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1. Introduction
Desired properties of a chemical sensor include high

sensitivity, a large dynamic range, high selectivity or
specificity to a target analyte, related low cross-sensitivity
to interferents, perfect reversibility of the physicochemical
detection or sensing process (short sensor recovery and
response times), and long-term stability of the sensor and
sensing material.1-9 Unfortunately, a sensor exhibiting all
these properties is a largely unrealizable ideal. Sensor
sensitivity, selectivity, speed of response, and reversibility
are determined by the thermodynamics and kinetics of sensor
material/analyte interactions. In particular, high sensitivity
and specificity on the one hand and perfect reversibility on
the other hand impose contradictory constraints on the sensor
design: high sensitivity and selectivity are typically associ-
ated with strong interactions, whereas perfect reversibility
requires weak interactions. Consequently, it is necessary to
compromise, and, in most cases, sensors showing partial
selectivity to only some of the detected species are used to
ensure reversibility. The output of an individual sensor
consists of, e.g., a certain current value measured at a fixed
potential or a resistance value of a certain material in
response to a chemical stimulus.1-9 This means that, usually,
one feature per sensor is monitored at a time, preferably
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during an equilibrium-type or steady-state-type situation, in
which a certain analyte concentration can unequivocally be
correlated to the resulting sensor response. Individual sensors
and the analysis of the respective individual signals or
features, however, show limited selectivity performance in
most practical applications, as mentioned above. Therefore,
arrays of several sensors are commonly used, which effec-
tively extends the “feature space”. A feature space is an
abstract space in which each sample (e.g., sensor measure-
ment value) is represented as a point inn-dimensional space,
whose dimension is determined by the number of features
evaluated. Features are the individual measurable heuristic
properties of the phenomena being observed, in our case,
e.g., sensor measurement values. The acquired information
is then processed using pattern recognition and multicom-
ponent analysis tools.10-12 Increasing the measurement or
feature space dimensionality is an attractive approach to
obtain a substantial improvement in analytical capabili-

ties,13,14 provided that the additional dimensions carry
complementary information and provided that suitable data-
analysis techniques are used, i.e., techniques to handle small
numbers of samples.

The notion of “order” has been frequently used in
instrumental analysis to categorize the dimensionality of the
feature space and, consequently, the richness of the informa-
tion obtained by a certain device or analytical instrument15,16

and can, within certain limitations, also be applied to sensor
or sensor array configurations.17

A zero-order device or sensor would be a single, more-
or-less specific sensor. This sensor would be aimed at the
detection of a certain target compound. However, it would
not be possible to perform any reliable analyte quantification
in the presence of interferents. Even worse, there would not
be any evidence to let the operator know that the measure-
ment had been influenced by interferents.

A first-order device is then a sensor array, the sensors of
which differ in one domain, i.e., an array of identical
transducers such as chemoresistors featuring different sensi-
tive materials or layers or an array of chemoresistors featuring
the same sensitive material but operated at different
temperaturessprovided that temperature has a distinct effect
on the sensor selectivity. This is the case for, e.g., high-
temperature metal-oxide-based sensors.18-22 A prerequisite
for the successful use of such first-order devices is the
establishment of a calibration model that includes the signals
of the species of interest and of all possible interferents. Then,
multicomponent analysis and outlier detection will be pos-
sible, but any unexpected interferent will invariably upset
the respective predictions. In other words, the calibration of
a first-order array allows interferences to be detected but not
to be compensated for.

This problem can be addressed by using second-order or
higher-order sensor devices. These devices utilize analyte
characteristics in at least two domains, which should be
ideally orthogonal, or, inasmuch as possible, independent
from each other (see section 6.2 for a definition of these
terms). Under certain conditions, the calibration of second-
order instruments allows the target analytes to be quantified
even in the presence of unknown interferents; this property
is commonly referred to as the “second-order advantage”.23

Additional potential benefits of second-order devices include
the ability to perform calibration with a single mixture sample
and recover the response profiles of the individual target
analytes.24

Higher-order sensor devices can, according to a paper
published by Go¨pel,25 be generated by making use of various
features to be exploited in chemical sensing. Though the
estimated overall number of features may be overly opti-
mistic (Figure 1), in particular with regard to “independent
features”, it may be interesting to briefly summarize the
findings of this paper. The number of sensitive materials to
convert a chemical into, e.g., electrical information is
estimated to be on the order of 108, the number of suitable
transducers (e.g., chemoresistor, microbalance, optical fiber,
etc.) is estimated to be∼101, the number of transducer
geometries (e.g., electrode distance, shape, etc.) is estimated
to be on the order of 102, and the features that can be added
through variation of modulation of external (e.g., gas
switching strategies, use of filters, catalysts, etc.) and internal
parameters (e.g., light frequency, operation temperature, bias
voltage, etc.) is estimated to be on the order of 102. The
distinctive way to modulate these parameters (e.g., stepwise,
sinusoidal, ramp, etc.) is assumed to account for an additional
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102 features, and, finally, multiple modulations that can be
performed simultaneously (e.g., simultaneous variation of
bias voltage, temperature, and gas flow) are assumed to
account for another 106 features. While the above consid-
erations are of hypothetical nature, and the number of viable
parameters and realizable variations will be massively lower,
the exercise shows that a large variety of parameters is
available that can be used to identify or quantify a specific
analyte or complex mixture.

Higher-order (i.e., “hyphenated”) instrumentation, such as
the combination of gas chromatography (GC) and mass
spectrometry (MS), is vastly used in modern laboratory
analytical chemistry. Although the data-analysis methods
applied to sensor and analytic-instrument data are mostly
the same, there is no direct analogy between the preprocess-
ing of a sample to separate it into multiple, less complex
samples that are then characterized by an analytical method
and the attempts to enhance the selectivity of a set of sensors
by modulation of physical parameters. Yet, it is striking that
higher-order methods are still uncommon in the field of
chemical sensors. This holds particularly true, since the
higher-order advantage may be important due to unpredict-
able changes in the sample matrix composition. This situation
is arguably a consequence of the requirements for sensors
or sensor systems, which include low costs, small physical
size, and ease of use. The progress in micro- and nanotech-
nology, microelectronics, and in data-processing speed and
capability will help to address many, if not all, of these
issues:26-30 rather complex and versatile microsensor and
microanalysis systems operable directly through standard
interfaces from a laptop or palmtop by means of standard
software are already available, as will be also demonstrated
in this article.

1.1. Integrated versus Discrete Sensor Arrays
In this context, we want to address the advantages and

disadvantages of integrated or even monolithic multisensor
arrays or systems versus the use of sets of discrete sensors
and electronics, particularly, since both types of sensor arrays
or systems will appear in the following sections. There is a
number of aspects that have to be taken into account, which
will be briefly discussed here.31

1.1.1. Materials and Fabrication Processes
For monolithic designs or integrated systems, the selection

of materials is restricted to a few, e.g., CMOS-technology-
related materials and CMOS-process-compatible materials,
as well as to a set of specific fabrication steps32 (CMOS
technology, complementary-metal-oxide-semiconductor tech-
nology, is an industrial standard fabrication technology for
integrated circuits on silicon microchips). High-temperature
steps (e.g.,>400 °C) can be detrimental to metallizations
(metal oxidation, diffusion) and may alter semiconductor

characteristics. For hybrid or discrete devices, any material,
or the optimum sensor material, can be used, and a wealth
of fabrication techniques is available.

1.1.2. Performance

Microsensors frequently also generate “microsignals”, and
perform pronouncedly better in monolithic designs owing
to the fact that the signals can be conditioned at the site of
generation (filters, amplifiers, etc.), e.g., by means of on-
chip electronics, so that the influence of parasitic and
crosstalk effects can be reduced.33,34On-chip analog-to-digital
conversion is another feature that helps to generate a stable
sensor output that can be easily transferred to off-chip units.
For hybrid or discrete microsensors, it is sometimes very
difficult to read out rather minute analog sensor signals.

1.1.3. Auxiliary Sensors/Smart Features

Temperature or flow sensors can be monolithically co-
integrated with the chemical sensors on the same chip.
Calibration, control, and signal processing functions as well
as self-test features can be realized on-chip. For hybrid
designs, additional devices and off-chip components are
required.

1.1.4. Connectivity

The number of electrical connections prominently con-
tributes to the overall system costs (failure probability and
packaging costs). The monolithic implementation of, e.g.,
an array of gas sensors (see also later in this article) with
multiplexer structures and interface units requires only a few
connections.33,34 A hybrid/discrete approach will require
many more connections, since each sensor has to be
individually addressed and since there are no interface units
available on the sensor side.

1.1.5. Sensor Response Time

The response time of, e.g., a gas sensor array is, in most
cases, determined by the volume of the measurement
chamber and the flow rate (other relevant processes include
also analyte diffusion or dissociation). Using the monolithic
or integrated approach and a suitable packaging technique,
such as flip-chip packaging, the volume of the measurement
chamber can be kept very small as a consequence of a small-
size, flat and planar sensor or sensor array. Therefore,
parameter modulation, such as flow variations or dynamic
protocols, can be easily realized. For hybrid or discrete
arrays, the volume is dependent on sensor geometries and
array arrangements.

1.1.6. Package

To package monolithic designs, microelectronics-derived
packaging techniques can be modified and adapted, such as

Figure 1. “Hyperspace” of chemical sensor features with more than 1021 independent features according to Go¨pel. Redrawn with persmission
from ref 25. Copyright 1998 Elsevier.
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flip-chip technology or simple epoxy-based packaging
methods. Hybrid implementations require complex packages
to reduce sensor interference (e.g., high-frequency acoustic-
wave sensors), to minimize electric crosstalk, and to optimize
the critical connections. This further complicates the already
difficult task of chemical sensor packaging.

1.1.7. Summary
The main disadvantages of integrated or monolithic arrays

or systems include the restriction in materials and the limited
choice of fabrication processes and steps. On the other hand,
integrated systems offer unprecedented advantages over
hybrid or discrete arrays, especially with regard to signal
quality, device performance, increased functionality, and
available packaging solutions.35 These advantages, in our
opinion, clearly outweigh the drawbacks and limitations.31

In the case of well-established physical sensors, such as
acceleration and pressure sensors, a trend toward integrated
monolithic solutions can be identified for large production
volumes and severe cost restrictions.

