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Abstract - When navigating an environment a mobile robot
can update its position and orientation by searching known
landmarks and compare predictions with observations. This
paper presents a method of mobile-robot self-referencing
where every mapped object (obstacles to the global motion
planner) in the environment can be used as potential
sources of position and orientation information. This
approach employs the efficiency of traversability vectors (t-
vectors) for finding in-range geometric beacons and
isolating surfaces visible to a sensor. Configuration-space
(C-space) buffering (growing polygons to keep motion a
safe distance from objects) will reduce the search time for
finding in-range geometric beacons. Finally, a small multi-
layered neural network is used to provide a credence value
for each predicted range that can be factored in to a filter or
control strategy. This approach can be generalized to any
ranging sensor that samples a region (e.g. IR sensors).

1. Introduction

A self-referencing approach must be able to predict the
most likely range from a surface anywhere inside a sensor's
scan cone. Although the variables involved with reliably
predicting a range are numerous, a few geometric properties
can be used to calculate an expected time-of-flight (TOF)
sensor reading. However, in some situations thresholded
values of these geometric properties do not reflect the true
behavior of the sensor. Hence, to refine the range prediction
process, a multi-layered neural network is used to model the
credibility of a predicted time-of-flight (TOF) reading. This
credence factor is based on a combination of certain
geometric properties. This paper will show that the neural
network can also model the true boundaries of an ultrasonic
sensor more accurately than commonly used single-lobe
Gaussian approximations [1, 5, 15, 16, 18].

1.1 Self-Referencing in Proper Perspective

Confirming position and orientation using sensors
presupposes that the employed sensors can produce
predictable and reliable range readings and that references
are accurately mapped and frequently within range.
Provided the sensors and objects are configured accordingly
self-referencing should be a fairly simple task of comparing
the range readings and/or feature signatures to what is
expected based on where the robot thinks it is [16, 17]. In
truth, though, real sensors are not always reliable and
environments are not always accurate nor static.

As unrealistic as it is for a global motion planner to
assume that the robot will be able to traverse along the
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planned trajectory free of unexpected events, so too is it
unrealistic to assume that self-referencers will always get
accurate information. Sensor noise is a big enough problem
in and of itself, despite the availability of various filtering
strategies [2, 3, 17]. But the mere presence of moving
robots and people and the likelihood that furniture,
equipment, etc. will be rearranged can significantly obscure
the image a robot might get of its surroundings.
Realistically, the potential exists that a mere 10-20% of the
range readings would accurately reflect the expected
surrounding geometric beacons. Further, behaviors like
unexpected-obstacle avoidance and mapping might be
prioritized over self-referencing in certain settings. Hence,
if a mobile robot is to function in a realistic, dynamic
environment, it needs to have more than just the high-level
global motion planning and the mid-level self-referencing.
It must also have the ability to filter out extraneous readings
(self-localization), regardless of how dense they are, and do
low-level obstacle avoidance when necessary [19].

1.2 Approach

There are three fundamental steps necessary for solving
the self-referencing problem: how to represent the objects
in the environment, how to search for geometric beacons
based on this representation and how to predict a reliable
range reading. In [9, 10] we proposed that, whenever
possible, objects be represented geometrically on the basis
of surface information quality and compatibility with global
motion planning [8]. In [13, 14] it was shown that t-vectors,
in addition to their efficient collision detection, can quickly
identify front and rear surfaces of a polygon relative to a
point (e.g., a transducer). This paper will do the following:
First, it will discuss how t-vectors and C-space improve the
efficiency of collecting geometric beacons inside a sensor
window and, hence, in range of an actual sensor. Second, it
will present a neural network based approach that computes
a probabilistic credence factor for all possible predictions of
geometric range and angle relative to cone normal. Third, it
will propose a strategy for predicting a sensor’s most likely
range, reflective angle and angle relative to cone normal.
Collectively, these processes can provide a filter or control
strategy with a stochastic certainty of each range prediction.

2 Sensor Boundaries and Detectability

Knowing the boundaries of a theoretical cone model
(maximum and minimum ranges and peripheral limits)
enable the cone to be reconstructed and used as a moving
window anywhere on the map to correspond to the robot’s
position and orientation. Objects inside this window can be
seen or heard by the robot. Hence, if the robot’s position
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and orientation are known, and the sensor window’s position
and orientation relative to the robot are known, any object
on the map inside the window’s boundaries could be used as
a geometric beacon. The sensor window boundaries in this
section are modeled after the ultrasonic sensor.

