

4. EXPERIMENTAL RESULTS

We tested our proposed method on registering LR license-plate im-
ages. The registered images were then used for SR. We first demon-
strate the proposed technique on synthetic sequences of LR frames
where the ground-truth is known. Then we use real image sequences
to generate SR images. For each experiment, we compared our pro-
posed method against both LK optical flow and SIFT matching. The
LK optical flow implementation in OpenCV [15] and Lowe’s SIFT
implementation1 [16] were used for comparison.

4.1. Synthetic image sequences

For the simulated experiment, we use the 91 images in the license-
plate category of the Caltech-256 [17] dataset. We manually cropped
the license-plate regions from each image and generated 100 LR
frames for each sequence by applying translation, rotation, and
scale. For translation, the x-y translation followed a spiral trajectory
(x, y) = (at cos(2t), at sin(2t)) where a is the amplitude and t is
the frame index. Throughout the frame sequence, the license-plate
moved within ±2 pixels in the LR domain. For rotation, a random

1http://www.cs.ubc.ca/∼lowe/keypoints/
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Fig. 1. RMS error between ground-truth and estimated param-
eters for the three synthesized sequences: (a) translation only, (b)
translation and rotation, (c) translation, rotation, and scale. For each
scenario, SIFT includes only (a) 18%, (b) 11%, and (c) 10% of the
91 image sequences.

value within ±5 degrees was applied to each frame. The downscal-
ing was performed by pixel averaging (as described in [18]) so that
each LR sequence was no greater than 40x40 pixels.

We illustrate the performance of the method on three image reg-
istration scenarios: image sequences with (1) x-y translation only,
(2) x-y translation and rotation, and (3) x-y translation, rotation,
and scaling. For the LK optical flow method, we used a 3x3 kernel
to smooth the images beforehand so that the method does not suffer
from aliasing effects, and we used a 7x7 window to compute the flow
vectors [19]. After computing the dense optical flow of LK, we esti-
mate the global transformation using the flow vectors. Our proposed
method did not require any manual smoothing and worked directly
on the images.

Fig. 1 shows the root-mean-square (RMS) error of the length√
t2x + t2y between the ground-truth and estimated parameters

(tx, ty). In particular, these results indicate that the LK optical
flow method can work relatively well when there is only transla-
tion. However, as rotation and scale changes are introduced, the LK
optical flow becomes less accurate. In addition, and as shown in
Fig. 1(b) and (c), registration errors of the LK optical flow can be
more than a pixel wide, when sub-pixel accuracy is required for SR.
Although SIFT matching appears to be able to effectively estimate
the registration in each scenario, Fig. 1 only includes the cases when
SIFT was able to find more than 5 feature matches between the ref-
erence and observed images. Overall, SILK is almost always more
accurate than SIFT matching unless SIFT can find enough features,
in which case both algorithms perform comparably.

We also compared SIFT and SILK in terms of run time; although
SIFT is known to be computationally intensive for typical sizes of
images, our experiment involves only a small image region. Results
are summarized in Fig. 2, which shows the average run time over
the 9 image sequences in the third scenario of Fig. 1(c) (translation,
rotation, and scale). On a dual-core 2.6GHz processor with 6MB
cache, SIFT takes an average of 0.20 seconds per frame. In contrast,
our method takes 0.08 seconds per frame or twice as fast as the SIFT
feature extraction. However, because SILK uses a gradient search,
the registration requires more iterations as the images become more
separated, as shown in Fig. 2.

Finally, we compared the three algorithms in terms of their abil-
ity to produce accurate registrations for SR. Namely, given the es-
timated registration data from each image sequence, we construct a
linear system y = Hx as in [20] where x is the unknown high-
resolution pixels and H is the weight matrix that relates the high-
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Fig. 2. Speed comparison between SIFT keypoint detection and
SILK. Each data point represents the average run time of the third
scenario in Fig. 1(c). As shown, SIFT keypoint detection takes ap-
proximately constant time for each image. In contrast, registration
time for SILK depends on the number of iterations performed for
each image match.

resolution pixels to the observation pixels y. Since the matrix H is
sparse, we use LSQR [21] to super-resolve the reference image [22].
Fig. 3 shows some examples of the super-resolved images. The SR
results are consistent with the previous plots: (1) LK performs well
when there is only translation, and (2) SIFT is robust to rotation and
scale.

Fig. 3. SR results from synthetic sequences of images; the image
sequence was obtained by applying the three transformation scenar-
ios shown in Fig. 1. The reference image (rightmost) was super-
resolved after aligning the frame sequence. For each sample, the
row corresponds to each scenario: (a) translation only (b) transla-
tion and rotation (c) translation, rotation, and scale. The first three
columns show the reconstruction results from LK optical flow, SIFT
matching, and SILK. The fourth column shows the SR result with
ground-truth alignment.

4.2. Real image sequences

For our second experiment, we applied the method to register real
LR image sequences. We used a web-camera and captured a video
of stationary cars from a distance so that the text on the license-plate
would be difficult to read. The license-plate regions were smaller

Fig. 4. SR results from registration parameters of real image se-
quences. The reference image (a) is reconstructed using (b) LK opti-
cal flow, (c) SIFT matching, and (d) proposed SILK. Column (e) are
the verification images. For each sample sequence, SIFT was able to
match 16, 5, and 3 frames out of 300 frames.

than a 20x40 image; see Fig. 4. The web-camera was hand held so
that a jittering motion could be applied. For each sample sequence,
we captured 300 frames. We also took an image of the license plate
at a closer distance to verify the characters on the license plate after
super-resolving an image.

The same image fusion method was used as in the previous ex-
periment for SR. Reconstruction results are shown in Fig. 4. Af-
ter registering the LR images with SILK, we were able to obtain a
super-resolved image where the characters on the license-plate be-
come readable. In contrast, SIFT matching failed to find enough
features for most of the frames; less than 6% of the frames had more
than 5 matches). As shown in the figure, LK optical flow gave poor
reconstruction results as well.

5. CONCLUSIONS

In this paper, we have presented an image registration technique
(SILK) that can simultaneously estimate translation, rotation, and
scale between images and also take into account intensity differ-
ences caused by discretization. Compared to SIFT matching, our
method assumes that a rough initial estimate is given. However, our
method can estimate scale changes as accurately as SIFT and more
efficiently in the continuous scale-space. Compared to the original
LK method, the improvements in accuracy comes at the price of
higher computational complexity; however, when run on LR image
regions (e.g., 40x40) the algorithm can run at frame rates on a con-
temporary office workstation. Our experimental results show that
SILK can outperform LK optical flow and SIFT matching for the
purpose of SR from very low resolution image sequence when trans-
lation, rotation, and scaling are present. Our future work will involve
extending our method to use a coarse-to-fine strategy to avoid local
minima and develop performance metrics of the proposed registra-
tion method.
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