1.2. Outline
The topic of this review is “higher-order devices”, i.e.,

neither single sensors nor homogeneous transducer arrays
featuring only different coatings will be treated any further.
The latter constitute, according to the text in the introduction
above, a first-order system, since analyte exposure generates
a one-dimensional data vector (row or column). In some
publications, an array of sensors with different coatings is
referred to as a zero-order array,9 with an array being itself
a first-order device. We here prefer to use a categorization
according to the data output format (0th order, single value;
first order, vector; second order, matrix; third order, tensor;
etc.).

We decided to apply a rather broad scope in this review
in order to give the reader a comprehensive overview on
strategies to increase the information that can be extracted
from sensor systems or arrays. In section 2, devices consist-
ing of arrays of identical transducers (with different coatings)
will be described, for which an extension to a higher order
has been realized by adding additional dimensions such as
time (sensor dynamics and transients) or by varying internal
and external operation parameters such as temperature
modulation or the use of a catalyst for analyte decomposition.
In this section, it will also be shown how different informa-
tion, e.g., in the physical and chemical domains, can be
extracted from an array of identical transducers. Section 3
focuses on different monolithic and discrete sensor arrays
making use of more than one transduction principle. In
section 4, we will briefly describe practical measurement and
setup considerations for using multitransducer sensor arrays
and for recording transients or applying parameter variations.
Section 5 includes sensor-based complex microanalytical
systems, consisting of preconcentration, separation, and
detection stages. In section 6, we will discuss the relations
between dimensionality, information, cross-selectivity, and
redundancy, concepts that are important when dealing with
higher-order sensor systems. Section 7 presents a review of
two important data preprocessing procedures for chemosen-
sors: baseline correction and scaling. Section 8 will be
dedicated to methods for drift compensation. In section 9,
we will review computational methods to extract information
from transient and temperature-modulated responses of
chemosensors. Section 10 is dedicated to multivariate

calibration for higher-order sensing, with an emphasis on
multiway and dynamical models. Section 11 will include
methods to optimize arrays for specific applications, includ-
ing sensor selection, feature selection, and optimization of
temperature programs. This article will be concluded by a
short summary and outlook.

Before embarking upon the subject of multisensor arrays,
there is a last note on terminology. The term “electronic
nose” has been very popular for more than a decade to
describe multisensor and multitransducer arrays.6,36,37 We
believe, however, that this term can be very misleading for
several reasons. Following a definition of Gardner and
Bartlett, an “electronic nose” is “an instrument comprising
an array of electronic chemical sensors with partial specificity
and an appropriate pattern recognition system, capable of
recognizing simple or complex odors”.6,36,37The majority of
such “electronic noses” may be capable of differentiating
between analytes or analyte mixtures from the headspace of
different foods or beverages, but, in most cases, the sensor
response patterns cannot be directly correlated with human
olfactory perception. Another more important point concerns
the general applicability implied by the term “electronic
nose”. Most of the sensor systems perform well in certain
key applications, but there are few systems, if any, that
exhibit the enormously broad applicability spectrum, at once
including the sensitivity and discriminating power of a human
or animal nose. In addition, successful sensor systems have
to be designed and optimized with the key application in
mind to guide the selection of coatings, transduction mech-
anisms, etc. As yet, however, there is no universally
applicable system that invariably provides satisfactory per-
formance under all circumstances. Therefore, we will use
this term sparingly and only in quotation marks. Similar
considerations apply to “electronic tongues”, ion-sensitive
or lipid-film based sensors in liquid phase. An article on
“electronic noses” by Weimar38 is included in this issue.

2. Arrays and Systems Comprising Identical
Transducers

In this section, we will treat arrays of identical transducers
with, e.g., different coatings, for which an extension to a
higher order has been realized by adding additional dimen-
sions in the feature space. These additional dimensions may
include time (sensor dynamics and transients), or the
variation of internal and external sensor operation parameters
(temperature variation, use of a catalyst for analyte decom-
position). It will also be shown how information in the
physical and chemical domains can be extracted from
microarrays and microsystems. A short glance at differential
or ratiometric methods concludes this section.

2.1. Parameter Variations
Following Göpel and Weimar,25,39the parameters that can

be varied during sensor operation include internal parameters,
such as sensor temperature, electrode bias voltage, or
measurement frequencies, and external parameters, such as
the use of filters or catalysts to change the gas composition.

In looking at the literature, it is evident that one type of
internalvariation, the sensor operation temperature variation,
is very popular in particular for conductometric metal-oxide-
based sensors.40 This development has been fueled by the
appearance of microhotplates with low thermal mass,41 which
allow for millisecond-scale temperature variations, so that
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the temperature variations are faster or on the same time
scale as the chemical processes occurring during gas/metal-
oxide interaction. This enables effective gas discrimination
via the use of analyte-specific dedicated temperature profiles.
More details on temperature-modulation strategies can be
found in section 9.2 of this article, as well as in the articles
by Benkstein and Semancik42 and Nakamoto43 in this issue.

A variety of hotplate structures has been used including
membranes,18,41,44-47 spiderlike structures48-51 (see Figure 2),
and bridgelike structures.52 The most recent developments
in temperature-variable microhotplates include standalone
CMOS-based microsystems featuring temperature-control
loops, transistor heaters, digital circuitry, and standard
interfaces, which allow for the application of any arbitrary
temperature profile to three differently coated hotplates via
standard software and a USB interface.53,54

Besides microhotplate-based systems, there have been also
static approaches to temperature variation using 38 metal-
oxide sensor elements (the array features a noble metal
doping gradient) on a 4× 8 mm2 bulk silicon substrate
equipped with 4 meander heaters, which create temperature
gradients between 3 and 7°C per mm in the array area,
producing a temperature difference of 50°C over the
array.55-57 This system consumes up to 6 W at operation
temperatures between 300 and 400°C, which is 3-4 times
the power consumption of microhotplate-based systems per
detection spot or sensor.

The gas reactions at the metal-oxide surfaces and, hence,
the sensor selectivity or sensitivity patterns, are highly
depending on the operation temperature:1,58-66 carbon mon-
oxide is usually detected at lower operation temperatures
using a tin-oxide-based sensitive layer, whereas higher
temperatures are used for monitoring, e.g., methane. The
variation of the operation temperature of a single sensor or
a small set of sensors can lead to a degree of selectivity that
would otherwise require arrays of fixed-temperature sensors
and, thus, effectively extends the feature space of single
sensors or small arrays.

With regard to static, fixed-temperature sensors, the fast
temperature variation of microhotplates, which generates a
large set of “virtual” sensors, is clearly preferable due to
the almost infinite number of possible and target-analyte-
specific temperature-variation profiles (sinusoidal, ramp,
rectangular); the arbitrarily selectable temperature interval,

within which the variations can be realized; and the massively
lower instrumental complexity and overall power consump-
tion.

A temperature-modulation example is shown in Figure 3,47

which shows a sinusoidal modulation of the operation
temperature of a single tin-oxide sensor between 200 and
400 °C that produces characteristic frequency-dependent
resistance features. Resistance changes of the micromachined
sensor upon exposure to CO, NO2, and a mixture of CO and
NO2 in synthetic air at 50% relative humidity are displayed.
By applying this temperature-modulation profile and by using
fast Fourier transformation techniques for feature extraction
and data evaluation, a single sensor could be used to
qualitatively and quantitatively analyze a binary mixture.47

The authors ascribe the possibility to differentiate between
the two gases, CO and NO2, to the different reaction kinetics
of the two gases at the sensor surface and, in particular, to
the presence of oxygen species at the surface at low
temperature as a consequence of the fast temperature
modulation. These surface oxygen species would not exist
on the surface under equilibrium conditions at the lower
temperatures in the cycling range (200°C).47

Additionally, an example forexternalparameter variation
will be given, which includes the use of a catalyst located
upstream of the sensor array in the analyte gas inlet.67-69

The noble metal catalyst is heated to different temperatures
and decomposes (oxidizes) the incoming analyte molecules
or promotes chemical reactions of those. The resulting
reaction products are then detected by an array of, e.g.,
electrochemical sensors.67-69 By varying the catalyst tem-
perature, the sensor responses can be modified, and operation
regimes can be optimized for the detection of specific target
compounds. The catalysts included, e.g., rhodium or platinum
filaments.67-69 A test analyte pattern for 8 different electro-
chemical sensors (4 CO sensors, 2 hydrogen sulfide sensors,
1 sulfur dioxide sensor, and 1 nitrogen monoxide sensor)
and 7 different catalyst temperature steps is shown in Figure
4.67 The sensor-response patterns vary according to temper-
ature and sensor type upon exposure to the 19 analytes.
Again, the use of the catalyst generates virtual sensors and
efficiently extends the feature space.

2.2. Dynamic Methods and Transient Signals
The sensor-signal evolution over time can be used to

extend the feature space of a sensor array. The information
content that can be extracted from a transient signalf(t) is
considerably higher than that from a steady-state signalf;
whereas the steady-state signal is given by a single number
f, the transient signalf(t) provides a series of measurement
values at discrete time intervalst. More detailed information
on transient analysis can be found in section 9 of this article
and also in the article by Nakamoto43 in this review issue.
An example of transient signals is displayed in Figure 5,
which shows how the creation of exposure steps and
transients of varying length can help to discriminate between
methanol and ethanol using a polymer-coated capacitive
device.70

It is noteworthy that the recording of transient signals
stringently requires a dedicated gas manifold70,71(permanent
gas flows, crossover valves, small dead volumes between
valves and measurement chamber, and small-volume cham-
ber; for more information, see section 4.1 of this article), so
that the recorded dynamics represent the real sensor dynamics
and not those of the manifold or of the gas exchange in the
measurement chamber. The time required for a full exchange

Figure 2. Scanning-electron micrograph of microhotplates. The
suspended plates exhibit a polysilicon heater, an aluminum plane
for homogeneous heat distribution, and electrodes for measuring
the resistance of a semiconductor metal oxide. Reprinted with
permission from ref 51. Copyright 1998 American Chemical
Society.
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of the measurement chamber volume is often underestimated.
A recording of the setup and manifold dynamics using
sensors with very fast response times, e.g., sensors coated
with very thin sensitive layers,70 is, therefore, recommend-
able.