2.1 Sonar Boundaries and Descriptors

Due to their radiative properties, ultrasonic sensors
create conical regions of propagating sound waves. If an
object is inside this conical region, it can produce an echo.
Figure 1 shows crisp boundaries for an ultrasonic sensor.
The cone half-width, 8,, defines the angle beyond which an
echo is no longer expected to be received. For pulse-type
ultrasonic sensors, the minimum range, R,;,, also called the
near or Fresnel zone, is the distance from the transducer to
the end of the near region [1]. For continuous-wave
ultrasonic sensors, R, is set by the ringdown [4]. The
maximum range, R, for a pulse-type sonar depends on

where in the sonar cone an echo is produced and whether or
not the sensor is supported by a time controlled gain
amplifier [20]. It must be emphasized that boundary
descriptors depend on the type of sensor being used.
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Figure 1. Sonar cone boundary descriptors.

2.2 Detectability Factors

There are numerous factors that influence actual object
detectability. That is, an object might be within range of the
sensor and still not produce an echo that returns to its
source. Some reasons for why an in-range geometric
beacon [17] might not be detected include: First, the sonic
pressure might not be strong enough at the echo point.
Second, the surface dimension, d, might be smaller than
the sonar’s wavelength (d,< A1), resulting in a weak echo
pressure. (Hence, the smallest surface dimension, an object
in the environment can have to be detectable is dsmin >A)
A third possibility is that the nearest reflecting surface is at
such a reflective angle, & , to the cone arc that the echo
could be too weak to register with the sensor. Although it
varies with surface texture, a maximum cone arc deviation,
Omax s Can be experimentally determined. It will be shown
later that 6, helps establish the criteria used to detect the
smallest assumed geometric beacons in the environment.

Obstructing Polygon &
Potential Reference

- Pseudo-paths

Figure 2. Pseudo-paths detecting potential geometric beacon.

3 The Sonar Cone Window Model

To detect objects in a scan cone, a set of pseudo-paths
radiating from the transducer are tested against polygons in
the environment for collision [9]. Collision detection is
most efficient with the t-vector test presented in [13, 14].
The pseudo-path premise is: if a pseudo-path inside the
boundaries of the sonar window is obstructed by a polygon,
then an actual object that can produce an echo is, according
to memory and estimated position and orientation, within
sonar range. If the pseudo-paths are spaced such that even
the smallest objects in the environment can be detected, then
every mapped object can be used as a reference.

The start point of each pseudo-path is the origin of the
sonar frame. The end point locations, G(x,y),, in the sonar

frame depend on 6,, R ds_, Omax and if the C-space

max >
buffer (polygons grown by thickness #, to keep robot
motion a safe distance from objects) is used. Specifically,
the end points of the pseudo-paths should be a distance
greater than or equal to R, from the transducer surface
(origin) and not separated by more than w,;,, the worst-
case projection of dg _ at&,,,,. Figure 3 shows dg > wy,.

Figure 3. Pseudo-path separation not to exceed w;, .
So pseudo-paths have a maximum allowable separation of

Winin = ds_ cos(6max). )

Knowing 6,, R, and w,, , the number of pseudo-paths

Npp= {(2)(Rmax)(tan60)"‘ + 1, @
Wmin

where I, depends on if the polygons have C-space buffers.

+1 (=0)
l = {—1 (16> 0) @
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So, the actual pseudo-path separation, w, is

e [(2)(Rmax)(tan en)} cw.

)
(Npp—1,)
Pseudo-paths start at S(x,y), = (0,0), and end at
Gnex,y)s = {[(Rmax)(tan 60) — (N - Jo)(w)], Rmax }
for N=12,... N+ Jb) )

J}, also depends on if the polygons have C-space buffers.
1 (1,=0)
b= {0 (t, >0)
Figure 4 shows the resulting sensor window model.

©®
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Figure 4. Pseudo-paths for a scan cone window.

Proposition 1: The C-space buffer, t,, increases the

detectability of geometric beacons and, hence, reduces the
number of pseudo-paths, N pp» JOT a sonar cone window.
Proof: The virtues of C-space buffers can be demonstrated
by comparing two examples. The first will be where there

are no buffers; the second will be with buffers.

