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ABSTRACT - An approach to global self-localization for
autonomous mobile robots has been developed using self-
organizing Kohonen neural networks. This approach
categorizes discrete regions of space using mapped sonar
data corrupted by noise of varied sources and ranges. Our
approach is similar to optical character recognition (OCR)
in that the mapped sonar data can, over time, assume the
form of a character unique to that room. Hence, it is
believed that an autonomous vehicle can be capable of
determining which room it is in based on mapped.sensory
data ascertained by wandering through and exploring that
room. With some pre-processing and a robust explore
routine, the solution becomes time-, translation- and
rotation-invariant.

1 Introduction

Can a robot determine which region of space it is in
without knowing how it got there? To date a significant
amount of work has been devoted to developing low-level
self-localization approaches for autonomous mobile robots.
These approaches depend on prior dead reckoning estimates
and discrete-time models that iteratively rationalize and
correct robot position and orientation based on correlations
between predicted and actual sensor data [4, 5, 7, 11, 18-22,
27-29]. But, without an initial reliable position estimate,
even the most reliable techniques can become ineffective.

The objective of this research is to endow autonomous
mobile robots with the ability to perform self-localization on
a global level. That is, the robot should be able to use
sensor data to determine which region of indoor space it is
in. See figure 1. Since most indoor environments can be
easily segmented into rooms, different room sizes and
configurations will define discrete regions of space. Hence,
the global self-localizer is expected to identify features
unique to a room and classify any sensor-based data set
according to its level of similarity to memorized rooms.

1.1 Time-, Translation- and Rotation-Invariance

To be truly robust, a global self-localization (GSL)
technique should have the following characteristics. First, it
should be time-invariant for the simple reason that no two
robots will explore a room the same way. In fact, a single
robot will likely not follow the same trajectory each time.
Second, it should be translation-invariant because the robot
does not know the actual global coordinates of the region of
space it is in, much less the sensor data it collects. Third, it
should be rotation-invariant because, through the course of
becoming lost, a robot can also become disoriented.
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Figure 1. Geometric rooms, mapped sonar data and mature
Kohonen node configurations.
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1.2 Self-Organizing Kohonen Neural Networks

Several applications of solving the optical character
recognition (OCR) problem with neural networks have been
investigated [10, 12, 13, 25, 26, 30, 33, 34]. In this
application, a Kohonen neural network recognizes the room
character associated with a particular room. The Kohonen
neural net is known for its abilities to perform classification,
recognition, data compression and association in an
unsupervised manner [14, 30, 34]. That is, the Kohonen
requires no a priori knowledge of a sensor data point’s
affiliation to a particular feature. All that must be estimated
beforehand is the maximum expected number of features
(neurons) per room. When a Kohonen is mature, the point
density of the weight vectors approximate the probability
distribution of the input space [17].

2 The Domain

We assume the environment to be in R> space.
Specifically, as a robot wanders autonomously or is
manually driven around a room, its sensor data is mapped to
a two-dimensional plane. Since ultrasonic sensors seem to
be the sensor of choice for autonomous and semi-
autonomous vehicles, it is felt that the sensor used for
extracting feature information should also be the ultrasonic
sensor [1, 2, 6, 9, 23, 24, 31].

2.1 The Autonomous Mobile Robot Simulation

Given that the simulation described in [18-22] has
proven accurate at modeling both sonar and robot behavior
and that it provides a graphical display essential to
understanding each step of solving this problem, it was
considered a suitable platform for creating training sets and
test sets. The simulated sonar models are based on work
done by Kuc [23], Moravec [31] and Barshan [2] as well as
information provided by Polaroid [32] and Cybermotion [8].

Also, the simulation can ensure that the 160 training
sets and 180 test sets could be created in a timely fashion
and without the risk of harming either the robot or the
environment. Furthermore, the simulation can guarantee
that no furniture is radically rearranged through the course
of creating the training and test sets. Finally, the simulation
can track both the robot’s dead reckoning coordinates (i.e.,
where the robot thinks it is) and the robot’s actual
coordinates (i.e., where the robot really is) without needing
someone to physically measure and/or estimate the true
location of the real robot.

2.2 Room Character Generation

A room’s unique character is created by clouds of sonar
data points collected and mapped by the robot in its travels
through the region. Typically, these clouds are clustered
near the geometric beacon surfaces encountered by the sonar
windows. With a single-transducer sonar it is difficult to
know from a TOF reading the specific point that produced
an echo because sonars sample a region. Hence, we assume
that each sonar reading occurs along the axis normal to its
transducer (X5 =0, Y§ = TOF). To map the TOF reading,

the point is transformed from the sonar frame to the global
frame. TOF readings are mapped according to where the
robot thinks it is (i.e., dead reckoning).