A wealth of parameters can be extracted from a sensor-
signal-versus-time representation and can be used as input
to multicomponent-analysis or pattern-recognition algorithms.
These parameters can include simple parameters like pulse
heights, derivatives, and integrals calculated directly from
the response curves or coefficients estimated from different
models of the transient response like polynomial functions,
exponential functions, or autoregressive models that have
been fitted to the response curves.72

For most types of sensors (metal oxides and polymer-based
sensors), the respective response times to reach equilibrium
state are on the order of tens of seconds. In general, there
are two different mechanisms determining the transient
sensor response upon a sharp analyte concentration increase
or decrease:73 (a) diffusion within the sensitive layer, whereat
the diffusion processes in the measurement chamber should
be significantly faster, and (b) surface or bulk reaction
kinetics of the sensitive material. A nonlinear diffusion-
reaction model for thick-film metal-oxide sensors has been
proposed by Gardner,73 and similar models have been used
by other authors.74-77 The sensors included, in most cases,

Figure 3. Sinusoidal modulation of the operation temperature of a tin oxide sensor between 200 and 400°C (bottom) leads to characteristic
frequency-dependent resistance features (upper part). Changes of the resistance (R sensor) of the micromachined sensor upon exposure to
50 ppm CO, 1 ppm NO2, and a mixture of 50 ppm CO and 1 ppm NO2 in synthetic air (50% relative humidity). Reprinted with permission
from ref 47. Copyright 1997 Elsevier.

Figure 4. Analyte test data of a sensor array consisting of 8 electrochemical sensors detecting the analyte gas reaction products at 7
different catalyst temperatures (30, 100, 200, 500, 600, 750, 900°C) of an upstream Pt filament. The analytes included a set of 10 alcohols,
2 ketones, ammonia, an amine, 2 sulfides, and 3 aldehydes, all of which are characteristic for fish freshness. Reprinted with permission
from ref 67. Copyright 1994 Elsevier.

Figure 5. Sensor signals for a series of concentration steps of
decreasing lengths from 160 down to 1 s. The capacitor was coated
with a 4-µm-thick layer of poly(epichlorohydrin). The envelope of
the response profile is highlighted in gray. It is analyte-specific
and depends on the analyte absorption and desorption times in the
respective polymer. Reprinted with permission from ref 70.
Copyright 2006 American Chemical Society.
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Taguchi-type thick-film sensors, and it was found that the
response time is predominantly diffusion-limited (porous
thick-film layer) and not reaction-limited.73

In many publications, polymer-based sensors are used, for
which no reactions occur, so that bulk dissolution processes,
i.e., analyte molecule diffusion into and out of the sensitive-
material matrix, determine the transient characteristics.71,78-80

Mass-sensitive devices, such as thickness-shear-mode reso-
nators, have been used by several authors to identify, e.g.,
the aromas of alcohols,80 a variety of organic volatiles,71,79

or wine aroma compounds.78 The polymeric layers are
usually<1 µm thick.

The temporal or transient characteristics of sensor re-
sponses upon different analytes can also be induced by
applying modulation techniques similar to the ones described
in the preceding section on parameter variation: the exposure
interval of the sensors to the analytes can be varied by
actuating valves and by switching between analyte-loaded
and pure carrier gas as displayed in Figure 5.70 The sensor
signals in Figure 5 are given in Hertz, since on-chip
electronics convert the minute capacitive signals into the
frequency domain.81 A poly(epichlorohydrin)-coated (4µm
thickness) capacitive sensor has been used in these experi-
ments, since measurements can be made very rapidly with
this transducer (no extended gate time needed as for resonant
sensors), and since the dynamic sensor signal neither relies
on secondary effects like analyte-induced conductivity
changes (conducting polymers) nor is influenced by ac-
companying effects such as analyte-induced film plasticiza-
tion (acoustic-wave-based devices). Methanol and ethanol
exposure steps of varying duration (from 160 s exposure
duration down to 1 s exposure duration) were applied to the
sensor. By applying long exposure intervals, all analytes
reach absorption equilibrium and maximum signal amplitude,
whereas for short intervals, this holds true only for fast-
diffusing analytes. The sensor responses to methanol shown
in Figure 5 reach saturation and sorption equilibria, even
for relatively short exposure duration. For ethanol, which is
a larger molecule with a smaller diffusion constant, the sensor
signals do not reach equilibrium for medium or short
exposure durations; as a result, the amplitude of the ethanol
response begins to decrease much earlier in comparison to
methanol. In conclusion, variations in the exposure interval
can be used to facilitate the discrimination of analytes that
belong to even the same homologous series.70

Additionally, modulation techniques to produce transients
and to reveal the temporal sensor signal characteristics can
be combined with any other parameter modulation in the
preceding section, such as temperature modulations or the
use of a catalyst.

2.3. Extracting Information in Different Domains
In this last subsection on arrays of identical transducers,

we will detail examples on how to extract, e.g., physical
sensor data such as temperature or magnitude of flow from
chemical sensors in addition to the chemical information they
provide. A very simple multipurpose sensor/actuator structure
offering three sensor operation modes (temperature, con-
ductivity, and amperometric measurements) and two actuator
operation modes (local heating and pH gradient control) was
proposed by Langereis et al.82 and is displayed in Figure 6.

The temperature can be measured along two different
resistive paths between pads A and B or between C and D.
By short-circuiting A and B as well as C and D, an

interdigitated structure for conductivity measurements results,
as has been shown for various potassium nitrate concentra-
tions. By short-circuiting all four pads (A-D), the resulting
electrode can be used for amperometric measurements against
an additional reference electrode in a two-electrode setup,
as has been demonstrated for different hydrogen peroxide
concentrations. The heating can be performed by applying
a voltage between A and B, or C and D, and by using one
of the meanders or both as resistive heaters. One meander
can be used as a temperature sensor. Finally, by supplying
a current to all four pads (A-D) against an additional counter
electrode, the aqueous environment can be electrolyzed and
the local pH can be either increased or decreased (production
of protons or hydroxide ions), as has been demonstrated by
a coulometric titration of an aqueous acetic acid solution.

In another approach, multifunctional modules have been
realized on the basis of an array of ion-sensitive field-effect
transistors (ISFETs).83-86 A schematic is shown in Figure
7.86 The setup is arranged around a flow-through cell hosting
a so-called “hybrid module” (2 ISFETs, 1 Pt-wire counter
electrode, and 1 gold generator electrode), and an Ag/AgCl
reference electrode, all connected to external measurement
equipment. The ISFET sensors are either pH-ISFETs with
sensitive Ta2O5 films (55-58 mV/pH-unit) or enzyme-
modified ISFETs (penicillinase adsorbed on Ta2O5). The
temperature is measured by a differential measurement of
the two ISFETs operated at different working points. A flow-
velocity measurement has been realized by using the genera-
tor electrode to electrochemically generate ions (H+ ions,
electrolysis) and by measuring the ion concentration down-
stream upon their arrival at one of the ISFETs (pH-ISFET).
By placing the ion generator electrode between two ISFETs,
the flow direction and flow velocity can be determined. If
the solution is not pumped through the setup, the diffusion
of generated ions away from the generator electrode can be
measured, and diffusion coefficients can be determined. An
extended version including two of the “hybrid chips” in series
has been detailed by the same authors, and, in the same paper,
the use of an ISFET as a liquid-level sensor has been
described.85

The multiparameter detection systems as described above
have been used to detect, besides the physical parameters
(temperature, flow, and diffusion), potassium ion concentra-
tions (limit of detection (LOD)) 5 µM) via valinomycin-
containing poly(vinyl chloride) (PVC) membranes on the
Ta2O5 gates85 and pH changes, since also the penicillin sensor
(LOD ) 5 µM) detected the concentration of H+ ions
resulting from an enzymatic penicillin hydrolysis.83-86 Ex-
amples for other enzyme-based ISFETs are given by the same
authors.87 An open question that remains is, whether or not
the concept of using chemosensors with their well-known
drift- and stability problems for measuring physical param-

Figure 6. Sketch of the multipurpose sensor structure: temperature
between pads A and B or C and D, conductivity between pads A,
B and C, D, and amperometric working electrode with all pads
(A-D) short-circuited against an additional reference electrode.
Reprinted with permission from ref 82. Copyright 1998 Elsevier.
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eters (temperature, flow, and liquid level) will prove itself
in the long run, in particular, since rather simple fully
integrated temperature/flow units are commercially available.
As will be seen later in this review, the co-integration of
temperature sensors has been realized with the aim to
enhance the reliability of the chemical sensor signals.81,88

3. Arrays and Systems Comprising Different
Transducers

In this section, different monolithic and discrete sensor
arrays making use of more than one transduction principle
will be detailed. The information gained from the different
transducers should be as orthogonal or complementary as
possible (see discussion in section 6.2), i.e., different analyte-
induced changes in the properties of the coating materials,
such as resistivity and work function changes, or different
properties of the analyte molecules themselves, such as
dielectric coefficients and mass, should be exploited. The
application of different transduction principles for monitoring
changes in the same or in highly correlated physical
properties upon analyte dosage will not provide significantly
more information than applying only one transducer. In this
section, several multisensor arrays will be presented, which
include discrete transducers and fully integrated complex
microsystems. We have categorized the different systems
with regard to the thermodynamic phase (gas and liquid) they
are operating in and then subcategorized them according to
the types of sensitive materials.

3.1. Metal- and Metal-Oxide-Based Gas Sensors
In the case of metal-oxide-based sensors, several ap-

proaches have been made to extract more than only resis-
tance/conductance or impedance values. A rather obvious
possibility is to monitor gas-reaction-induced temperature
changes on the heated stage of the metal-oxide-coated sensor.
The reaction of, e.g., CO, methane, or alcohols at heated
metal-oxide surfaces featuring catalytic metals such as Pd
or Pt leads to changes in the heat budget, which either
increase or decrease the temperature of the heated struc-
ture.89-91

To explain the occurring temperature effects, all processes
involved in the gas interaction process and contributing to
heat budget changes have to be considered: adsorption,
dissociation, surface reaction, and desorption of the products.
The particular thermal gas signature is dependent on these
different contributions. CO was found to provide negative

calorimetric signals (temperature decrease) upon surface
reaction with Pt- or Pd-doped tin oxide, though the oxidation
reaction and formation of CO2 is generally exothermic.54,90,91

Exemplary resistance changes (resistance decreases) and
simultaneously recorded temperature changes (temperature
decreases) are displayed in Figure 8.91 The thermal signature
can also be recorded for temperature-controlled microhotplate
devices by monitoring the changes in the heating power (or
in the source-gate voltage in the case of using a heating
transistor54) for maintaining a preset temperature.