Example 1: A surface can have a dimension of w;;=2cm
and still be detectable by most ultrasonic sensors. So if the
sonar cone has values of R =240cm, 6, =350, §_, =
159 and #, = 0, then N,,= 174. That is, 174 pseudo-paths

will be required for a two dimensional cone window if there
are no buffers and the smallest expected dimension is 2 cm.

Clearly this is too many pseudo-paths to inspect each
referencing cycle. A better solution can be found if
polygons are buffered (enlarged by t,,) because the polygon's

likelihood of being detected is substantiaily increased.

~ 67.2cm

I 240 |

]
Figure 5. Pseudo-paths for geometric beacon with C-space buffer.

Example 2: Keeping R_,,= 240 cm and 6, = 359, and
letting d; = 1, =75 cm we reduce N, to four. Herein lies
the advantage of C-space buffered polygons. See figure 5.[]

4 Range Credence Estimation

It was noted in [9, 10] that sonar readings can not be
based entirely on a crisp geometric model of the sensor’s
boundaries. That is, a surface’s detectability credence x is
a continuous function of range, cone radial angle, cone arc
deviation and myriad other variables that cannot, in general,
be decoupled in independent thresholds.

k= f(R 8,86, Tumdy ) 0<k<1 @

smm

One can approximate a credence factor based on range
and radial angle from the Gaussian curve that is commonly
used to model pressure amplitude [15]. But the single-lobe
Gaussian approximation is not truly representative of actual
ultrasonic sensor behavior. The actual pressure curve can be
more accurately modeled by a multi-layered neural network.
Multi-layered neural nets are known for their ability to
model continuous output functions from multi-dimensional
input problem spaces [7, 21, 23]. In this section we present
a credence factor model based on two of the variables in (7):
range R and radial angle 6.

4.1 Neural Network Architecture and Training

While there exists a variety of feasible configurations,
the architecture we used is the single-hidden-layer, fully
connected feed-forward neural net shown in Figure 6. To
enhance back propagation, adaptive learning rates [21] and
normalized weights were used to train the neural net.

Input Layer

Hidden Layer

Output Layer

Figure 6. Multi-layer neural network used to learn range credence.

4.2 Training and Recall Data

Training and testing data was collected from a long
reflective surface (wall) using a Polaroid transducer. Shown
in figure 7, a 399-node grid was used to model half of the
symmetric cone ( Ry, pmens = 250mm and 6, =2.5%).

increment
Room temperature was kept at 23°C. Distance was
measured along the transducer normal. For the pulse sonars
on MARGE (Mobile Autonomous Robot for Guidance
Experiments) R ;, =500mm and R_,, =5500mm. The
unaltered Polaroid sonar is usually modeled with 8, =30°.
However, to account for all possible lobes, the range of

angles was 6 € [—45°,45°] in 2.59 increments. Five training

and testing data sets comprised of 100 readings at each of
the 399 grid nodes were collected on different days.
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Figure 7. (a) Node grid of half-cone and (b) reference frame.

The credence value for each example was assumed to
be the fraction of correct readings over the total number of
readings for each location. Figure 8 shows the observed
credence surface in two reference frames: the horizontal
axes of figure 8a are in units of range (R mm) and radial

angle (0°); the horizontal axes of figure 8b are (X, Y,)
coordinates in the sonar cone. Both frames use the vertical
axis to measure stochastic confidence xe€[0, 1]. Of
particular interest is that, unlike the single-lobe Gaussian
approximations, the actual data in figure 8 suggests that all
three lobes be considered when a robot is self-referencing.

o -20 - ®
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Figure 9. Modeled x-surface in: (a) R- € and (b) (X, Y).