2.2.1 Sonar Corruption. Sonar readings are inherently
corrupted by noise. So, “to represent the random errors in
an adequate manner for a properly controlled experiment”, a
60 gaussian corruption function is applied to all TOF
readings calculated by the simulation [16]. Specifically, for
a calculated TOF distance, R, C; is a user-specified

variable in the closed interval C; €[0,1] that defines the
range of noisy readings by R,,,. See figure 2.
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Figure 2. Simulated sonar reading corrupted by white
Gaussian noise.

2.2.2 Trajectory Corruption. The very motivation for
developing low-level sensor-based self-localization
techniques stems from the fact that true mobile robot dead
reckoning (from odometers, inertial navigation systems,
etc.) grows more and more unreliable with each bump in the
floor and turn of the robot. That is, where the robot thinks it
is might not be where it actually is. To simulate this
phenomenon, a user-defined random Gaussian trajectory
corruption is induced as shown in figure 3.

g
Figure 3. Robot trajectory corrupted by noise.

A 60 gaussian corruption function is applied to all
robot rotations and translations. Rotation corruption is

limited to the closed interval C; e[-7, 7] and is specified

505



by the user to define the range of potential noise added to
each turn. Translation corruption is a variable on the closed

interval C; €[-1,1] and is also specified by the user to
define the range of potential noise added to each translation.
Figure 4 shows mapped sonar data from a simulated robot
subjected to different degrees and types of corruption.
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Figure 4. Room charactera) C; =0, +C; =00, C, =0; b)
C, =0, £C7 =189, C, = 10%;¢) C, = 15%, +C° =09,
C,=0; d) C, =15%, +C° =189, C, = 10%.

3 Strategy

A Kohonen neural network will organize a 21x21
mesh of cluster centers to represent the maximum potential
441 features each room is assumed to contain. While
training, the Kohonen will make a record of the frequency
with which each neuron fires to be used later in pruning
redundant and/or deceptive cluster centers. To test the
capabilities of the mature Kohonen, test data sets are
collected by the simulated robot as it autonomously drives
around the room. Generality will be tested by allowing test
data corruption ranges to be larger than those used for
training. Three pre-processing operations will be applied to
the Kohonen to reduce the probability of misclassification.

3.1 Training and Testing Data

In a realistic setting, a robot can collect data while
either being manually driven around the room (manual
teaching) or autonomously driving through certain sections
of the room while carrying out other tasks. Trajectories and
explored features vary from data set to data set. However,
one extremely important requirement of collecting training
and testing data is that the robot explore (what it might
perceive to be) the southwest extremes of each room. This
aspect helps make the GSL problem translation-
independent. That is, to transpose the mapped sonar data as
close to the Kohonen origin as possible, we need mapped
data that reflects minimum x- and minimum y-coordinate
values (west and south respectively) a room might have.

3.2 Winner-Take-All Learning
The procedures followed in both training and recall of
the Kohonen neural networks are fairly standard. Our

Kohonen network consists of a 21X 21 node network. The
Euclidean distance from each data point X to all of the
Kohonen nodes Wj; (for i,j=1,2,...21) is calculated. A

Kohonen node is determined to be the winner Ww if
F-Tol= mn (F-Wl) o
i,j=1,2,..21

W, and its neighbors W N, are then updated based on the
learning rate 7], and the nieghborhood size N, for a given
epoch €. Our learning rate, initially 7,=0.5, is linearly

reduced as the Kohonen matures during training to a value
of 1,=0.01 atepoch &p,,=200.

Mo—1
Me = (——— L ]s =1, @
Emax
The update rule for the winning node is
Wit =W + nE[Y-W’,‘V] 3)

The neighbors of the winning node are also updated.
Our learning rate for neighbors of the winning node is based
on the index distance B from the winning node.

B
v =(7¢)(0.7) @
The update rule for neighboring nodes is
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Figure 5. (a) Geometric map and (b) Node mesh at £=0,
(©)£=30,(d) £=50, (e) £ =100, (f) £ = 150and (g) Emay -
(h) mature Kohonen’s cluster centers.
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As the Kohonen trains, neighborhood size is gradually
reduced. For the first 40% of our training the neighborhood
size is a 5X 5 window centered over W,,. Then for the
next 40% of training the neighborhood size is reduced to a
3x3 window During the final 20% of training only the
winning node is updated. Stop training is based on
convergence and €p,,=200. See figure 5.