The recording of work function data and catalytic activity
in addition to the metal-oxide resistance has been reported
on by several authors.92-94 A setup schematic for such
measurements is shown in Figure 9 for the example of tin
oxide.94 It includes a two-electrode resistance arrangement
(Taguchi-type sensor), a Kelvin probe for the work function
measurements (Kelvin probe relies on the displacement of
one of the two surfaces in a periodic oscillation so that a
sinusoidal current is produced, which is proportional to the

Figure 7. Schematic of a multiparameter detection system with a hybrid module in a flow-through setup: PCB, printed circuit board; GE,
generator electrode; CE, counter electrode; ISFET, ion-sensitive field-effect transistor; PenFET, penecillinase-modified ISFET; RE, reference
electrode; PC, personal computer. Redrawn with permission from ref 86. Copyright 2003 Elsevier.

Figure 8. Simultaneously recorded sensor temperature and resis-
tance traces upon dosage of CO at concentrations between 7 and
200 ppm to a Pt-doped tin oxide sensor at 50% relative humidity.
Reprinted with permission from ref 91. Copyright 1999 Elsevier.
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work function difference between the two surfaces), and
spectroscopic methods or electrochemical sensors to, e.g.,
detect the concentration of CO2 formed through the catalytic
reaction of CO at the tin-oxide-sensor surface.

Since the setup and experimental efforts are quite sub-
stantial, this combination of methods has been used prevail-
ingly to reveal details of surface reactions and sensor
mechanisms for, e.g., CO.93 Conductivity or impedance
measurements provide information on band bending effects
and/or changes in the relative position of the Fermi level;
the work function measurements additionally provide infor-
mation on electron affinities. By conducting both types of
measurements simultaneously, the different contributions to
the overall work function and resistance characteristics can
be sorted out, and mechanistic details of the surface and
interface reactions can be revealed. Specific signatures for
different gases like CO, methane, hydrogen, and H2S have
been found and reported on by several authors.92,94

Because of the large cross-sensitivity of the metal oxides
to water, differently doped metal-oxide sensors have been
combined with a commercially available humidity sensor to
yield a sensor system for more reliable carbon monoxide
detection.95 Simply implementing a commercially available
humidity sensor, however, may not always be a good
solution. Humidity sensors may not perform well over a wide
dynamic range, and they may exhibit large cross-sensitivities
to other analytes.

In an example of a metal-based gas sensor approach,
catalytic palladium nickel metal resistors (thin-film metal
resistors) have been combined with catalytic metal-gate field-
effect transistors (FETs), FET-type heaters, and a temperature
diode in a single-chip integrated system for the detection of
hydrogen.96,97The FET can detect hydrogen already at rather
low concentrations (0.0001-1%), whereas the resistor is
aimed at measuring in the range of higher concentrations
(up to 20%). The system can be utilized in a multitude of
sensing applications, and the respective calibration models
have been presented.96

3.2. Polymer-Based Gas Sensors
In analogy to the metal-oxide-based sensors above, dif-

ferent transduction principles have also been used for organic
materials, such as conducting polymers, to elucidate sensing
mechanisms. The question whether charge transfer or sorp-
tion characteristics drive the polymer-analyte interaction for
the combination polypyrrole/methanol has been addressed

by the simultaneous use of mass-sensitive thickness-shear-
mode resonators, a Kelvin probe to measure work function
changes, and UV/vis spectrophotometrical methods to moni-
tor optical absorption characteristics.98 Methanol transients
have been investigated, and it has been found that analyte
sorption is the driving force of the interaction.98 The
simultaneous use of two different transduction mechanisms,
chemomechanical transduction by thickness-shear-mode
resonators and chemoelectric transduction in conductometric
measurements (resistance measurement over a 50µm wide
gap on one of the faces of the quartz crystal) has been shown
for polypyrrole films.99 Frequency decreases and resistance
increases upon analyte sorption (various alcohols) have been
observed.99 An array of eight solid-state field-effect-transis-
tor-based sensors for simultaneous potentiometric and im-
pedance sensing in the gas phase using the conducting
polymer polyaniline has been studied by Polk et al.100 The
sensor platform consisted of two different chips, a chemical-
sensing chip (CSC), and an electronic service chip (ESC),
with the latter intended to be flip-chip bonded to the center
area of the sensor chip. Two different measurands, the work
function and the impedance or resistance changes upon
exposure of the polyaniline gate material to ammonia, have
been simultaneously recorded, as is displayed in Figure 10.

More recently, arrays of discrete chemical sensors relying
on optical fibers (silica optical fiber, 1310 nm wavelength)
and thickness-shear-mode resonators (10 MHz, AT-cut,
quartz) with carbon-nanotube-based sensitive materials de-
posited using Langmuir-Blodgett techniques have been
used.101,102The authors find a significant improvement in the
identification of the organic vapors (alcohols, acetone,
toluene, and ethyl acetate) by combining the optical and
mass-sensitive sensor responses.101,102Several authors have
combined capacitive and mass-sensitive sensors to detect
sulfur dioxide,103 or capacitive, mass-sensitive, and calori-
metric sensors (discrete devices104-106 or integrated micro-
systems81,88,107) to detect a wide range of organic volatiles.
An example of a polymer-based integrated microsystem in
CMOS technology (complementary-metal-oxide-semicon-
ductor technology; standard fabrication technology for
microelectronics) is shown in Figure 11.

The single-chip gas-detection system comprises three
polymer-coated transducers (capacitive, mass-sensitive, and
calorimetric) that record changes upon analyte absorption.
The absorption of the analyte in the polymeric coating alters
the physical properties of the polymer film, such as its mass
or volume, which is detected by the mass-sensitive cantilever;
it changes the composite dielectric constant as detected by
the capacitive transducer, or a certain amount of heat is
generated during the absorption process (heat of analyte
condensation or vaporization), which can be detected by the
Seebeck-effect-based calorimetric transducer (aluminum-
polysilicon thermopile). The three different transducers
require different operation conditions, the mass-sensitive and
the capacitive sensors rely on steady-state signals during
sorption equilibria, whereas the calorimetric sensor needs
sharp concentration gradients and a switching mechanism,
since it only produces a signal upon sudden concentration
changes (no signal at equilibrium state). A strategy to deal
with these different operation requirements will be presented
in section 4.2. The polymer-coated cantilever responds to
any analyte dosing with frequency decreases (increasing
oscillating mass), and the calorimetric sensor shows two
transients per exposure, a positive one at the analyte

Figure 9. Setup schematic for measurements of conductance,
change in work function, and catalytic activity of tin-oxide-based
sensors. The catalytic activity is assessed by measuring the
concentration of the formed CO2 via spectroscopy or electrochemi-
cal sensors. Reprinted with permission from ref 94. Copyright 1990
Elsevier.
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concentration onset (analyte condensation into the polymer
matrix) and a negative one upon switching off the analyte
(vaporization of the analyte). The responses of the capacitive
sensor can, in the case of thick polymer layers (>1.2 µm,
larger than half the periodicity of the electrodes), be tuned
according to the ratio of the dielectric constants of analyte
and polymer. If the dielectric constant of the polymer is lower
than that of the analyte, the capacitance will be increased; if
the polymer dielectric constant is larger than that of the
analyte, the capacitance will be decreased.108 This effect is
shown in Figure 12 for two analytes featuring a larger
(ethanol, 24.3) and smaller (toluene, 2.36) dielectric coef-
ficient than that of the sorptive polymer (4.8) and has been

previously detailed and substantiated by simulations.109 It
offers the possibility to pick polymers according to their
dielectric properties in order to differentiate selected analytes.
Moreover, a blinding-out of selected analytes (same dielectric
coefficient as that of the polymer) and the use of polymer
blends is possible. Another parameter that allows fine-tuning
is the layer thickness,108 as the relative thickness of the
polymer layer with respect to the extension of the electric

Figure 10. (a) Schematic of the transducer setup to perform
impedance and work function measurements. Work function and
impedance response of one of the eight sensor modules coated with
polyaniline upon exposure to different concentrations of ammonia
(100 ppm to 1%) at 22°C. The graph in (b) shows the potentio-
metric response (FET gate voltage changes), whereas the graph in
(c) shows the impedance response. Graphics kindly provided by
Prof. Jiri Janata, GeorgiaTech, Atlanta, GA.

Figure 11. Micrograph of the single-chip CMOS gas sensor
microsystem. The three different transducers (capacitive, mass-
sensitive, and calorimetric) and the additional temperature sensor
are marked. The driving and signal-conditioning circuitry of the
different sensors and the digital interface are integrated on chip.
The total size of the chip is 7× 7 mm2. Reprinted with permission
from ref 107. Copyright 2006 American Chemical Society.

Figure 12. Sensor responses of capacitive sensors coated with a
1.4-µm-thick poly(etherurethane) layer (PEUT) upon exposure to
various concentrations of ethanol and toluene. The analyte con-
centrations included 500-2500 ppm, up and down. The dielectric
coefficient of ethanol (24.3) is larger than that of PEUT (4.8), so
that positive capacitance changes occur upon ethanol dosage, and
the dielectric coefficient of toluene (2.36) is lower, producing
negative signals.
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field lines is decisive for the observed capacitance changes,
as will be shown in section 3.3.

All three transducer responses are simultaneously used to
characterize the analyte or analyte mixture. Methanol, e.g.,
provides comparably low signals on mass-sensitive transduc-
ers because of its high saturation vapor pressure and low
molecular mass. On the other hand, methanol has a dielectric
constant of 33 and provides rather high signal intensities on
capacitors. Drastic changes in the thermovoltages on the
thermopiles are, e.g., measured upon exposure to chlorinated
hydrocarbons, which have a low dielectric constant and, thus,
provide only low signal intensity on capacitors. The simul-
taneous probing and recording of changes in different
polymer properties upon gas exposure produces additional
dimensions in the feature space and provides more compre-
hensive and complementary information about the analyte
or the analyte mixture at hand. Since physisorption processes
of organic volatiles in polymers are strongly temperature-
dependent, a temperature sensor has to be integrated in such
a system to enable reliable quantitative measurements. As a
rule of thumb, a temperature increase of 10°C decreases
the fraction of analyte molecules absorbed into the polymer
by ∼50%, which results in a drastic sensor signal reduction.
The temperature sensor in the microsystem exhibits an
accuracy of 0.1 K at operation temperatures between-40
and 120°C. The sensor front-end circuitry that has been
integrated on the chip includes all the sensor-specific driving
circuitry and signal-conditioning circuitry. The analog/digital
conversion is done on-chip as well. This leads to achieving
a unique signal-to-noise ratio, since noisy connections are
avoided, and since a robust digital signal is generated on-
chip and then transmitted to off-chip units.33,110

