Global Self-Localization for Autonomous Mobile Robots Using
Region- and Feature-Based Neural Networks

Jason A. Janét, Ricardo Gutierrez-Osuna, Troy A. Chase, Mark White and Ren C. Luo
Center for Robotics and Intelligent Machines
Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, NC 27695-7911

Abstract - This paper presents an approach to global self-
localization for autonomous mobile robots using a region-
and feature-based neural network. This approach
categorizes discrete regions of space using mapped sonar
data corrupted by noise of varied sources and ranges. Our
approach is like optical character recognition (OCR) in that
the mapped sonar data assumes the form of a character
unique to that room. Hence, it is believed that an
autonomous vehicle can determine which room it is in from
sensory data gathered while exploring that room. With the
help of receptive fields, some pre-processing, and a robust
exploration routine, the solution becomes time-, translation-
and rotation-invariant. The classification rate of this
approach is comparable to the Kohonen based approach.
Some pros and cons of both approaches will be discussed.

1. Introduction

Can a robot determine which region of space it is in
without knowing how it got there? To date a significant
amount of work has been devoted to developing low-level
self-localization approaches for autonomous mobile robots.
These approaches depend on prior dead reckoning estimates
and discrete-time models that iteratively rationalize and
correct robot position and orientation based on correlations
between predicted and actual sensor data [4, 5, 7, 11, 19-23,
28-30]. But, without an initial reliable position estimate,
even the most proven techniques can become ineffective.

The objective of this research is to endow autonomous
mobile robots with the ability to perform self-localization on
a global level. That is, the robot should be able to use
sensor data to determine which region of indoor space it is
in. See figure 1. Since most indoor environments can be
easily segmented into rooms, different room configurations
will define discrete regions of space. Hence, the global self-
localizer is expected to learn features unique to a room and
associate sensor data sets with the previously learned rooms.

1.1 Time-, Translation- and Rotation-Invariance

A robust global self-localization (GSL) technique
should have the following characteristics. First, it should be
time-invariant simply because no two robots will explore a
room the same way. In fact, a single robot will likely not
follow the same trajectory each time. Second, it should be
translation-invariant because the robot does not know the
actual global coordinates of the region of space it is in,
much less the sensor data it collects. Third, it should be
rotation-invariant because, through the course of becoming
lost, a robot can also become disoriented.
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Figure 1. Geometric rooms, sonar data and digitized image.
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1.2 Region- and Feature-Based Neural Networks
Several applications of solving the optical character
recognition (OCR) problem with neural networks have been
investigated [10, 12, 13, 26, 27, 31, 34, 35]. Kohonen
neural networks were used to treat the GSL problem as an
OCR problem with great success [23]. In this application, a
region- and feature-based neural network (RFNN)
recognizes the room character associated with a particular
room. The RFNN is a multi-layered neural network which
uses receptive fields and weight sharing [16]. In general,
multi-layered neural networks are known for their abilities
to perform classification, recognition, data compression and
association [14, 16, 18, 31, 35]. The only information that
must be estimated beforehand is which regions of the
problem space (room character image) are important and the
maximum expected number of features per region.

v 2 The Domain

We assume the environment to be in R? space.
Specifically, as a robot wanders autonomously or is
manually driven around a room, its sensor data is mapped to
a two-dimensional plane. Since ultrasonic sensors seem to
be the sensor of choice for autonomous and semi-
autonomous vehicles, it is felt that the sensor used for
extracting feature information should also be the ultrasonic
sensor [1, 2, 6, 9, 24, 25, 32].

2.1 The Autonomous Mobile Robot Simulation

Given that the simulation described in {19-23] has
proven accurate at modeling both sonar and robot behavior
and that it provides a graphical display essential to
understanding each step of solving this problem, it was
considered a suitable platform for creating training sets and
test sets. The simulated sonar models are based on work
done by Kuc [24], Moravec [32] and Barshan [2] as well as
information provided by Polaroid [33] and Cybermotion [8].

