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g r a p h i c a l a b s t r a c t
� An active wavelength-selection algo-
rithm is proposed for mixture
identification.

� The algorithm runs in real-time,
interleaving wavelength selection
with sensing.

� Wavelength selection is analyte-
specific and based on previous
measurements.

� Active wavelength selection operates
in two stages: exploration and
exploitation.

� The approach is compared against a
passive strategy based on successive
projection.
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This article presents a wavelength selection framework for mixture identification problems. In contrast
with multivariate calibration, where the mixture constituents are known and the goal is to estimate their
concentration, in mixture identification the goal is to determine which of a large number of chemicals is
present. Due to the combinatorial nature of this problem, traditional wavelength selection algorithms are
unsuitable because the optimal set of wavelengths is mixture dependent. To address this issue, our
framework interleaves wavelength selection with the sensing process, such that each subsequent
wavelength is determined on-the-fly based on previous measurements. To avoid early convergence, our
approach starts with an exploratory criterion that samples the spectrum broadly, then switches to an
exploitative criterion that selects increasingly more relevant wavelengths as the solution approaches the
true constituents of the mixture. We compare this “active” wavelength selection algorithm against a
state-of-the-art passive algorithm (successive projection algorithm), both experimentally using a tunable
spectrometer and in simulation using a large spectral library of chemicals. Our results show that our
active method can converge to the true solution more frequently and with fewer measurements than the
passive algorithm. The active method also leads to more compact solutions with fewer false positives.

© 2016 Elsevier B.V. All rights reserved.
cse.tamu.edu (R. Gutierrez-
1. Introduction

Infrared (IR) spectroscopy is a powerful tool for qualitative and
quantitative analysis of chemical mixtures. Mixture analysis typi-
cally requires using multivariate techniques since the IR spectra of

mailto:tonmey@cse.tamu.edu
mailto:rgutier@cse.tamu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aca.2016.08.005&domain=pdf
www.sciencedirect.com/science/journal/00032670
www.elsevier.com/locate/aca
http://dx.doi.org/10.1016/j.aca.2016.08.005
http://dx.doi.org/10.1016/j.aca.2016.08.005
http://dx.doi.org/10.1016/j.aca.2016.08.005


J. Huang, R. Gutierrez-Osuna / Analytica Chimica Acta 937 (2016) 11e2012
individual chemicals can overlap significantly. However, not all
wavelengths in the IR spectrum are useful. As an example, in the
context of multivariate calibration, it has been shown eboth
theoretically [1] and experimentally [2]e that accuracy improves if
a subset of the wavelengths is selected before conducting multi-
variate analysis. Accordingly, a number of wavelength selection
algorithms have been proposed in the chemometrics literature,
including exhaustive search (e.g., branch-and-bound [3]); ran-
domized search (e.g., genetic algorithms [4], simulated annealing
[5], ant colony optimization [6]); and greedy search (e.g., successive
projection algorithms [7], uninformative variable elimination [8]).
These algorithms work well for multicomponent calibration, when
the target constituents are known and only their concentrations
need to be estimated. In such cases, the linear system is known, so a
globally optimal subset (containing a few wavelengths) exists. A
more challenging problem is selecting wavelengths when the
mixture constituents are unknown. This is the case for mixture
identification problems, where the goal is to determine the con-
stituents of a mixture from among a large number of chemicals.
While mixture identification problems use the same linear model
of multicomponent calibration, and therefore can also benefit from
wavelength selection, the linear model becomes ill-defined
because the spectral signature of the mixture can vary signifi-
cantly (i.e., for a library with N constituents there are 2N possible
mixtures). Thus, different wavelength selection strategies are
needed depending on how much is known (or can be assumed)
about the constituents of the mixture.

To address this issue, we propose an active sensing strategy that
interleaves wavelength selection with the sensing process, so that
the next wavelength to be sampled is a function of previous mea-
surements. This approach is fundamentally different from those
outlined above because it does not generate a fixed “universal”
subset of wavelengths but a unique sequence of wavelengths for
each analyte. In other words, our approach assumes that the opti-
mum subset of wavelengths is analyte dependent. Starting with an
exploratory criterion that samples the spectrum broadly, our active
sensing algorithm selects increasingly more relevant (i.e., exploit-
ative) wavelengths as the sensing process continues and its esti-
mates approach the true constituents of the mixture.