The sensor system has been used to demonstrate that the
different transducers indeed provide complementary informa-
tion on the various organic volatiles and that this information
can be used for an analyte characterization according to the
respective physical properties.107 The sensitivity values for
a set of analytes and polymers have been evaluated. These
sensitivity values have been normalized with regard to the
partition coefficients (divided by the partition coefficients)
so that all thermodynamic effects related to analyte absorp-
tion were accounted for and that the characteristics of the
different transducers should then become clearly visible.107

The partition coefficient is a dimensionless thermodynamic
equilibrium constant and is characteristic for a given volatile/
polymer combination; it is inversely proportional to the
saturation vapor pressure or proportional to the boiling
temperature and vaporization enthalpy.111

A selection of normalized sensitivity values is shown in
Figure 13. The normalization of the sensitivity values with
respect to the partition coefficient allows the detection or
transduction process to be split into two parts (a) the
absorption or partitioning, which is the same for all transduc-
ers for a given polymer, and (b) the transducer-specific part,
which includes the measurand detected by the respective
transducer such as sorption heat (calorimetric), molecular
mass (mass-sensitive), and dielectric properties (capaci-
tive).107 For a selected set of analytes, the characteristic
properties of which are sufficiently different, there should
be a systematic order in the normalized sensitivity values
with respect to the transducer-specific measurand. This is
obviously the case and is clearly demonstrated in Figure 13
for any given polymer: The order in the normalized sensi-
tivity values of the calorimeter approximately reflects the

vaporization heat of the respective analytes (propan-1-ol, 48.4
kJ/mol; n-octane, 41.6 kJ/mol; toluene, 38.0 kJ/mol; and
trichloromethane, 31.5 kJ/mol), the order in the cantilever
values is according to the analyte molecular mass (trichlo-
romethane, 119.38 g/mol;n-octane, 114.23 g/mol; toluene,
92.14 g/mol; and propan-1-ol, 60.10 g/mol), and the order
of the capacitive values reflects the analyte dielectric
properties or dielectric coefficients (propan-1-ol, 20.45;
trichloromethane, 4.81; toluene, 2.38; andn-octane, 1.95).

Figure 13. Bar graphs representingnormalized sensitiVity values
at 30 °C. Four different analytes (n-octane, toluene, propan-1-ol,
and trichloromethane) were detected with three different polymers
(ethyl cellulose, EC; poly(epichlorohydrin), PECH; and poly-
(etherurethane), PEUT). The analytes have been ordered with regard
to the decisive molecular property for the respective transducer:
(a) decreasing heat of vaporization for the calorimeter, (b) decreas-
ing molecular weight for the cantilever, and (c) decreasing analyte
dielectric coefficient for the capacitor Reprinted with permission
from ref 107. Copyright 2006 American Chemical Society.
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The simultaneous recording from the different transducers
causes a unique response pattern for each volatile compound.
Because of their fundamentally different transduction prin-
ciples, the sensors do (within experimental error) indeed
respond to the diverse physical properties of the analytes,
such as the molecular weight, the dielectric constant, and
the heat of vaporization, so that they provide orthogonal
information on a given analyte. To what extent the different
responses are then also independent in the feature space,
however, cannot be determined a priori (see also the
respective discussion in section 6.2).

Finally, combinations of the above-mentioned different
transducers (mass-sensitive and optical112,113 or calorimet-
ric114) coated with chiral receptors (e.g., cyclodextrins or
amino-acid-derived compounds) dissolved in or bound to
polymers have been successfully used to discriminate enan-
tiomers.

3.3. Gas Sensor Arrays Relying on Different
Transducer and Sensitive-Material Types

Modular sensor systems including different types of
polymer-based transducers, metal-oxide-based transducers,
noble-metal-gate field-effect transistors, and electrochemical
cells have been used as “electronic noses” by different groups
to, e.g., qualitatively determine the quality of paper or
packaging materials,115,116to identify odors and flavors,116,117

or to assess food products.118 Please note that a more detailed
article on the concept and performances of “electronic noses”
is included in this issue.38

Holmberg et al. used an array of 10 noble-metal-gate
CHEMFET devices (Pd, Ir, and Pt as gate metals) operated
between 150 and 190°C, 4 metal-oxide base conductometric
sensors (Taguchi sensors), and an infrared-based carbon
dioxide sensor to differentiate various types of cardboard
papers.115 An examination of the sensor correlation matrix
revealed that many sensor responses were strongly correlated

and that a subset of 7 sensors (5 CHEMFETs and 2
conductometric sensors) or, after data preprocessing, even
of only 4 sensors (2 CHEMFETs and 2 conductometric
sensors) showed the best discrimination performance. The
authors concluded that the success in their application
critically depended on the way of gathering the samples, the
selection of sensors, and the data-preprocessing method.115

Data-preprocessing strategies will be covered in detail in
section 7.

The concept of a modular sensor system (MOSES)
featuring an open architecture and the possibility to add new
sensor modules was introduced at the University of Tu¨bingen
in the late 1990s.119 A schematic of this system is displayed
in Figure 14.

Arrays of different discrete transducers are located in the
respective sensor modules (mass-sensitive, electrochemical,
calorimetric, and conductometric modules), which, along
with temperature and humidity sensors and gas intake and
sampling units, communicate via a digital bus with the
overall system controller. The system can be extended by
additional modules or modified in any arbitrary way to
accommodate the sensors and sampling units needed for a
specific application.119 According to the authors, the modu-
larity offers the best prospects to select sensors and features
from a potentially large variety and to optimize the individual
sensors or components of the system. Moreover, it provides
great flexibility in the feature selection for specific applica-
tions: The information content of each feature can be
analyzed with due regard to the application at hand, and the
total number of features can then be optimized and reduced
accordingly (for more details about feature extraction issues,
see section 11 of this review).

In most applications, a metal-oxide-based chemoresistor
array (8 sensors), operated at temperatures between 200 and
500°C, and a polymer-based 30 MHz thickness-shear-mode
resonator array (8 sensors), operated at room temperature,

Figure 14. System schematic of the modular sensor system (MOSES): independent sensor modules (mass-sensitive, calorimetric,
conductometric, temperature, and humidity) and gas intake and sampling units communicate via a digital bus with the overall system
controller. Several alternative gas intake units such as a headspace sampler or a purge-and-trap system can be chosen. The system can be
extended by additional modules. Redrawn with permission from ref 119. Copyright 1998 American Chemical Society.
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have been used. The polymer-based sensors are more stable
in the long term and show less drift in comparison to the
metal-oxide sensors. Moreover, metal-oxide-based and poly-
mer-based sensors show considerable differences in the
response time: the thickness-shear-mode resonators reach
equilibrium values 10-15 s after the dosing of the respective
analyte, whereas metal-oxide-based chemoresistors need at
least 60-90 s, with both transients being slower.116 While
this feature could be used to advantage as described in section
2.2, in most cases only the equilibrium signals or response
maxima were evaluated. Principal-component analysis plots
of an application example are shown in Figure 15.117

Principal-component analysis (PCA) is an orthogonal linear
transformation method that arranges the data in a new
coordinate system such that the greatest variance by any
projection of the data comes to lie on the first coordinate
(called the first principal component), the second greatest
variance comes to lie on the second coordinate, and so
on.10-12 The new coordinates are orthogonal to each other.
PCA can be used for dimensionality reduction in a data set
by retaining those characteristics of the data set that
contribute most to its variance.10-12

Figure 15 shows the results of investigations on an
artificially rancidized vegetable oil. To have reproducible
and defined sample composition, a vegetable oil was
contaminated with 100 ppm of different aldehydes (pentan-
1-al, hexan-1-al, heptan-1-al, octan-1-al, and nonan-1-al),
since aldehydes have been identified as the key components
causing rancid taste and smell of degraded edible oils. Figure
15 shows three principal-component analysis (PCA) plots
for only the set of metal-oxide-based sensors (MOX), for
only the set of thickness-shear-mode resonators (TSMRs),
and for a combination of both sets. The added different
aldehydes are indicated; “blank” means that the oil is in its
original state and has not been manipulated. The metal-oxide-
based sensors provide a discrimination of most oils according
to the added aldehydes, but the noncontaminated oil and the
nonan-1-al-contaminated oil cannot be differentiated. The
polymer-based TSMRs cannot really discriminate the short-
chain (C5-C7) aldehydes. However, the use of both arrays
simultaneously leads to a clear separation and relatively small
scattering within the different clusters.117

Other examples investigated with the same array config-
uration, and with an additional electrochemical module in
selected cases, include textile materials,117 odors of plastic
materials, coffees, olive oils, whiskey, and tobacco samples.116

In all cases detailed above, and in many other cases, the data
analysis of sensor-array or “electronic-nose” data is limited
to the drawing of PCA plots, which might be sufficient for
easy problems or problems with a small data set, where the
advantage of using a multitransducer array is rather large
and obvious. PCA plots are not very representative for
higher-dimensional measurement or feature spaces, simply
because all the data are projected onto a two-dimensional
plane irrespective of the original dimensionality. Thus,
multitransducer arrays may also be beneficial even if this is
not immediately apparent from the respective PCA plots. The
important criterion is that a quantitative indicator of the array
performance, such as the test set error for some classifiers,
is lowered.118 Feature selection and the selection of good or
optimized sensor subsets for a given application, in this case,
the analysis of cured meat products (salami, ham, corned
beef, salmon, roast beef, and different packaging materials),
has been performed using an extended MOSES array (7

polymer-based sensors, 8 metal-oxide-based sensors, and 4
electrochemical cells).118 The findings of the authors include

Figure 15. Principal-component-analysis (PCA) plots showing the
first two principal components, PC1 and PC2. Discrimination of
homologous aldehydes (100 ppm) added to a vegetable oil matrix
using (a) eight polymer-based thickness-shear-mode resonators
(TSMR), (b) eight metal-oxide-based sensors (MOX), or (c) a
combination of both arrays. The PCA plot of the MOX sensors (b)
shows an overlap of the clusters of nonan-1-al contamination and
the pure oil. In the case of the TSMRs (a), the clusters of the low-
molecular-weight aldehydes (pentan-1-al to heptan-1-al) overlap.
Only by using both arrays simultaneously, all different contaminated
oils and the pure oil can be discriminated. Reprinted with permission
from ref 117. Copyright 2000 Elsevier.
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that (i) subsets of selected sensors perform better than the
whole array in most of the applications (test set error lowered
by ∼25%), (ii) selected sensors from different classes
(different transducer types) show significantly better perfor-
mance than sensors selected only from a single class, and
(iii) subsets that outperform the whole array may be as small
as only two different sensors, such as one TSMR and one
electrochemical cell.118 Several modular multitransducer
systems based on discrete sensors are commercially available
(see, e.g., refs 120 and 121). More details on feature selection
can be found in section 11.2.