Also, the simulation can ensure that the 160 training
sets and 180 test sets could be created in a timely fashion
and without the risk of harming either the robot or the
environment. Furthermore, the simulation can guarantee
that no furniture is radically rearranged through the course
of creating the training and test sets. Finally, the simulation
can track both the robot’s dead reckoning coordinates (i.e.,
where the robot thinks it is) and the robot’s actual
coordinates (i.e., where the robot really is) without needing
someone to physically measure and/or estimate the true
location of the real robot.

2.2 Room Character Generation

A room’s unique character is created by clouds of sonar
data points collected and mapped by the robot in its travels
through the region. Typically, these clouds are clustered
near the geometric beacon surfaces encountered by the sonar
windows. With a single-transducer sonar it is difficult to
know from a TOF reading the specific point that produced
an echo because sonars sample a region. Hence, we assume
that each sonar reading occurs along the axis normal to its

transducer (X5 =0, Ys = TOF). To map the TOF reading,
the point is transformed from the sonar frame to the global
frame. TOF readings are mapped according to where the
robot thinks it is (i.e., dead reckoning).

2.2.1 Sonar Corruption. Sonar readings are inherently
corrupted by noise. So, “to represent the random errors in
an adequate manner for a properly controlled experiment”, a
60 Gaussian corruption function is applied to all TOF
readings calculated by the simulation [17]. Specifically, for

a calculated TOF distance, R.;., C; is a user-specified

. variable in the closed interval C; €[0,1] that defines the
range of noisyreadings by Rg,,;. See figure 2.
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Figure 2. Simulated sonar reading corrupted by Gaussian noise.

2.2.2 Trajectory Corruption. The very motivation for
developing low-level sensor-based self-localization
techniques stems from the fact that true mobile robot dead
reckoning (from odometers, inertial navigation systems,
etc.) grows more and more unreliable with each bump in the
floor and turn of the robot. That is, where the robot thinks it
is might not be where it actually is. To simulate this
phenomenon, a user-defined random Gaussian trajectory
corruption is induced as shown in figure 3.

zZ%
Figure 3. Robot trajectory corrupted by noise.

A 60 Gaussian corruption function is applied to all
robot rotations and translations. Rotation corruption is

limited to the closed interval C; e[~ 7] and is specified
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by the user to define the range of potential noise added to
each turn. Translation corruption is a variable on the closed
interval C, €[-1,1] and is also specified by the user to
define the range of potential noise added to each translation.
Figure 4 shows mapped sonar data from a simulated robot
subjected to different degrees and types of corruption.

1700 1700

1600} 1600

1500} 1500

1400 1400

1300] 1300

1200) 1200}
800 1000 ( 1200 1400 1400
800 1000 1200 1400 800 1200 1400

1000
© @

Figure 4. Room 7 character: a) C, =0, C; =0°, C, =0;
b) C,=0, C’ =189, C, =10%;c) C, = 15%,
C =00 C =0; d) C,=15%, C =189, C, =10%.

3 Region- and Feature-based Neural Networks

The RFNN software is a high-level program that
provides a flexible, multi-layered, feed-forward architecture
as well as the capability to add to and prune from the
architecture even after training has begun. The user simply
specifies the desired architecture, initialization parameters,
learning parameters and stop-training conditions. Figure 5
shows a typical multi-layered, feed-forward neural network
that is ideal for back-prop learning.

Hidden Layer

Output Layer

Figure 5. Multi-layered, feed-forward architecture.

3.1 Regions: Input-to-Hidden Neuron Connectivity

The input layer is where the problem space is seen by
the neural network. The problem space can be broken down
into two-dimensional regions. Regions can overlap each
other or define independent portions of the problem space.
~ Figure 6 shows an example problem space with two
overlapping regions.
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Figure 6. Example problem space with two overlapping regions.

With regards to the neural network architecture, the
arrangement of regions defines the connectivity between the
input layer and hidden layer neurons. Specifically, each
region has its own dedicated hidden layer. Hence, if the
desired architecture were to require fully connected input-to-
hidden neurons, there would be only one region in the entire
problem space. Otherwise, the input-to-hidden neurons
could be made partially connected by breaking the problem
space into more than one region. See figure 7.
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Figure 7. Region§ define input-to-hidden neuron connectivity.