Our work builds on a previous algorithm for active wavelength
selection [9] based on multi-modal solvers. In that early work, a
multi-modal solver was used to generate multiple candidate
spectra that fit the measurements well, and the wavelength with
maximum variance across the candidate spectra was chosen as the
next measurement. However, themulti-modal solver does not scale
up to higher-order mixtures since its computational complexity
grows with the number of chemicals in the spectral library. To
overcome these computational issues, the work present here
guides the wavelength selection process with two methods whose
complexity grows with the number of wavelengths in the spec-
trum: Gaussian process regression (GPR) and linear discriminant
analysis (LDA). Namely, we use GPR to reconstruct the spectrum of
the unknownmixtureeonewavelength at a time, and LDA to select
wavelengths that allow us to eliminate irrelevant mixture compo-
nents from the solution.
2. Methods

The problem of mixture identification can be formulated as:

Ax ¼ b s:t:x � 0 (1)

where column matrix A is a reference library containing the spec-
trum for each possible chemical constituent, column vector b
denotes the measured spectrum of a mixture, and x represents the
concentration (non-negative) of the mixture. As illustrated in
Fig. 1(a), the goal of mixture identification is to select the correct
columns in matrix A, i.e., determine the non-zero elements in the
solution vector x. By contrast, the goal of wavelength selection is to
find a small number of rows in matrix A that offer good accuracy
eFigure 1(b). Wavelength-selection algorithms assume that the
identity of the chemicals is known (i.e., the correct columns in
matrix A have been preselected), in which case supervised learning
can be used to find a subset of wavelengths that maximize the
effective rank for the known components. However, if the identity
of the components is unknown, the problem becomes ill-defined
because then not only the rows but also the columns in matrix A
must be selected. This is a paradoxical problem because selecting
optimal wavelengths requires knowledge of the mixture compo-
nents, and identifying those components requires a set of wave-
lengths to be measured. We address this problem by using an
iterative process that alternates between selecting rows (wave-
lengths) and columns (chemicals), as illustrated in Fig. 1(c). This
requires an active sensing strategy that performs wavelength se-
lection on-the-fly, interleaved with the sensing process.

Fig. 2 shows the building blocks of our algorithm for active
wavelength selection. At a high level, the algorithm consists of two
loops: an inner-loop that performs wavelength selection, and an
outer-loop that performs mixture identification. The inner-loop
(wavelength selection) operates in two distinctive stages: an
initial exploratory stage that aims to reconstruct the entire spec-
trum, and a later exploitative stage that targets at distinctive re-
gions in the spectrum. The outer-loop (mixture identification) uses
a sparse solver to estimate the concentration of the analytes in the
mixture. The estimated concentration is then used to identify the
analyte and refine the wavelength selection process as it moves
from exploration to exploitation. The outer loop is the more
computationally intensive of the two, so it is executed once every
n-th wavelength measurements. Parameter n provides a balance
between computational costs and adaptiveness. We observed
empirically that varying n from 1 to 20 had minimal impact on
convergence, so we chose the median n¼10 for the work reported
here.
2.1. Explorative stage

The explorative stage of wavelength selection is guided by
Gaussian Process Regression (GPR). Also known as kriging in geo-
statistics, GPR is an interpolation method that can be used to
approximate a smooth arbitrary function using a set of sparse
samplings. Fig. 3 illustrates GPR on a toy one-dimensional function.
In this example, the goal is to reconstruct the function using a small
number of samples. Because of the inherent smoothness of the
function, GPR only requires 10 samples to recover it accurately. Also
illustrated in Fig. 3 (shaded areas), GPR provides an estimate of the
variance of the reconstruction, which indicates how uncertain the
estimation is across all wavelengths. As we will see, this variance
serves as the utility function for explorative wavelength selection.

Consider the case where we have selected m wavelengths
lm ¼ {l1,l2,…,lm} and obtained the corresponding observations
blm ¼ fbl1 ; bl2 ; …; blmg. The goal of GPR is to reconstruct the full
spectrum bGP ¼ fbl1 ; bl2 ;…; blMg with M [ m, and estimate its

variance S2GP ¼ fS2l1 ; S
2
l2
;…; S2

lM
g. Gaussian processes model an

arbitrary function as a random vector that follows a multivariate
normal distributionbGP � mþ N ð0;R0Þwhere m is a scalar, and R0 is
a covariance matrix cov(lM,lM). The output of GPR is a multivariate
distribution N ðbGP ;SGPÞ where SGP is a full covariance matrix



Fig. 1. The underlying mathematical problems of (a) mixture identification and (b) wavelength selection. (c) Active wavelength selection alternates between the two subproblems.

Fig. 2. Building blocks of our active sensing framework for mixture identification. The
inner-loop on the left selects one wavelength at a time; the outer loop on the right
estimates the concentration of the chemical mixture. Depending on the concentration
vector, the algorithm switches between exploration mode (using Gaussian Process
Regression) and exploitation mode (using Linear Discriminants Analysis).

Fig. 3. An example of Gaussian Process Regression (GPR). The goal is to reconstruct the
underlying function (ground truth) using a small number of measurements (samples),
which GPR accomplishes by taking into account the smoothness of the function.