A monolithically integrated multitransducer array in
CMOS technology for the detection of organic and inorganic
gases has been recently presented.122 The system comprises
two polymer-based sensor arrays based on capacitive and
gravimetric transducers (magnetically actuated cantilevers123),
a temperature sensor, a metal-oxide sensor array located on
microhotplates (thermal time constant∼20 ms with metal-
oxide coating), the respective driving and signal processing
electronics, and a digital communication interface (Figure
16). The chip has been fabricated in industrial 0.8µm, CMOS
technology with subsequent post-CMOS micromachining.
The system has been developed in the framework of a
“toolbox strategy” relying on microelectronics standard
technology (CMOS), which was identified as the most
promising platform technology to achieve major progress.124,125

The toolbox strategy was chosen as a consequence of the
fact that the sensor market is strongly fragmented and that
there exist a large variety of applications with different
specifications and sensor requirements. The components of
the toolbox, such as transducers, sensor modules, and circuit
modules, can be developed one by one. Thereafter, specific
components that meet the respective applications needs can
be selected and assembled into a customized system.

The simultaneous detection of organic and inorganic target
analytes with the single-chip multitransducer system has been
demonstrated in ref 122. Different organic volatiles have been
discriminated according to their dielectric properties and
molecular mass in analogy to the results presented in the
context of Figures 12 and 13 in the preceding section.
Another application possibility concerns the detection of
carbon monoxide (CO) or other inorganic gases on a

background of changing humidity or alcohol content. For
this scenario, the microhotplates and the capacitive sensor,
which acts in this case as a humidity or alcohol sensor, have
been used.122

The microhotplates can be covered with any metal oxide
and can be temperature-modulated using any arbitrary
waveform. The magnetically actuated cantilevers (Lorentz
force123) can be used to monitor organic volatiles or
interferents. Because of its high dielectric coefficient, humid-
ity will have a major impact on any organic-volatile
measurement of the capacitor. However, there is a possibility
to measure organic volatiles with capacitive transducers even
on a background of humidity or changing relative humidity.
This method relies on the use of two differently thick
polymer coatings on two identical capacitor structures and
has been detailed previously:108 The signal difference of two
capacitors with different layer thicknesses in the range of
0.8-4 µm is almost insensitive to water but retains sensitivity
to low-dielectric-constant analytes like toluene orn-octane.
Such differential or ratiometric methods have also been used,
e.g., for conducting polymers,126,127 and constitute a very
useful approach in dealing with interferents, cross-sensitivi-
ties, or low signal levels. It is very often more effective to
purposefully select or deselect sensors or to use signal ratios
or differential values instead of increasing the array size or
the transducer diversity. In summary, this system offers great
flexibility and can be used for various applications. The
respective system configuration can be selected, and all
parameters (sensor selection, differential or single sensor
signal measurement, and temperature modulation of the
hotplates) can be varied and set by means of standard
software on a computer communicating with the digital
control circuitry on the chip.122

At the end of this section on multitransducer systems and
“electronic noses”, it is noteworthy that a shortcoming of
many multisensor-array or electronic-nose papers, besides
the predominant use of PCA score plots, is that the qualitative
sensor results are not scientifically explained or substantiated
by a thorough chemical gas-phase or headspace composition
analysis, so that it is not clear, which compounds or which
chemical effects lead to a discrimination of the different
samples. A more detailed analysis of the contributions of

Figure 16. Monolithic multitransducer system including four polymer-based sensors relying on two capacitive and two gravimetric transducers,
two metal-oxide-based conductometric sensors on temperature-controlled microhotplates (temperature modulation possible), the respective
driving and signal processing electronics, and a digital communication interface. Reprinted with permission from ref 122. Copyright 2007
Elsevier.
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the different sensors, and of the underlying surface reactions
and physicochemistry of the different types of sensors, would
be desirable. Varying humidity or alcohol content, e.g., may
be more effective in changing the sensor array response to
different food, perfume, or wine samples than the presence
of aroma or odor components at very low concentration
levels, which still are perceivable in human olfaction, but
which are no more detectable using chemical sensors.
Moreover, sample-to-sample variability, sample deterioration,
and the strong influence of the sample preparation and
sampling procedure on the sensor results, in particular for
natural products, are often underestimated, and the corre-
sponding information is missing in many papers. Information
on sampling methods and how these influence sensor array
results can be found in dedicated papers.128,129

There are also a number of multitransducer sensor systems,
besides the already mentioned MOSES II sytem,130 com-
mercially available, such as the GDA 2 (electrochemical
cells, metal-oxide sensors, ion-mobility spectrometer, and
photoionization detector) from Airsense Analytics,131 the
FOX 4000 (metal-oxide sensors and polymer-based sen-
sors: thickness-shear-mode resonators, conducting polymers)
and the RQ Box from Alpha M.O.S,132 the Hazmatcad Plus
(surface-acoustic-wave devices and electrochemical cells) and
the CW Sentry 3G (surface-acoustic-wave devices and
electrochemical sensor array) from Microsensor Systems,133

or microanalytics-based systems from RAE Systems.134

3.4. Liquid-Phase Chemo- and Biosensors
A liquid-phase chemical microanalysis system aimed at

applications in liquid-phase chromatography has been de-
veloped by Norlin et al.135 The system includes a multisensor
chip, a micromachined flow-through cell, and optical fiber
interfaces to monitor pressure, flow rate, temperature,
conductivity, UV-absorption, and fluorescence. A schematic
of the microanalysis system is shown in Figure 17a.135

The multisensor chip hosts integrated sensors for pressure,
temperature, fluid flow, and conductivity; a flow-cell chip
(silicon) defines the measurement chamber or liquid volume
(5 µL) and features ports for the optical fibers to monitor
fluorescence and UV-absorption. A close-up of the sensor
structures is shown in Figure 17b.135 The substrate of the
sensor chip is quartz. The temperature sensor is a simple Pt
thermoresistor. The pressure sensor consists of a closed cavity
under a polysilicon membrane; the pressure-induced strain
in the membrane is measured with piezoresistors (doped
polysilicon). For conductivity measurements, planar Pt
electrodes (size: 500µm × 1000µm; 400µm gap) are used.
The principle of the fluid-flow sensor is to locally heat the
fluid with a heating resistor (polysilicon) and to measure the
temperature difference between two points up- and down-
stream from the heater using aluminum/polysilicon thermo-
piles (thermoelectric or Seebeck effect). Two laterally
connected optical fibers enable UV light to be introduced
into and collected from the liquid volume (path length) 9
mm). The fluorescence measurements are performed by using
a bundle of seven optical fibers connected laterally to the
chamber or from below. The excitation light from a laser
diode (wavelength) 630 nm) is guided through the central
fiber, and the six outer fibers transmit the fluorescent signal
back to a photodetector. Initial results for the pressure sensor,
the thermistor, and the flow sensor have been shown as well
as conductivity measurements for NaCl solutions with
concentrations between 0.001 and 1 mol/L and UV absorp-
tion signals for relative acetone contents between 0.1 and
1%.135

A similar array of sensors including three temperature
sensors (microelectronic proportional-to-absolute-temperature
sensors), three pressure sensors (thin-silicon-membrane
gauge-type sensors with piezoresistive readout), two ISFETs
(silicon nitride and silicon oxide ISFET with Pt counter-
electrode to monitor pH), and some basic circuitry (multi-
plexer, differential measurement electronics for chemical
sensors, and temperature compensation for pressure sensors)
was realized on a CMOS chip and is intended to be part of
a drug delivery microsystem.136 The ISFET sensors were
intended to control the pH value of the liquid to be delivered.
Besides test results of the pressure and temperature sen-
sors, the sensitivities of the ISFET sensors were deter-
mined to be 20-30 mV/pH for the silicon-oxide ISFET and
52 mV/pH for the silicon-nitride ISFET. A nonlinearity in
the differential signal of both ISFETs was assessed to be
due to the nonlinearity in the silicon-oxide ISFET.136

A multisensor array of discrete ISFETS, light-addressable
potentiometric sensors (LAPS,p-silicon with SiO2 and Ta2O5

on top), and miniaturized ion-selective electrodes (ISE,
p-silicon, SiO2, and metal electrode: 15 nm Ti, 30 nm Pt,
and 250 nm Au) with a chalcogenide glass material
(CdSAgIAs2S3) as the sensitive layer (200-1300 nm thick-
ness) to detect heavy metal ions in aqueous solution was
presented by Kloock et al.137 The sensitive material was
deposited on the transducer structures by means of pulsed
laser deposition, and the three different transducers were then
compared in their sensitivity to Cd2+ ions. The sensitivities
of all three potentiometric transducers are in the range of
22-25 mV per decade Cd2+, and the lower detection limit
varied between 6× 10-7 and 5.7× 10-7 mol/L.137 The
different transducers may, according to the authors, be
combined in a future handheld “electronic-tongue” system.

Figure 17. (a) Schematic of the microanalysis system including a
multisensor chip, a micromachined flow-through cell, and optical
fiber interfaces. (b) Micrographs of the different single sensors,
the temperature sensor, the pressure sensor, the conductivity
electrodes, and the thermoelectric flow sensor. Reprinted with
permission from ref 135. Copyright 1998 Elsevier.
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The benefit of using different transducers, however, is not
obvious, since all three transducers provide very similar
information. Significant differences exist in the transducer
fabrication and signal readout complexity.

A biochemical microsensor system aimed at continuous
monitoring of ions, dissolved gases, and biomolecules in
liquid phase, such as blood, has been presented recently
(Figure 18)138 and is based on an earlier design by Gumbrecht
et al.139,140The eight integrated chemical sensors comprise
six ion-sensitive field-effect transistors (ISFETs) 1-6 in
Figure 18), one oxygen sensor (7 in Figure 18) and one
conductometric sensor (8a and 8b in Figure 18), all of which
can be operated in parallel.138 An Ag/AgCl reference
electrode is also integrated on the CMOS chip to obviate
the need for external references. The eight sensors can
continuously monitor ions, dissolved gases, and biomolecules
via enzymatic reactions that produce charged particles. A
flow channel (polyimide) restricts the liquid-phase access
to the sensor area.