3.4 Recall

Testing the capabilities of this Kohonen-based global
self-localization approach is a matter of presenting newly
acquired room data to all the mature Kohonens. Recall is
simply a summation X, of the Euclidean distances

between each data point from the r™ data set and the
nearest neuron from the k" mature room Kohonen. The
resulting ¥, is a measure of the match between the room
data that has just been collected and the mature Kohonen
that represents a particular room in memory. The X,
measures for all the mature Kohonens are then compared to
find the minimum. A Kohonen node mesh is determined to
be the winner, ¥, if it satisfies

k=1,r2r?.t.1kmu{2’k J

3 =
The room w that corresponds to Y., represents the room
that the robot concludes it is currently in. Said differently, if
the Kohonen belonging to room w yields the lowest summed
Euclidean distance 2.,; (for k = 1, 2,... kypay ) With test data
set r, then the test data in question will be classified as
belonging to room w.

©

3.5 Pre-Processing

Four pre-processing procedures are implemented in this
research. First, gross shifting is used in all phases of testing
to approximate a translationally-invariant problem space.
Second, fine shifting (incrementally shifting the Kohonen
and test data set about each other until a best fit is achieved)
is used to reduce misclassifications. Third, we assess the
value of pruning Kohonen neurons that are deemed
redundant by not being activated in the latter stages of
training. That is, we make unavailable to the test data points
the neurons whose in-training firing frequency is zero.
Fourth, we prune Kohonen nodes whose in-training firing
frequency is less than 0.05% of number training data points.

3.5.1 Gross Shifting. The first step to translation-
invariance involves gross shifting. This pre-processing
procedure crudely attempts to fit a test data set arbitrarily
placed in 2D space to a Kohonen node mesh, also arbitrarily
placed in 2D space. As figure 6 shows, minimum x- and y-
values of the data and Kohonen are subtracted from all data
points, to transpose both to a common reference frame
origin. While this translation takes care of the major portion
of the translation-invariance problem, it can be seen that a
single outlier in either the x- or y-direction can hinder a
sound fit between Kohonen and data set. Hence, X, can

unjustifiably increase and ultimately cause misclassification.
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Figure 6. Gross shifting a Kohonen mesh (arbitrarily
placed in 2D space) to a room character data set (also

arbitrarily placed in 2D space).

3.5.2 Fine Shifting. We now need to resolve the less
pronounced offset between the Kohonen and the room
character test data set that resulted from gross shifting.
With the minimum x- and y-values of the room data
translated to the global origin, the Kohonen is then finely
shifted about the data set to find the best fit. That is, we
incrementally move each mature Kohonen mesh about the
room data and search for the best fit with respect to 2. ,;.
This systematic shifting is done by independently offsetting
the Kohonen nodes’ x- and y-values a distance in the range

of [-p,p]. Figure 7 shows fine shifting until the best fit (d).

Time is the basic reason for 1) bounding the fine-
shifting range, 2) moving the Kohonen about the data set in
increments of 10 distance units (inches) and 3) sampling
only 1% of the data points (out of ~2000 to ~4000 per test
data set). Perhaps a genetic algorithm might do a better job
of finding the optimal fit. But, without these constraints,
recall is simply too time consuming to be practical.
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Figure 7 Fine-shifting a Kohonen mesh about a room
character data set, p=1m.
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Fine shifting attempts to refine the translation
discrepancy caused by outliers in the data set or Kohonen.
It also attempts to minimize the impact of room character
skewedness and cloudiness. The range of potential offsets,
+p, is sized on the basis of the following issues: the robot’s
confidence in its ability to aggressively and intelligently
seek out and find the southwest extreme of a room; the
anticipated maximum trajectory deviation; the anticipated
maximum sensor corruption; and the expected worst-case
room character alteration caused by rearranged furniture.

3.5.3 Pruning. Pruning a node of a Kohonen renders that
node unavailable to a data point for use as a nearest neuron.
Simply put, Kohonen nodes are assumed to represent part or
all of unique feature in a particular room. If a node exists
that does nor reflect a feature, it is pruned. In recall, the
Kohonen is penalized since the data point must then resort
to a node that is farther away (in a Euclidean sense) than the
truly closer pruned node. The result is a larger summed
Euclidean distance X, for the improperly matched
Kohonen-data set pair. Properly matched Kohonen-data set
pairs, on the other hand, are believed to result in slight
decreases in Y,,;,. Given that X, is the metric with which
a data set is associated with a particular room and that errors
are emphasized more than matched features by larger X,
the probability of misclassification should decrease.