1 Note that all covariance matrices (R0, R, and r) are constructed using this
covariance function cov(li,lj).
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whose diagonal elements are S2GP . Given input measurements blm ,
the best linear unbiased predictor to reconstruct the spectrum can
be calculated as [10]:

bGP ¼ mþ rTR�1�blm � 1m
�

(2)

where R denotes them�m (auto)covariancematrix of the sampled
wavelengths lm, i.e., cov(lm,lm); and r denotes the m � M covari-
ance matrix between sampled wavelengths lm and all wavelengths
lM, i.e., cov(lm,lM). Though possible, calculating the full covariance
matrix SGP is not necessary in our case because only its diagonal
elements are needed for wavelength selection. Accordingly, and
following [10,11], we calculate these diagonal elements as:

S2GP ¼ s2
 
1� r

0
R�1r þ

�
1� 1

0
R�1r

�2
10R�1r

!
: (3)

where R, r are the covariance matrices defined above.
Constructing theses matrices is non-trivial because covariance

matricesmust be positive semi-definite. For this purpose, we define
a covariance function1 cov(li,lj) that calculates the covariance be-
tween pairs of wavelengths (li,lj) as a weighted sum of three
covariance functions, each of which is also positive semi-definite:

cov
�
li; lj

� ¼ aSE exp
�
� �li � lj

�2.
r
�
þ aprodbNNLSðliÞ$bNNLS

�
lj
�

þ dijs
2

(4)

where bNNLS is the projection from the concentration x estimated
via shrinkage non-negative least squares (sNNLS): bNNLS ¼ Ax.
Section 2.2 describes sNNLS in detail.

These three terms allow us to impose constraints on the
covariance matrix based on the smoothness of the spectrum, pre-
vious measurements, and sensor noise, respectively:

- The first component, exp(�(li�lj)2/r), is known as the squared
exponential covariance function [12]. It captures the global
smoothness of the spectrum, which is determined by the
effective resolution of the sensor and the optics. As such, we
assume that this term and its smoothing parameter (r) are an-
alyte independent.

- The second component, bNNLS(li)$NNLS(lj), is known as the
product covariance function [13]. It allows us to incorporates
information from all previous measurements, as captured by the
current estimate of the spectrum bNNLS ¼ Ax.

- The third component, dijs2, captures sensor noise. The higher the
noise, the less credible each observation is, and the less strongly
the model responds to each new observation. We measure
sensor noise level beforehand, assuming that it is analyte in-
dependent. We add this term to the diagonal of the covariance

matrix with dij ¼
�
1; i ¼ j
0; isj

.

2.1.1. Wavelength selection criterion
We guide wavelength selection using the variance

S2GP ¼ fs2l1 ; s
2
l2
;…;s2

lM
g in equation (3). Namely, we select the

wavelength that maximally reduces this variance. Writing the
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variance as S2GPðlmÞ, we compute the total reduction in variance if
wavelength li were sampled as:

Ds2
i
¼ 1

0 �
�
S2ðlmÞ � S2ðlm∪liÞ

�
; (5)

where 1 is a column vector of ones. Using Ds
2 as the utility2 of each

wavelength, we select the next wavelength randomly but with
probability3:

pðliÞ �
Ds2PM
i¼1 Ds2

i

; (6)

This strategy allows the sampling process to adapt to previous
observations and sample unexplored areas. Our implementation
allows each wavelength to be sampled multiple times; this helps
de-noise measurements at critical wavelengths by averaging mul-
tiple observations.

2.2. Shrinkage non-negative least squares

Following absorption measurements at each new set of nwave-
lengths,weusenon-negative least squares (NNLS) togenerate anew
solution vector x. Our NNLS solver is based on the original solver by
Lawson [14], but uses a post-processing step to sparsify the NNLS
solution.4 Namely, we sequentially eliminate the least significant
component in the solution vector (i.e., the one with the lowest
concentration) until a measure of model complexity ceases to
improve. Two measures of complexity are commonly used: the
Akaike informationcriterion (AIC) [15] and theBayesian information
criterion (BIC) [16]. Both criteria encourage parsimony bypenalizing
model complexity, butBIC's penaltygrowsstrongeras thenumberof
measurements increases eBIC assumes that only one true model
exists.5 Since our goal is to recover the mixture constituents (which
implicitly assumes a true model must exist), we chose BIC for the
shrinkage criterion. The BIC score can be calculated as:

BIC ¼ �2 logðL Þ þ nlogðmÞ (7)

where n is the number of non-zero components in the solution x (a
measure of model complexity);m is the number of measurements;
and L is the likelihood of the model, which can be calculated as:

L ¼
�
2ps2

��n
2 exp

�
� 1
2s2

ðb� AxÞTðb� AxÞ
�
: (8)

where s is the spread of the Gaussian noise, and (b�Ax)T(b�Ax) is
the sum squared error. Table 1 shows the pseudo-code of the BIC
guided shrinkage method.