The six ISFETs allow for direct contact of the electrolyte
with the gate oxide. Either the gate oxide itself is pH-
sensitive or the ISFET can be used as a “SeVeringhaus”-
type pH-FET to measure dissolved carbon dioxide (detection
of carbon dioxide via dissolution in water, formation of
“carbonic acid”, and monitoring of the pH change). The gate
oxide can also be covered with different ion-selective
membranes to achieve sensitivity to a range of target ions,
such as potassium. All six ISFETs or only a subset can be
used. The idea was to make a standard chip to reduce
manufacturing costs and to then modify the chip with
selective coatings according to user needs. The integrated
amperometric sensor can be used as aClark-type oxygen
sensor, which is based on a two-step reduction of gaseous
oxygen in aqueous solution via hydrogen peroxide to
hydroxyl ions. The conductometric sensor consists of two
parallel sensors (8a), which share one common electrode
(8b). A sinusoidal ac potential is applied to the electrodes,
and the current, which depends on the solution composition
(concentration of charged particles or ions), is recorded. The
full system has been produced in a 1.2µm single-metal,
single-poly CMOS process, and the chip size is 4.11× 6.25
mm2.138 The chip, operated at 5 V, hosts all driving cir-
cuitry of the sensors such as ISFET buffer amplifiers, a
potentiostatic setup for the amperometric sensor, and the

circuitry necessary to perform a four-point conductometric
measurement on-chip. In addition, the chip exhibits a
temperature-control unit to keep the system temperature at
a preset value (physiological conditions). This tempera-
ture-control unit includes a temperature sensor and a tran-
sistor heater. A single-bit EPROM (electrically program-
mable read-only memory) was implemented on-chip to make
sure that the chip is used only once and then is disposed of,
which is a crucial feature for medical applications.138 First
tests including amperometric oxygen measurements, the
assessment of potassium concentrations with ISFETs (by
directly connecting the ISFET buffer to a plotter), and
conductometric measurements with a buffer solution have
been performed.138

Disposable electrochemical multisensor systems for fast
blood analysis are marketed by, e.g., companies like Abbott
(formerly I-STAT).141 Sodium, potassium, chloride, calcium,
pH, and carbon dioxide are measured by ion-selective-
electrode potentiometry. Concentrations are calculated from
the measured potential through the Nernst equation. Urea is
first hydrolyzed to ammonium ions in a reaction catalyzed
by the enzyme urease. The ammonium ions are also
monitored by means of an ion-selective electrode. Glucose
is measured amperometrically. Oxidation of glucose, cata-
lyzed by the enzyme glucose oxidase, produces hydrogen
peroxide. The liberated hydrogen peroxide is oxidized at an
electrode to produce an electric current, the intensity of which
is proportional to the glucose concentration. Oxygen is also
measured amperometrically. The oxygen sensor is similar
to a conventional Clark-electrode. Oxygen permeates through
a gas-permeable membrane from the blood sample into an
internal electrolyte solution, where it is reduced at the
cathode. The oxygen reduction current is proportional to the
dissolved oxygen concentration. Hematocrit is determined
conductometrically. The measured conductivity, after cor-
rection for electrolyte concentration, is related to the hema-
tocrit.

3.5. Cell-Based Biosensors
Whole living cells can be used to sensitively detect the

presence of certain chemicals in their environment.142-148 The
cell reacts upon exposure to a chemical in a cell-specific
response, which can include changes in the cell electrical-
activity pattern in the case of electroactive cells (neuronal
cells and heart cells). The cellular responses can be monitored
by a suitable set of different sensors, with the cell itself acting
as a transducer and constituting a very sensitive and selective
recognition system for different chemicals. It has to be noted
that the cellular environment of living cells in in vitro
situations differs considerably from their native environment
in vivo.

An example of a multiparameter sensor chip to monitor
the cell-culture temperature, the cell-metabolism products,
the cell electrical activity, and the cell adhesion to the sensor
surface has been developed by a group at the University of
Rostock.149-151aThe aim was to develop a sensor system that
allows for the measurement of chemical or metabolic
parameters as well as electrical signals with the same sensor
chip.

The developed system, the concept of which is illustrated
in Figure 19a, provides online monitoring of cellular reac-
tions under well-controlled experimental conditions. The
system includes cell-potential field-effect transistors (CPFET,
sensitive gate areas of 6× 1 µm2) and palladium electrodes

Figure 18. Micrograph of the CMOS multiparameter biochemical
sensor chip, which includes 6 ISFETS (1-6), an (amperometric)
oxygen sensor (7), and a conductometric sensor (8a,b). The on-
chip circuitry includes an EPROM, a multiplexer and counter, a
driver unit, a conductometric and potentiostatic circuit, and a heater.
Reprinted with permission from ref 138. Copyright 2001 IEEE.
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(10 µm diameter) to measure the electrical cell activity as
shown in Figure 19b,149 a sensor to monitor the temperature
of the cell culture, and ion-sensitive field effect transistors
(ISFETs) to monitor the pH in the cellular microenvironment,
recordings of which are shown in Figure 19c.142 The ISFETs
allow for monitoring local acidification and respiration in
in vitro cell networks. The interdigitated electrodes are used
to measure the cell adhesion by means of impedance
measurements.151,151aThe quality of the contact between the
electrically active cells and the transducers is of pivotal
importance for applications in basic and biomedical research.
According to the authors, impedimetric measurements using
interdigitated electrode structures have been found to provide
information on the cell density and number, the cell adhesion,
and the cellular morphology, since an ac current between
the electrodes is influenced by the presence and structural
properties of living cells growing on these electrode struc-
tures. More details on how different chemicals trigger cellular
responses of prevailingly electrogenic cells can be found in
the literature.142-148,152

4. Operational Considerations for Higher-Order
Devices

4.1. Setup and Manifold Considerations

An often underestimated issue concerns the gas test setup
and manifold for sensor measurements. The manifold for,
e.g., any type of gas sensors relying on fast steep concentra-
tion gradients and interval analyte dosing (thermopile sen-
sors), or for performing dynamic measurements and applying
modulation techniques, has to be carefully designed, so that
the dynamics of the transient sensor signal reflect the sensor-
specific analyte diffusion and reaction characteristics rather
than the gas flow dynamics of the setup and the measurement
chamber. This means that all gas switching processes must
be fast in comparison to the analyte-specific diffusion and
reaction dynamics. To this end, a manifold and flow setup
as shown in Figure 20 can be used. The most important
features include a crossover flow architecture by use of a
fast crossover 4-way valve, matched flow resistances of the

Figure 19. (a) Cell monitoring system concept: thermoregulated cell culture chamber with fluid handling system and different microsensors
(ISFET, ion-selective field-effect transistor; ENFET, enzyme FET; ISE, ion-selective electrode; CPFET, cell potential FET; TD, temperature
diode; CCD, charge-coupled device; SPR, surface plasmon resonance). Reprinted with permission from ref 142. Copyright 1999 Elsevier.
(b) Extracellular recordings from one of the chip electrodes (∼40 superimposed neuronal action potentials). Reprinted with permission
from ref 149. Copyright 2002 University of Prague. (c) Extracellular acidification measurements in a neuronal network on a silicon chip
as performed with ISFETs in a flow-through system. The acidification was measured during the time when the pump was off. When the
pump was on, the medium was completely replaced with fresh medium. Output signal of four ISFETs on one sensor chip (ISFETs 1 and
2 with UDS ) 0.2 V and ISFETs 3 and 4 withUDS ) 0.4 V ; IDS was 10 mA). The pump cycle was 5 min “pump on” and 10 min “pump
off”. During the pump-off period, the pH of the medium decreased significantly due to the acidification through the presence of the cells.
In the pump-on period, fresh medium is pumped through the chamber. Reprinted with permission from ref 142. Copyright 1999 Elsevier.
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two output gas lines of the 4-way valve, as well as a small
tubing volume between the valve and the sensor measure-
ment chamber.70,71

The crossover flow architecture implies that there are two
input gas lines, one supplying pure carrier gas and the other
supplying carrier gas with defined doses of the analyte, and
two output gas lines, one leading to the measurement
chamber and the other leading directly to the exhaust. This
architecture offers the advantage that both input flows and
both output flows are continuously flowing, and that the
buildup time of a certain analyte concentration does not
influence the dynamic sensor response. With the dosing line
being routed to the exhaust (sensors exposed to pure carrier
gas), the desired analyte concentration can be adjusted by
means of flow controllers. After sufficient time for concen-
tration stabilization, the crossover valve switches the dosing
line to the sensors (carrier gas to the exhaust), which then
experience a sudden steep concentration gradient. Using the
crossover architecture, it is, hence, possible to rapidly switch
between pure carrier gas and carrier gas containing a defined
concentration of a certain analyte.

The valve must be very fast, e.g., a pneumatically driven
4-way crossover valve with a switching time of<0.5 s,
which is commercially available.70 The 4-way crossover gas
switching functionality can also be obtained with a pair of
appropriately connected 3-way valves, wired in parallel so
that a single switch activates both valves simultaneously.153

The fast switching of the valves may generate pressure waves
in the direction of the measurement chamber but also
backward in the direction of the supply lines and the flow-
controllers. The system is open on the measurement-chamber
side, and no effect on the sensor signal is usually observed.
On the side of the flow controllers, additional measures have
to be taken since pressure-wave-induced artifacts can oth-
erwise be observed: flow controllers are very sensitive to
pressure transients occurring either at their inlet or their
outlet, so that an additional empty glass bubbler (large
diameter and volume) has to be mounted in between the flow
controller for the carrier gas in the dosing line to eliminate
these artifacts (Figure 20). The glass bubbler acts as an
expansion chamber or accumulator commonly used in
pneumatic systems.

Moreover, when switching the 4-way valve, any pressure
difference in the two output flow lines affects the gas flow

dynamics and, consequently, influences the preset concentra-
tions. Therefore, the output line without measurement cham-
ber has to be designed to exhibit a flow resistance as similar
as possible to that with the measurement chamber, and the
two output lines of the 4-way valve should feed into the same
exhaust line after the measurement chamber.

The overall gas volume between the valve and the sensors
has to be minimized, taking into account the target overall
gas flow. The time span between switching the valve and
the moment, at which the gas reaches the sensor, should be
as short as possible. The overall flow rate also may influence
the dynamic sensor signals if it is rather low or may influence
the operating temperature of high-temperature sensors if very
high. The optimum flow rate for a given flow setup has to
be assessed in prestudies.

4.2. Multitransducer Operation Example

Since multitransducer systems include different types of
transducers that require different operation regimes, such as
the recording of steady-state or transient signals, it is
necessary to apply dedicated operation protocols, which
enable reliable qualitative and quantitative measurements and
allow for the extraction of a maximum of information. An
example strategy will be described here that has been
developed for the polymer-based multitransducer unit de-
scribed in section 3.2 and that meets the operational
requirements of the different transducers.