4.3 Modeling Sonar Credence with a Neural Network

Figure 9 shows the neural net’s mapping of the data in
figure 8. In general, the 2-10-1 neural net accurately and
smoothly modeled the credence of predicted range readings
over the entire three-lobed spectrum of R- 6 combinations.
Recall is extremely fast because the neural net accepts raw
R- 0 data and the overall size of the architecture is small,

5 Range Calculations

Range calculations to geometric beacons are more
complicated than simply computing the distance from the
transducer to the closest feature. Other attributes must also
be factored in. While the feature identification model in [9]
helps make geometric maps compatible with self-
localization approaches like multiple hypothesis tracking
(MHT) [3], it tends to misrepresent geometric beacons. We
propose that, instead of relying on generic feature labels, at
least the following four geometric- and neural net-based
tests help consider how reliably a surface returns an echo.
The tests check: 1) if the surface is visible to the transducer;
2) if the surface’s cone arc deviation is within tolerable
limits; 3) if the candidate calculated range is within credible
limits; and 4) if the candidate echo point is occluded by
another in-range polygon.

Generality and complexity should be considered for
algorithms based on the myriad possible signature test
sequences and combinations used to predict a sensor range
and confidence level. Some tests might be used in parallel
and others in sequence; some might require more in-depth
processing. Further, there are several other tests that can
complement the signature tests. For example, the cone arc
deviation might be included as a third variable for training
the neural network mentioned in section 4. Finally, the
signature tests can be crisp and/or fuzzy [22]. Either way, it
should be noted that computing a predicted range and
corresponding credence factor is an iterative and, in many
ways, heuristic process.

5.1 Signature Test 1: Surface Visibility

A rear surface on a geometric beacon will never return
a direct echo. Only portions of an object that are visible to a
sensor will produce a signature. How to efficiently identify
which surfaces are front (i.e., visible) and which are rear
using t-vectors is presented in [13, 14]. Hence, if the
surface in question is a front surface, it is safe to move to the
second test since this type of surface can return an echo.

5.2 Signature Test 2: Cone Arc Deviation
If the visible surface v;v;,, is inside the cone enough to

potentially send an echo to the transducer, we calculate a

candidate predicted range, R, .., and examine the cone

arc deviation, & of the surface at that range. In this section
we consider three cases of surface configurations relative to
the sensor window. Case I considers the possibility that a
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surface has no cone arc deviation (5 = O°). This must be

checked for first because a surface's geometrically closest
point is where a radial from the transducer is perpendicular
to that surface. Of course, being geometrically closest does
not imply a high enough confidence level, x < 7,. Hence,

if the R- 6 inputs that correspond to a surface with 6 =0°
does not yield a credence factor value above an established
threshold, x> 7,., then testing should resume at Case II

(surface is completely inside the cone window)or Case III
(surface straddles ‘or is partially inside the cone window).

5.2.1 Case I: Cone Arc Deviation Equals Zero
We recall that the shortest distance between a point x

and a line segment vy, is the distance along a line
through x and perpendicular to vv;,;. Fordé =0, this
implies that a line perpendicular to v;v,,; passes through the
origin of the sensor reference frame. See figure 10. If the

intersection point (ximl ,yiml) is either outside the sensor
5
window or not on the surface v;v;,;, then we move to Case

II. If, however, (xim » Vint ) is inside the sensor window
1 L/s

and on the surface v;v;,,, we can calculate the range by,

) 2
Rﬂdﬂm,.didm =4/ Xint, * Vint, ®)
If Reue,, e @nd € do notsatisfy x 2 7,., we go to Case IL.

()Gm, » Yint, )

Vil

Xs Xs
Figure 10. For § =0, line L to vy, is (0,0)x(ximi, yiml) .

5.2.2 Case II: Surface Completely Inside Sensor Window

For surfaces completely inside the sensor window and
not perpendicular to the sensor origin, we first calculate the
range to each vertex and then determine which portion of
the surface will yield the smallest arc angle deviation.

Proposition 2: For a surface vy, that is completely
inside the sensor window, the smallest arc angle deviation,
8, is at the closest vertex (either v; or v;,,).

Proof: This theorem can be proven graphically. Figure 11
shows a line intersecting three concentric semi-circles
centered on the same origin. The larger the circle, the
greater its sonar range. It can be seen that v;v;,; is tangent
only to the smallest circle. That is, the point of intersection
(and tangency) between the line and circle of smallest
radius, Ry, is closest to the origin. Likewise, because the

line is tangent, 6; =0°. Intersections between the line and
outer two semi-circles indicate that as range increases so
does arc angle deviation. Hence, the closest vertex produces
the smallest &.[}

s Ry R Ry

Figure 11. As range increases, so does the arc angle deviation.