2.3. Exploitative stage

The goal of the initial explorative stage (section 2.1) is to
reconstruct the spectrum as closely as possible. As such, the
explorative stage has a tendency to overfit the observations by
2 The utility is a scalar that indicates the importance of each wavelength at a
particular time, in terms of how much uncertainty would be reduced if absorption
at that wavelength was measured; see equation (5).

3 To initialize the explorative stage of wavelength selection, the first wavelength
is selected randomly from the uniform distribution p(li) ¼ 1/M.

4 Lawson's NNLS solver generates a feasible solution that normally fits the ob-
servations within machine precision. However, for mixture identification with
noisy observations, overfitting often leads to the addition of unneeded components
(i.e. false positives) to the solution vector x.

5 Asymptotically, the BIC score reaches the lowest point when a true model is
found [16].
adding new constituents (false-positives) to the solution. This
problem occurs when the ground truth is sparse (i.e., the mixture
consists of only a few components) and becomes worse as the size
of the reference library grows. To address this issue, we switch to an
exploitative strategy at the later stages of sensing that allows us to
further sparsify the sNNLS solution. Our approach works as follows.
Recall that sNNLS generates an overfitting solution x0, and then
sparsifies it to x via the shrinkage method in Table 1. Chemical
constituents eliminated during this shrinkage step are potential
confounders (i.e., false-positives). Accordingly, during the exploi-
tation stage we select wavelengths according to their ability to
discriminate between these false-positives and the remaining
constituents in the solution, which we treat as an approximation of
the ground truth. Fig. 4 illustrates this process. Let x' (p' non-zero
entries) be the overfitting sNNLS solution, and x (p < p' non-zero
entries) be the sparsified sNNLS solution. Let xZ be the concentra-
tion of the eliminated entries xZ ¼ fxZ1 ; xZ2 ;…; xZzg with
indicesZ ¼ fZ1;…;Zzg. To determine the next wavelength to be
sampled, we project each eliminated component back to absor-
bance bZi ¼ AZixZi where AZi is the corresponding Zith column
vector in the library matrix A. Then, we calculate the Fisher's Linear
Discriminant Analysis (LDA) solution for the binary discrimination
problem (class1¼{b}, class2 ¼ fbZ1 ;…;bZzg), where
b ¼ b

0 �Pz
i¼1bZi . The LDA solution (a rotation vector w) provides

the direction of maximum discrimination between the final
mixture b and the eliminated components fbZ1 ;…;bZzg. Accord-
ingly, wavelength selection during the exploitative stage follows a
random sampling scheme with sampling probability proportional
to the absolute value of the linear discriminant jwj:

pðliÞ �
jwijP jwij

: (9)
2.4. Switching between exploration and exploitation

The transition from exploration to exploitation (and vice versa)
is signaled by the complexity of the solution. Namely, exploration
continues for as long as the complexity of the solution continues
to increase when more wavelengths are added. Denoting by p(t)

the number of non-zero elements at step t, exploration continues
for as long as p(t) > p(t�1), and exploitation starts whenever
p(t) � p(t�1). The algorithm can return at any time from exploita-
tion to exploration (i.e., if p(t) > p(t�1)), though in practice this
rarely happens.

Estimation results for GPR and sNNLS are illustrated in
Fig. 5(aeb) for low-resolution IR spectra from a Fabry-Perot
Interferometer and a library with 8 chemicals esee section 3 for
details. The example in Fig. 5(a) shows a case where GPR ap-
proximates the ground truth accurately, whereas that in Fig. 5(b)
shows a case where it does not. In both cases, however, the sNLLS
reconstruction is nearly indistinguishable from the ground truth,
regardless of the GPR reconstruction error. The reason for this
result is that GPR is only guided by the covariance matrix,
whereas the sNNLS solver has access to the library matrix A,
which introduces additional constraints about which solutions
are feasible. This result is further illustrated in Fig. 5(c,d) for high-
resolution Fourier Transform Infrared (FTIR) spectra and a library
with 500 chemicals esee section 5 for details. Despite the large
discrepancy between GPR and ground truth in certain regions of
the spectrum, the sNNLS solver is able to find a (sparse) solution
vector that matches the ground-truth ethe example in Fig. 5(d)
was chosen to show that the GPR and ground-truth curves are
actually different, which may not be obvious from the other three



Table 1
Pseudo-code for the BIC guided shrinkage procedure.