3.2 Features: Hidden Neuron Convolution Kernels

We use the term feature because the RFENN bases its
final output decision on the quantity and/or location of
certain characteristic features unique to an overall larger
class of objects, images or patterns. Such features might be
shared by several classes. But each unique class might be
characterized by a certain number of particular feature
occurrences, or that particular features be found in specific
locations of the region. For example, a dial clock and a
rotary phone might both have numbers on them, but a clock
will have more numbers than the phone. Further, the
locations of particular numbers on the phone are different
from the locations of the same numbers on the clock.

A feature is defined as a movable hidden layer neuron
with a unique set of input-to-hidden layer synapses. The
number of hidden layer neurons for a given region is
dictated by the number of features it has. The set of input-
to-hidden layer synapses (receptive field) unique to a feature
is called the feature weight matrix (FWM).
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Figure 8. Feature neuron, FWM, patch and overlap.

The FWM is convolved with a region to search for a
possible feature match. This convolution process is similar
to morphological operations in computer vision where a
kernel is compared to all parts of an image to look for a
pattern match [15]. The number of input-to-hidden layer
synapses in each FWM is defined by the feature patch size
(kernel size). Specifically, a patch is a subset of its
respective region and, hence, its size is defined by a number
of rows and columns less than or equal to the region's
minimum and maximum extremes inside the problem space.
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The convolution operation is like sliding a window over
an image where, for each position of the window, the
portion of image inside that window can be measured by the
feature neuron for similarity to a previously learned feature.
Placement of each feature patch depends on the overlap
parameters. Specifically, the overlap size defines the
amount of rows and columns a patch can be overlapped
when it is repositioned. Patch overlapping can compensate
for slight rotations and translations of a feature by searching
areas of the region ar and near the location of the expected
feature occurrence.

Figure 9. Feature patch and neuron being convolved with image.

In general, we want to minimize the number of features
to minimize the overall architecture data size. Choosing the
optimal number of features each region can prove to be a
rather subjective and arbitrary process. One might decide
that, for example, the RFNN will have to look for horizontal
and vertical lines and thus decide that only two features are
necessary. In truth, however, this way of envisioning how
the RFNN learns a feature might be completely different
from how it actually learns a feature. After all, unlike
computer vision morphology, the neural network decides for
itself how a feature should be measured. This is because the
RENN not only looks at whether a candidate feature does or
does not completely match; it also looks at the degree of
match.

3.3 Hidden-to-Output Connectivity with the RFNN

For each position of a feature inside its region, a unique
value associated with that position is produced by the
feature neuron. These position-dependent feature values are
placed in a feature element matrix (FEM) where they are
held and later presented to the output neuron layer. Every
feature has its own FEM. The general idea behind the FEM
is to let the output layer know where and to what degree
certain features were found. Essentially, this creates the
illusion that there are many more hidden neurons in the
architecture since there is a hidden neuron for each position
(FEM element) of a feature patch. In truth, however, this is
not the case since a single feature will use the same input-to-
hidden synaptic weights at each position of its patch.
Hence, synapses exist between the FEM elements and the
output neurons. Figure 10 shows how a FEM is filled and
then connected to an output layer neuron.

The set of FEM element-to-output weights is different
for each output neuron. This is because each output neuron
is entitled to place as much or as little significance on a
given type of feature. After all, not all feature types can be

expected to be relevant to all output neurons. If the FEM
element-to-output synaptic weights are matured independent
of each other, it is said that these weights are uncoupled.
Uncoupled weights presumably let an output neuron know
where and to what degree a particular feature matches the
input data. If, on the other hand, the FEM element-to-output
synaptic weights are matured so that they are all equal to
each other for a particular output neuron, it is said that these
weights are coupled. Coupled weights presumably let an
output neuron know how many times a feature matches.