Two levels of pruning mature Kohonen networks were
tested to see if it reduces misclassification errors. First the
mature Kohonen room networks are pruned of all nodes
whose frequency of being chosen the winning neuron, fw‘,j

(for i,j = 1, 2,...21), is zero in the last epoch of training.
Figure 8b marks with an 'X' all nodes that satisfy the
condition fW;,- =0 for the first stage of pruning. The

second pruning stage is more aggressive in that we prune all
nodes whose frequency of being chosen the nearest or
winning neuron, fwi,- (for i,j =1, 2,...21) is less than 0.05%

of the number of training data points N, in the last epoch of

training. Figure 8c marks with an 'X' all nodes that satisfy
the condition f,,  <0.0005N, .

Figure 8 Final Kohonen node mesh and pruned nodes for
(®) fu, =0 and (¢) f,, <0.0005N,,.

4 Experimental Results/Concluding Remarks
Figure 1 shows all ten rooms and corresponding
training characters and mature Kohonen cluster centers.

With the ten Kohonen room networks trained, four pre-
processing systems were tested and compared. The results
of these systems were used to determine the most reliable
configuration for room classification. The first system used
only gross shifting. The second used both gross- and fine-
shifting. The third system used gross- and fine-shifting and
and pruned fwij =0 nodes. System four used gross- and

fine shifting and pruned fw,,j <0.0005N » nodes. For each

room, 18 test sets, each with varying levels and
combinations of data corruption were created and used to
test each of the four system configurations.

4.1 Gross Shifting Only
Using only X.,; and gross shifting produced fair results.

Figure 9 shows that the misclassification rate for the gross
shifting only configuration was 20%.

"@U@m[s—l%?m ) -

Figure 9. Misclassifications per room for gross shifting
only system configuration.
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Specific rooms were misclassified far more often than
others. Room 10 was not misclassified at all while room 4
was misclassified half of the time. This shows that some
rooms are distinct enough to be identified just using crude
methods like gross shifting. Other rooms, though, are too
closely related in shape and design, making recognition a
much more difficult task. Although these results were
promising, a lower misclassification rate is required.

4.2 Gross- and Fine-Shifting

From figure 10, incorporating fine shifting proved quite
successful as the misclassification rate dropped from 20% to
10.56%. Half of the ten rooms had no misclassifications at
all. Room number 4, however, suffered from more
misclassifications. Shown in figure 1, room number 4
contains data and cluster centers dispersed somewhat evenly
throughout the entire room. It is believed that the high
misclassification rate associated with room 4 can be
attributed to room symmetry and the poor spatial separation
of unique features. Regardless, it is clear that fine shifting is
an effective pre-processing tool for GSL.
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Figure 10. Misclassifications per room for gross and fine
shifting configuration.
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4.3 Pruning Dormant Nodes

Kohonen nodes that were placed, through self-
organized training, in regions where no training data points
actually existed ( fw,,j =0) were apparently troubling from

the start. Figure 11 shows the misclassification results for a
system that underwent gross shifting, fine shifting and a
pruning of dormant nodes. The performance of this method
is a clear improvement of the previous two. There were
only two misclassifications (out of 180 test sets) yielding an
overall misclassification rate of 1.11%. The fact that this
system configuration results in a 98.89% classification rate
says a great deal.

5!5—

10

5k
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— s
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Room # .
Figure 11. Misclassifications per room for configuration of
gross shifting, fine shifting and pruned nodes with f, wy = 0.

4.4 Pruning Low-Frequency Nodes

To see if a more aggressive pruning approach would
improve the classifier performance, we tested a system that
was subjected to gross shifting, fine shifting and pruning
nodes corresponding to fw,‘]‘ <0.0005N,,. From figure 12,

it can be seen that, in fact, with such a minor tendency
toward aggressive pruning the classifier performance
deteriorated to a misclassification rate of 10%. Hence, it
seems the Kohonen is as responsible as the data set to
provide feature information. Any loss of true feature
information, even from what seems to be outlier data points,
can degrade the classifier.
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Figure 12. Misclassifications per room for configuration of
gross shifting, fine shifting and pruned nodes
with fuw,; <0.0005N .
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4.5 General Comments
Of the four systems, the best classifier utilized gross
shifting, fine shifting and pruning of fwij =0 nodes. This

is for a static environment; the effects of other unknown
objects on the recognition have not yet been tested. A
radical redesign of a room would require any system to
relearn the room. The addition of new furniture or the
rearrangement of existing furniture will change the signature
character of the room. How much the character changes and
the effect it has on recognition is situational. This suggests
the need for an update learning scheme that notices small
physical changes in a previously trained room.
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