Fig. 4. Illustration of exploitative wavelength selection. Wavelengths are selected to
maximize discrimination between the reconstructed spectrum for the sparse sNNLS
solution and the reconstructed spectrum of those constituents that were removed
from the solution during the sparsification step.

Fig. 5. Reconstruction results on (aeb) low-resolution spectra from the Fabry-Perot Inte
Webbook database [17].
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figures.
3. Materials

We evaluated the proposed active wavelength selection algo-
rithm on a prototype chemical detection instrument based on a
tunable Fabry-Perot interferometer (FPI). Illustrated in Fig. 6(a), the
instrument consists of a broadband IR lamp that illuminates the
sample in a gas cell, where IR radiation is absorbed at different
wavelengths depending on the chemical makeup of the sample; a
focusing lens that projects the transmitted radiation onto the FPI
sensor; and the FPI sensor itself, which can be tuned to sample one
rferometer described in section 3, and (ced) high-resolution spectra from the NIST



Fig. 6. Diagram of (a) the sensing system and (b) the sample delivery system.

Table 2
List of chemicals used in the experiments, and their major components.

Chemical label Components

Propanol Propanol
Acetone Acetone
Ethyl alcohol Ethyl alcohol
Isopropyl alcohol Isopropyl alcohol
Tert-Butyl alcohol Tert-butyl alcohol
Denatured alcohol Ethyl alcohol, methanol
Brush cleaner Raffinates, acetone, methanol
Lacquer thinner Toluene, methanol, hexane, light aliphatic naphtha

Fig. 7. The spectra of the eight chemicals collected from the FPI sensor.
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individual wavelength at a time by adjusting the distance between
the two mirrors in the FPI. For the experiments described here, we
used a mid-infrared FPI (LFP-80105, InfraTec GmbH) with 107
tunings (absorption lines) in the range 8e10.5 mm, coupled with a
collimated broadband IR source (INTX 20-1000-R; EOC, Inc.)
modulated at 10 Hz and 50% duty cycle. We mounted a 10 cm gas
cell (66001-10A; Specac, Inc.) with ZnSe window (602L08; Specac,
Inc.) and a ZnSe focusing lens (LA7542F, Thorlabs, Inc.). The FPI, IR
source and sample cell were mounted onto an opto-mechanics
fixture (Thorlabs, Inc.) to ensure precise alignment. The FPI device
was controlled using Matlab™ through a USB evaluation board
provided by the vendor. We demodulated the FPI signals using the
discrete-time Fourier transform (DTFT6):

Pf ¼ T
X∞

n¼�∞
sðnTÞ$e�i2pfnT : (10)

where f corresponds to the frequency of interest (10 Hz), s(,) rep-
resents the time-series signal from the FPI, which contains the
10 Hzmodulation from the IR source, T corresponds to the sampling
interval, and n denotes the sample index.

Gas samples are delivered to the sample cell as illustrated in
Fig. 6(b). Vapors from the headspace of 30mm glass vials are drawn
using negative pressure with a pump connected downstream from
the sample cell. The pump is modulated at 0.125 Hz with 20% duty
cycle to avoid exhausting the headspace and therefore keep the
sample concentration relatively stable. Two diluters (1010 precision
gas diluter, Custom Sensor Solutions, Inc.) independently mix the
foreground and background sample vapors with dry air. Since
water and carbon dioxide have major peaks outside of the FPI range
(8 e 10.5 mm), air has a negligible contribution to the spectrum.
3.1. Chemical library and mixtures

For experimental validation purposes, we selected eight VOCs e
five pure chemicals and three household paint-thinners e with
absorption peaks in the range of our sensor (8e10.5 mm). Table 2
lists the eight chemicals and their effective components. Sample
spectra from these chemicals, as measured by the FPI, are shown in
Fig. 7. Experiments were conducted in a laboratory environment at
a temperature of 22.2 �C and standard atmospheric pressure of
760 mmHg.

The large number of potential mixtures for these eight
6 We used the continuous frequency DTFT in contrast to the more common
discrete frequency DTFT because the target frequency needs to coincide with the
modulating frequency (10 Hz) to achieve the highest accuracy.
chemicals (28�1 ¼ 255) means that only a small portion of these
testing mixtures can be tested, and even fewer of them resolved
given the low spectral resolution of our FPI device. Rather than
selecting mixtures randomly from this large space, we instead
decided to carefully select a small number of mixtures that would
allow us to characterize the active-sensing framework across a
broad range of problems: from simple mixtures (single component,
distinctive) to complex mixtures (multiple components, and less
distinctive). Specifically, we use condition numbers7 to measure the
correlation among spectra within a set A. Given a mixture with
components S, we compute their contribution to the condition
number of the library A as:

Ds ¼ condðAÞ � condðA�SÞ (11)

where cond(,) denotes condition number, A contains all the refer-
ence spectra and A�S contains all reference spectra except the S
constituents in the mixture. Intuitively, the higher this number is,
the more correlated these S analytes are to the rest of the constit-
uents in the library, and therefore the harder it is to distinguish
them from other constituents.