Output Neuron Value

Outpot Bias e ~&— Qutput Sigmoid

FEM Element-t0-Output p
Synaptic Weights /]

Figure 10. Connectivity of a FEM's elements to an output neuron.

4 Strategy

Single-region, multiple-feature, ten-output RFNN's will
be used to learn the relevant features common and unique to
each of the ten rooms. The input problem space is an image
of 29x29 binary pixels that cover an area 16 meters wide
and 12.7 meters long. The presence of a sonar point inside a
pixel's boundaries activates that pixel. Four different
architectures will be examined: the first will use only one
feature (sub-image); the second will use two features; the
third will use three features; and the fourth will use four
features.. Common to all architectures will be feature-patch
size (sub-image size of 5 rows by 5 columns), maximum
overlap (4 rows and 4 columns) and that the entire problem
space is viewed by the RFNN through a single region. To
test the capabilities of the mature RFNN, test data sets will
be collected by the simulated robot as it autonomously
drives around the room. Generality will be tested by
allowing test data corruption ranges to be larger than those
used for training. Two pre-processing operations will be
applied to digitize the room character and reduce the impact
of large-scale translation variance.

4.1 Training and Testing Data

In a realistic setting, a robot can collect data while
either being manually driven around the room (manual
teaching) or autonomously driving through certain sections
of the room while carrying out other tasks. Trajectories and
explored features vary from data set to data set. However,
one extremely important requirement of collecting training
and testing data is that the robot explore (what it perceives
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to be) the southwest extremes of each room. This aspect
helps make the GSL problem translation-independent. That
is, to transpose the mapped sonar data as close to a common
reference frame origin as possible, we need mapped data
that reflects minimum x- and minimum y-coordinate values
(west and south respectively) a room might have.

4.2 Training and Recall

The RFNN is trained with error back-propagation. To
expedite the learning process, all synaptic weights in the
architecture undergo a greedy version of adaptive learning
[16]. That is, the learning rates, unique to each synapse,
vary according to the history of error reduction. The
"greedy" part implies that each synapse's learning rate can
become greater than one. Learning rates and weights are
updated at each epoch, and an epoch is considered to be one
full training pass through all of the training patterns.

Testing the capabilities of this RFNN-based global self-
localization approach is a matter of presenting newly
acquired room data to the mature neural network. Since
each output neuron is unique to a room, recall is simply a
check to see if the output neuron with the highest output
value corresponds to the index of the correct room.

4.3 Pre-Processing

Two pre-processing procedures are implemented in this
research. First, gross shifting is used in all phases of
training and testing to approximate a translationally-
invariant problem space [23]. This procedure crudely fits a
sonar data set arbitrarily placed in 2D space to a reference
frame origin common to all rooms and datasets, also
arbitrarily placed in 2D space. As figure 11 shows,
minimum x- and y-values of the data set are subtracted from
all data points, to transpose it to a common reference frame
origin. ‘While this takes care of the major portion of the
translation-invariance problem, it can be seen that a single
outlier in either the x- or y-direction can still produce slight
translation variances between the sonar data and a room. It
is for this reason that we use receptive-fields architectures.
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Figure 11. Gross shifting a room character data set (placed
arbitrarily in 2D space) to a common reference frame.

The second pre-processing step, digitization, is used to
discretize the problem space into a binary image of pixels.
A pixel activated by the presence of a mapped sonar echo
point will have the value of one. All pixels that are not
activated will maintain a value of zero.

5 Experimental Results/Concluding Remarks
Shown in figure 12, all four candidate architectures
yielded classification rates better than 96.67%. Of the four,
the single-region, 3-feature, 10-output architecture yielded
the highest classification rate, 98.89%. Of course, there is a
tradeoff between data size and classification rates. After all,
the discrepancy between the lowest and highest
classification rates might actually be trivial when compared
to the amount of RAM needed for the larger architecture.
What is truly interesting, however, is that only a single
hidden layer neuron with a 5x5 patch was necessary to
properly classify more than 96% of the 180 test sets from 10
different rooms. Even the best architecture seen in this

research needed only three hidden layer neurons.