The two ranges for the surface endpoints are,

[z, 2 2 2
Rvi =4/ X% TV and RVM =%, Y, (9a, b)

For the surface, v,v;,,, the angle @, = can be found from,

1 v T Wy,
Py, =tan” | =L (10)
Fy, T v,
and the cone arc angles at each vertex can be found by,
1 Yy 1| v
@, =tan”!| == | and @, =tan™!| L (11a, b)
i xVA i+ xv-
i i+l
The arc angle deviation at each vertex is, thus,
5"; = ‘p"i"ml_ ¢W and 6".‘+1 = (Dv,»vm’_ (pﬁ (12a, b)

5.2.3 Case III: Surface Straddles or is Partially In Window
Having one or both vertices outside the cone forces us
to clip the surface at the cone boundaries. See figure 12.
Substituting the clip vertices for their respective surface
endpoints permits us to use the same procedure in Case II.

' v vi
“Vi Vil *vi i+
Vi+1
Vi+]

Figure 12. Clipping portions of surface not in sensor cone window.

A crisp approach to this problem might require that if
equation 12 is less than a maximum allowable arc angle

deviation, &,

candidate. If, on the other hand, the smallest 6 achievable
from surface v;v;,, is larger than &,,,, the surface could be
considered an unreliable reference. After all, it was proven
in Proposition 2 that the further away from the closest vertex
one travels, the higher the value for cone arc deviation 6.
An even better solution might be to include the & as a
variable in the range credence calculation.

the surface could remain a reference
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5.3 Signature Test 3: Credible Calculated Range
Now we must determine if the credence factor x=

f (Rcalcmm,m’g"”) is high enough to expect that the actual

range reading will correspond to the predicted range. If xis
less than some minimum credence value, x.; then the
m should be examined in greater detail. That is, one
should not simply assume that a surface is altogether
unreliable if its nearest expected echo point yields a
credence factor k < K., ; the nearest point on v,v,,; might
actually be in a ravine (between lobes) on the x-surface.
To examine a surface in greater detail, one could segment
the m in increments between the two vertices. Then,
moving from the nearest vertex to the farthest vertex,

compute a new R , 0, x and & at each increment
Calccund:dme

until the most reliable candidate range calculation is found.
One could also compute a weighted sum to predict the

bilateral tolerance on the expected value of Rcalcw,,d-d,,,,'

Figure 13 shows v;v;,; decomposed into subsurfaces and a
plot of xversus the distance from v; to v;,;.

subsurfaces
X
1 —— — —

d Vet

n

Figure 13. Decomposed v;v;,, with credence x per subsurface.

5.4 Signature Test 4: Obstructed Range Point
Since it is possible for several geometric beacons to be
in a sensor window, the point to which R, was

A camitiate
calculated must be checked for occlusion by other in-range
polygons. This is easily done using t-vectors to detect
collisions between the other in-range polygons and a line

connecting the transducer and echo point on vy,,. If a

collision is detected, the candidate calculated range is
assumed unreliable because no pulse will be able to directly
reach the candidate echo point . If, on the other hand, the
line is collision free, it can be assumed that a sonar pulse
will reach the echo point and, hence, return a valid range.

5.5 General Comments

Searching the polygon map in this manner fills the
window model with all mapped geometric beacons in range
of a given sensor. The contents of this window are then
examined to calculate the range, R, to the closest reliable

feature. R is soon after compared with the observed
range reading, R, to either i) confirm the robot’s position

and orientation, ii) detect a previously unknown obstacle,
iii) find that an obstacle was removed, or iv) cause the robot
to change its dead reckoning values of position and
orientation. There are several techniques with which the
aforementioned self-referencing functions can be performed.
The crudest method involves setting a threshold on the
difference between R, and R and immediately changing

the dead reckoning values when the difference exceeds a
threshold. Smoother methods can be found in line fitting [6]
or the more refined Extended Kalman Filtering [17].

These (and other) signature tests were confirmed
against the environment based on actual robot position,
orientation and sonar readings. MARGE was used to justify
the use of sensor windows and the applicability of t-vectors,
C-space-time, geometric representation and the neural net
credence model for self-referencing. It was assumed that
since the calculated sonar ranges accurately reflected
MARGE's sonars, the model prescribed here is valid.
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