Using this measure, we ranked the 255 possible mixtures and
selected a subset of them for further testing (shown in Table 3).
Mixtures with difficulty scores above DS > 120 were not considered
since they cannot be identified reliably using the low-resolution
spectra provided by our FPI device. Instead, we supplement our
experimental validation (section 4) with results on synthetic data
from a database of high-resolution spectra from Fourier-transform
infrared spectrometry (section 5).
7 The condition number is an indication of how stable a linear system is: how
much the estimation x can change given small variations in the observation b. It is
calculated as cond(A) ¼ smax(A)/smin(A), where smax and smin are the maximum and
minimum singular values of A, respectively. If matrix A has collinear columns (i.e.,
the underlying chemicals are similar), it will have a large condition number.



Table 3
Analytes and mixtures used for experimental validation along with their Difficulty
scores, computed according to equation (11).

Analyte Abbreviation # Components DS

Tert-Butyl alcohol TBA 1 48
Ethyl alcohol EA 1 55
Isopropyl alcohol IA 1 57
Tert-Butyl alcohol þ brush cleaner TBA þ BC 2 65
Denatured alcohol DA 1 75
Denatured alcohol þ tert-butyl alcohol DA þ TBA 2 96
Lacquer thinner LT 1 98
Lacquer thinner þ isopropyl alcohol LT þ ISA 2 105
Brush cleaner þ acetone BC þ ACT 2 120
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4. Results on experimental data

In a first experiment, we examined the global smoothness
parameter r in equation (4). For this purpose, we collected five
replicate spectra for each chemical (5� 8 spectra) at 100% con-
centration to achieve the highest signal-to-noise ratio. For each
setting of parameter r, we generated a smoothed spectrum for each
replicate. Then, for each chemical, we removed one of the 5 repli-
cates and computed the mean squared error (MSE) between that
replicate and the average spectrum of the remaining four replicates
(i.e., in a leave-one-out fashion). We repeated this process with
parameters ranging from r ¼ 0.2 mm to r ¼ 2 mm for each chemical,
and calculated the average MSE as the performance metric. As
illustrated in Fig. 8, a smoothing value of r ¼ 1.2 mm provides the
optimal performance, which suggests that our sensor has an
effective resolution of 1.2 mmwhen GPR is used for reconstruction.
This value of the smoothness parameter was used for the remaining
experiments.

In a second experiment, we compared our active wavelength-
selection algorithm against a state-of-the-art passive algorithm,
which served as a baseline. The passive algorithm was the succes-
sive projection algorithm (SPA) of Araújo et al. [7], which we
implemented in Matlab™ following the description in Ref. [7]. SPA
is a greedy algorithm that uses the sequential orthogonal pro-
jections of the Gram-Schmidt procedure. SPA iteratively adds one
wavelength at a time: the one that is minimally correlated to the
previously selected wavelengths. In this way, SPA ensures that the
selected set of wavelengths is minimally redundant. To keep other
variables invariant, we only replace the wavelength selection al-
gorithm (that is, the inner loop in Fig. 2) with SPA.

To avoid making assumptions about which chemical is present,
we trained SPA on reference spectra from the eight chemicals in our
library, collected using our FPI device. The acquired SPAwavelength
sequence then replaced the inner-loop in our framework. For
evaluation purposes, we ran both algorithms until each converged
Fig. 8. Reconstruction error as a function of the smoothing parameter (r) in equation
(4).
to the ground truth, which we defined as the algorithm identifying
the analyte correctly for ten steps in a row, or until an upper limit of
200 steps was reached, in which case the algorithms were halted.
Thus, the number of wavelengths used by each method was
different, depending on how many observations were needed to
reach convergence. We compared the two algorithms on the basis
of three criteria:

- Efficiency, measured as the total number of steps needed to
converge (excluding the ten steps required for confirmation).
Instances where the algorithm reached the 200-step limit were
not included in this measure. The lower this number, the more
efficient the wavelength selection strategy is.

- Stability: measured as the standard deviation of the number of
steps required to converge. As with efficiency, instances where
the algorithm reached the 200-step limit were not considered.
The lower the standard deviation is, the more stable the algo-
rithm is.

- Reliability: measured as the proportion of times the algorithm
converged to the correct solution within the maximum of 200
steps; i.e. converging to the wrong solution was treated as fail-
ure to converge. The higher the classification rate is, the more
reliable the algorithm is.