3.33%

Misclsssification Rate %

1 2 3 4
Number of Features
Figure 12. Misclassification rates of single region, variable-
feature, ten-output architectures.

5.1 Comparison with Kohonen-based GSL

Significantly less pre-processing time is required for the
RFNN when compared to what was required to get a
98.89% classification rate with the Kohonen neural network
reported in [23]. That is, the RFNN required only two
simple pre-processing steps (gross-shifting and digitization)
whereas the Kohonen neural network required three (gross-
shifting, fine shifting and dormant node pruning). The fine
shifting, in particular, was extremely time consuming
because, for each data set, it forces the Kohonen to do recall
several times on sampled and incrementally shifted sonar
data until a best fit between the Kohonen mesh and sonar
data is found. Without such fine shifting, the Kohonen
neural network could not compensate as well for small-scale
translation descrepancies (unlike the receptive fields).

The Kohonen is not without its merits, however. First,
the Kohonen did not require a priori knowledge of the
problem space size. The RFNN presented in this paper not
only requires that we make an assumption on the maximum
dimensions of the problem space, but also that we assume
an adequate pixel size (resolution). Like most computer
vision principles (threshold, kernel size, etc.), predicting a
necessary field of view and/or resolution for a digitized
room character can be rather subjective. . Second, in many
ways the Kohonen is much easier (albeit more time
consuming) to train. For example, the Kohonen nodes are
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easily initialized to increments scaled to the data set size.
The RFNN, however, requires that the synaptic weights be
initialized to values small enough to prevent saturation. The
Kohonen also proved tolerant of a wide range of learning
rates and neighborhood sizes. The RFNN seemed rather
sensitive to initialized synaptic weight learning rates outside
a small spectrum (between 0.002 and 0.004). Certainly,
optimization schemes exist that find the best initialized
weights and learning rates to prevent saturation [16].

5.2 Comparison with OCR and Computer Vision

The two multi-layered neural networks that have been
suggested for optical character recognition by LeCun and
Séckinger have more than one hidden layer [16, 34]. In fact,
the OCR network suggested by Sdckinger has four hidden
layers, a 20x20 binary input problem space and 10 outputs
which are used to decide which of the first ten positive
integers (0, 1, ..., 9) are handwritten inside the problem
space. The overall architecture of this OCR network has
more than 130,000 hidden layer synaptic connections and
more than 3,000 output synaptic connections which
undoubtedly consume considerable RAM. The OCR
network also uses receptive fields, weight sharing and patch
overlap to degrees that are unique to each hidden layer.

Although the room characters that the RFNN learned
were not integers, they were characters none-the-less. So
this common ground exists between the OCR and RFNN
networks. The problem space for the OCR network (20x20)
is smaller than that for the RFNN (29x29). But we can still
conclude that, if the RFNN has fewer synaptic weights than
the OCR, the data size would be even smaller if the problem
space for the RFNN was 20x20. The largest RFNN
architecture examined in this paper (four features, 5x5
patch), was comprised of 100 input-to-hidden synapses and
25,000 FEM ' element-to-output synapses. The OCR
network requires 130,000 hidden layer synapses and 3,000
hidden-to-output synapses. The question is, of course, can
the RENN perform as well as the OCR network on the same
handwritten data? This is left to future research.

In general, the RENN seems to be a cross between
computer vision morphology [15] and the OCR network.
The most apparent difference between the RFNN and
computer vision morphology is that the RFNN decides
autonomously what the convolution kernel looks for.

5.3 General Comments

Of the four architectures, the best classifier (98.89%)
utilized gross shifting, digitization and a single-region, three
feature architecture. However, the difference between
classification rates for the four different architectures is not
all that large. This is for a static environment; the effects of
other unknown objects on the recognition have not yet been
tested. A radical redesign of a room would require any
system to relearn the room. The addition of new furniture or
the rearrangement of existing furniture will change the
signature character of the room. How much the character

changes and the effect it has on recognition is situational.
This suggests the need for an update learning scheme that
notices small physical changes in a previously trained room.
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