We tested both algorithms 25 times for each of the analytes in
Table 3, for a total of 9 � 25 ¼ 225 tests. The sequence of tests was
selected randomly to eliminate ordering effects, and the gas cell
was purged with air before each test to avoid residual buildup.
Fig. 9(aec) summarizes the results in terms of efficiency, stability,
and reliability, respectively. Our active framework outperforms SPA
across analytes both in terms of efficiency and stability. However,
the performance gap diminishes as the complexity of the analyte
increases. This is an expected result because the more complex
chemical identification problems require an increasingly broader
coverage of the spectrum, which eventually becomes equivalent to
using a passive strategy. Efficiency and stability allow us to compare
the two strategies when they reach a solution within the allotted
200 steps. In contrast, the last measure (reliability) considers all
instances – those for which the algorithm converged, and those for
which it did not – to determine how often each particular strategy
found the correct solution. The results in Fig. 9(c) show that the
active strategy has a higher likelihood of finding the correct solu-
tion than SPA.While SPA struggles to find the correct solution, even
Fig. 9. Performance comparison between active and passive wavelength selection on
experimental data in terms of (a) efficiency, (b) stability, and (c) reliability.



5 10 15 20 25 30 35 40 45 50

Fig. 10. Performance comparison between active and passive algorithms as a function
of the number of components in the mixture: (a) efficiency, (b) stability, and (c) reli-
ability. (d) is a close-up view of (c).

Fig. 11. Relative sparsity of the solution for the active and passive algorithms during
the first 100 steps for mixtures with increasing number of components
m ¼ {1, 11, 21, 31, 41, 51}.
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for simple analytes (such as TBA, EA, IA), the active strategy iden-
tifies the correct chemical the vast majority of the times.

5. Results on synthetic data

To provide a more thorough evaluation than what is possible
experimentally, we also analyzed the active sensing algorithm on a
large dataset of synthetic IR spectra. The dataset contained Fourier
Transform Infrared (FTIR) spectra with 660 spectral lines from 500
chemicals in the NIST Webbook database [17]. To simulate the
potential spectral resolution of FPIs, we convolved the FTIR spectra
with a Gaussian filter of 0.1 mm spread. Each spectrum was then
normalized to sum up to one. For the experiments that follow, we
compared our active sensing algorithm against SPA. In all cases, we
allowed the algorithms to sample each wavelength multiple times.

The difficulty of a mixture problem can vary dramatically, e.g., a
badly conditioned two-component mixture can be unsolvable
while a well-conditioned 20-component mixture can be easily
identified. For this reason, we designed a mixture construction
policy so that the chosen problems would be neither trivial nor
unsolvable. Namely, we randomly selected a large number of 50-
component8 mixtures and calculated their classification rate with
a set noise level.9 We then selected five mixtures that could be
correctly classified 1%e10% of the times. For each of these five 50-
componentmixtures, we sequentially removed one component at a
time to form chemical mixtures of a lower order; this process en-
sures a gradual transition in problem complexity from hard to easy.
For each of the resulting 250 mixtures (50 � 5), we evaluated the
active and passive algorithms 40 times, each time with randomly
added noise, for 10,000 cases. The maximum number of allowable
measurements was set to 5,000.

Following procedures described in section 4, we used the
average number of steps to converge, variance, and classification
rate as measures of efficiency, stability, and reliability, respectively.
Fig. 10(aeb) shows the average and standard deviation of the
number of measurements required to converge, averaged over 200
tests (40 � 5) per mixture. These results are consistent with those
in the experimental section, and show that active sensing out-
performs its passive counterpart across all analytes. As before, the
“active-sensing advantage” diminishes as the number of constitu-
ents in the mixture grows; for a mixture of 50 chemicals, active and
passive algorithms have similar efficiency. In terms of stability,
however, the active algorithm remains significantly more stable
than the passive approach across all mixtures. This is an added
advantage of using an approach that adapts to the characteristics of
each analyte. Lastly, Fig. 10(c) shows the reliability of the two al-
gorithms, measured as the classification rate across all tests
eregardless of whether or not they converged. Active sensing
maintains a 100% classification rate up until 50-component mix-
tures, whereas its passive counterpart fluctuates and rarely reaches
a 100% classification rate esee Fig. 10(d) for a close-up view. Both
algorithms collapse for mixtures containing more than 50 com-
ponents,10 which suggests that themeasurements have reached the
intrinsic dimensionality of the underlying linear system.

In a final experiment, we examined the exploration and
exploitation stages independently. If we consider the concentration
8 We also evaluated mixtures containing more than 50 constituents. However,
classification rates for both algorithms collapse to nearly zero as the number of
constituents goes beyond 50. This suggests that the solver has reached the
maximum effective resolvability of the spectral library.

9 We added white noise with standard deviation at 1% of the median value of all
absorption spectra in the library.
10 In reality, because of nonlinear interactions between constituents, the linear
model we are using here will not be reliable enough for higher-order mixtures.
space x, the exploration stage tends to add more constituents to
reduce the reconstruction error of the spectrum, whereas the
exploitative stage tends to remove constituents to accelerate
convergence. Thus, the sparsity of the solution vector x is a good
indicator of how well each stage performs. Let the relative sparsity
of solution x be measured as p ¼ kxk0=kxtruek0 where xtrue denotes
the ground truth and k$k0 denotes the l0 norm of a vector (i.e.,
number of non-zero entries). Fig. 11(a) shows the average relative
sparsity for 1-component analytes whenwe increase the number of
steps from 1 to 100 for both methods. During exploration, the
complexity of the solution increases monotonically until



Fig. 12. Evolution of the solution space for (a) active and (a) passive wavelength selection. The inset on top of (a) denotes when the active sensing algorithm switches between
explorative and exploitative search.
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approximately eight measurements; this result suggests that as few
as eight steps (out of 660wavelengths) suffice to capture the overall
structure of the spectrum using GPR. Compared to the passive al-
gorithm, active sensing grows the solution more slowly during
exploration, which reduces the overshoot and consequently ac-
celerates convergence during the exploitation stage. During the
subsequent exploitation stage, the active algorithm arrives at the
ground truth relatively early (less than 40 steps) whereas the
passive method takes an extra 60 steps. Fig. 11(bef) shows the
average sparsity over time for mixtures containing 11, 21, 31, 41 and
51 components. The “active-sensing advantage” is most prominent
at lower-order mixtures; as the complexity of the mixture grows,
both methods take more steps to convergence. In the extreme case
of a 51-component mixture, the exploitative stage becomes inef-
fective. This result suggests that the system has reached the
maximum resolvability of the spectrum for the given spectral li-
brary and noise level. Interestingly, even in this extreme case, the
explorative stage maintains a more controlled complexity growth
rate than the passive algorithm.

Finally, we illustrate how the solution space evolves for the two
algorithms: passive and active. For this purpose we choose a 15
chemical mixture problem, and only show the first 250 chemicals
in the solution space. Results are shown in Fig. 12; white horizontal
traces represent non-zero elements in the solution. As shown, the
active sensing algorithm converges faster to the solution and its
intermediate solutions contain fewer false positives than those of
the passive sensing algorithm. As active sensing aggressively le-
verages any intermediate results to sparsify the false-positives,
additional measurements are beneficial. In contrast, since the
passive algorithm always assumes each constituent is equally likely,
it is more likely to introduce irrelevant wavelengths as the number
of sensing steps increases.
11 In our experience, this number is in the order of 10% of the number of chemicals
in the library, but the number depends on the complexity of the library. On a library
containing many similar spectra the number would be lower than in a library in
which spectra are orthogonal.
6. Conclusions

Off-line wavelength selection strategies work well for multi-
component calibration, where the identity of the target analytes is
known and one seeks to estimate their relative concentration in the
mixture. Because the optimal set of wavelengths is analyte
dependent, knowledge of the mixture components ensures that an
optimal set does exist. Wavelength selection becomes more chal-
lenging when the mixture components are unknown, as is the case
in mixture identification problems. In mixture identification, the
goal is to identify the constituents in a mixture from among a long
list of chemicals in a large spectral library. The combinatorial nature
of this problem makes it a poor match for off-line wavelength se-
lection strategies. Instead, mixture identification problems require
an adaptive strategy to wavelength selection.

To address this need, we have proposed an active sensing
strategy that interleaves wavelength selection with the sensing
process. The algorithm operates in two distinctive regimes: an
exploration stage (based on Gaussian processes) that selects
wavelengths to minimize the reconstruction error of the spectrum;
and an exploitation stage (based on Linear Discriminant Analysis)
that selects wavelengths to sparsify the intermediate least squares
solutions. Both stages are unsupervised, and do not require the
conventional training-validation process. The method is also
computationally efficient, making it suitable for portable platforms
with limited computation resources.

We evaluated our approach on experimental data from a Fabry-
Perot interferometer and synthetic data from high-resolution FTIR
spectra, and compared it against a state-of-the-art passive strategy
(the successive projection algorithm). For the experimental com-
parison, we use single components and binary mixtures from a li-
brary of eight chemicals. For a more comprehensive evaluation, we
used synthetic data containing up to 50-component mixtures from
a library of five hundred chemicals. Both experimental and simu-
lation results suggest that the active approach outperforms passive
approach in terms of efficiency, stability, and reliability. Our results
e both experimental and in simulation e show an “active-sensing
advantage” for mixtures containing a few11 components.
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