The signal baseline is established by purging with filtered
ambient air or clean air from the gas manifold. The operation
state of the valve and the resulting analyte concentration in
the measurement chamber is displayed in Figure 21, which
additionally shows the timing of the signal recording from
the different transducers as well as prototypical sensor
signals. The gas manifold that can be used to perform the
respective measurements has been described in the previous
section (4.1).

Figure 20. Schematic of the gas manifold as designed for fast
transient signal recording.

Figure 21. Operation mode as developed for micromachined
multisensor chips: operation states of valves and corresponding
gas concentrations in the chamber (lines 1-2), timing of the signal
recording for the different transducers, and resulting sensor signals
(lines 3-6). For details, see text.
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Line 1 is used to indicate the valve status. “0” represents
the basic state of the valve, when pure carrier gas flows
through the measurement chamber. In state “1”, fractions of
the carrier gas pass one or more vaporization units or
bubblers, and analyte molecules are present in the gas
stream: analyte-loaded gas is flowing over the sensors. In
line 2, the corresponding analyte gas-phase concentrations
are displayed. In the beginning of a measurement sequence,
there is no analyte gas in the measurement chamber, which
is purged with pure carrier gas. Baseline signals of the
capacitive and mass-sensitive transducers are recorded, the
measurement timing of which is displayed in line 3. The
valve is then switched to the analyte line for, e.g., 30 s, which
leads to an instantaneous analyte concentration increase since
analyte-loaded gas is now flowing through the measurement
chamber. Equilibrium state capacitive and mass-sensitive
signals in analyte-loaded air are then recorded. The resulting
sensor signals (mass changes or capacitance changes) are
schematically shown in line 4.

The valve is then switched back to pure carrier gas, which
generates a sharp decrease in analyte concentration. The last
switching would not be necessary for the equilibrium-based
sensors, but it is necessary to get the second calorimetric
transient, as shown in line 6. As already described in section
3.2, the calorimetric sensor relies on transients and provides
signals exclusively upon concentration changes. Therefore,
the calorimetric recording has to be performed at high
temporal resolution (1 kHz) in two short intervals covering
both flanks of the concentration signal (line 2), i.e., at the
maximum gradient of the analyte concentration. The two
transient signals of the calorimetric transducer (positive upon
analyte absorption, negative upon analyte desorption) are
displayed in line 6. Usually, the areas of the respective peaks
(absorption and desorption peaks) are integrated and then
averaged to obtain the final value.

5. Sensor-Based Microanalytical Systems
In this section, we briefly describe more complex minia-

turized analytical systems based on gas sensor arrays, which
resemble most closely higher-order analytical instruments.
The sensor arrays act as detector units in those systems. In
most cases, preconcentration (see also the article of Grate et
al. in this issue154) and/or separation stages have been
combined with the sensor array for better analytical perfor-
mance of the resulting system.155-166 The preconcentration
stages lower the detection limits for the sensors through
enrichment of the target analytes in a sorptive matrix. After
some time allowed for the analyte enrichment, a sharp
heating pulse is applied to the sorptive material so that all
the analyte molecules, which were absorbed during a user-
defined time span, desorb at once. In this manner, consider-
ably higher analyte concentrations hit the subsequent sepa-
ration (micro-GC) and/or detection unit (sensor array).156,157

The preconcentration stages can be classified into two
groups: (i) dynamic headspace or purge-and-trap systems
and (ii) solid-phase microextraction methods using fibers
coated with absorbing materials.167 Nanoporous carbon, sol-
gels, ceramic matrices, polymers, and commercial packing
materials are commonly used as absorption matrixes. In
comparison to sensors without preconcentrators, improve-
ments in the lower detection limit range between 1 and 3
orders of magnitude can be achieved, so that the lower ppb
range (relevant for many applications) becomes accessible.
Preconcentrators with commercial material such as Tenax

TA have been used in conjunction with mass-sensitive
Rayleigh surface-acoustic-wave devices to detect the BTX
compounds (benzene, toluene, and xylene) in the low ppm
and sub-ppm range,161 or with thickness-shear-mode resona-
tors (temperature of the preconcentrator was modulated) for
apple and banana flavors.164 A two-step preconcentrator to
enrich organic volatiles and to remove water vapor from the
sample air (first and second stages feature a hydrophobic
coating, which enriches organic volatiles and which lets water
pass) was used for analyzing exhaled air or human breath
with the help of carbon-black/polymer-coated chemoresis-
tors.162 Low levels of organic volatiles in human breath could
be detected.162

Several groups have used sensors as detectors at the end
of standard desktop chromatographic units.165,166The use of
bulky chromatographic units to boost the discrimination
performance of small and cheap sensors, however, defeats
the purpose of having small and portable units, in particular
since the performance of the sensors is, in most cases, not
superior to that of a standard flame-ionization detector (FID).
It also has been proposed to combine a metal-oxide-based
chemoresistor (zinc-oxide pellet) with a 80 mm long fused
silica capillary to record diffusion-dependent sensor responses
and to identify certain target analytes.168

Miniaturized gas chromatographic units were first pre-
sented in the late 1970s169 and, then, in the mid-1990s.170 In
most cases, they have been realized as spirals (column
lengths) 0.6-0.9 m; widths) 100-200 µm; and depths
) 200-400 µm) micromachined into a planar silicon
substrate (∼1 cm2) with a glass plate bonded to the silicon
substrate to close the column (see Figure 22 and Figure 24).
More recently, rather long (up to 3 m) square-type micro-
machined columns on 3.3× 3.3 cm2 dies have been
presented.160Within this review, we will not give more details
on micromachined gas chromatographic units but will
describe two approaches to miniaturized, sensor-based, low-
power microsystems potentially capable of comprehensive
environmental vapor analysis.

A hybrid microsystem developed in a broad-based effort
at the University of Michigan155-157,159,160,163contains the
following components (Figure 22):160 a sample inlet with
particulate filter, an on-board calibration-vapor source, a
multistage preconcentrator/focuser, a dual-column separation
module with pressure- and temperature-programmed separa-
tion tuning, an array of microsensors for analyte recognition
and quantification, and a pump and valves to direct the
sample flow. MEMS (micro-electromechanical system)
processing technologies have been used to fabricate the
system with the ultimate goal of creating a fully operational
micro-instrument that occupies only 1-2 cm3, requires an
average (battery) power of just a few mW per analysis,
provides rapid determinations of mixtures of at least 30
vapors of arbitrary composition at low- or sub-part-per-billion
(ppb) levels, has an embedded microcontroller, and can be
remotely interrogated through an RF-MEMS (RF) radio
frequency) wireless communication link.160 The calibration-
vapor source, shown in Figure 22a, is designed to generate
calibrant vapor at a constant rate by passive diffusion from
a liquid reservoir. Analysis of this ‘‘internal standard’’, along
with vapors captured from the environment, provides the
means to compensate for aging, drift, or other factors that
might affect analytical performance. The calibration-vapor
source is a 3-layer structure, whose base contains a deep
porous-Si (PS) reservoir for retaining the volatile-liquid
calibrant, a glass spacer layer with a central aperture that
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defines the headspace region, and a Si cap that contains an
etched diffusion channel and exit port.

The three-stage micropreconcentrator (Figure 22b) is
designed to capture organic vapors quantitatively and to
thermally desorb them into a much smaller volume, thereby
increasing the effective concentration to facilitate detection
as well as providing a sharp injection plug to facilitate high-
speed chromatographic separations.156,157The preconcentrator

is manually packed with porous, carbon-based adsorbents
(total mass≈ 5 mg) in order to increase the specific surface
area. Adsorbents are loaded through a stencil mask to
maintain segregated sections of each material.

As can be seen in Figure 22c, a large single-substrate
column was used, which consisted of a convolved square-
spiral silicon channel (150µm wide, 240µm deep, and 3 m
long) on a square die, 3.3 cm on a side, capped with an
anodically bonded Pyrex glass cover plate. Figure 22c shows
a sealed column, with the inset providing a closer view of
the channel cross section. A polydimethylsiloxane stationary
phase (thickness of∼1 µm) was employed and was deposited
dynamically from a dilute pentane solution.

The detection unit (Figure 22d) included an integrated
array of four chemiresistors, designed to produce a set of
partially selective responses to vapors eluting from the
separation column. The response pattern can then be
combined with the retention time to identify the vapor, and
the magnitude of the responses from the sensors can be used
to quantify the vapor concentration. Each sensor consists of
20 pairs of interdigital Au/Cr electrodes (1.4 mm long, 15
µm wide, and spaced by 15µm) on a Si substrate. Intersensor
spacings are∼1 mm. The chemiresistor array employs
interfacial films of Au-thiolate monolayer-protected nano-
clusters, whose resistances are shifted to different extents
upon vapor sorption.171,172

There are many parameters in this complex system that
influence its performance and have to be optimized with due
regard to the target analytes and the analysis problem, such
as gas flow velocity, flow rates, temperatures and temperature
programs of GC column and preconcentrator, preconcentra-
tion time, and column and preconcentrator materials.

Figure 22. Schematic and components of the Michigan analytical microsystem: (a) calibration-vapor source before (left) and after (right)
assembly; (b) 3-stage adsorbent micropreconcentrator prior to loading and sealing (top left), with close-up SEM images of each section
loaded with adsorbents (lower left); (c) 3 m separation-column chip (lower right) with close-up views of the channel cross sections prior
to (top right) and after (top left) sealing; (d) detector assembly with 4-chemiresistor-array chip (right), Macor lid (white square structure),
and sealed detector with connecting capillaries mounted on a custom fixture (left). Reproduced with permission from ref 160. Copyright
2005 Royal Society of Chemistry.

Figure 23. Seven-vapor chromatograms of the Au-6-phenoxyhex-
ane-1-thiolate-coated chemiresistor showing the effect of micro-
preconcentrator-desorption and column-elution flow rates and flow-
rate ratios on resolution and analysis time. For split-flow operation,
a portion of the flow through the micropreconcentrator was diverted
around the separation column: (a) no split flow, 1.3 mL/min; (b)
4:1 split ratio, 5.1 mL/min (micropreconcentrator)/1.3 mL/min
(column); (c) 8:1 split ratio, 5.8 mL/min (micropreconcentrator)/
0.75 mL/min (column). Vapors: 0, water; 1, toluene; 2,n-butyl
acetate; 3,m-xylene; 4,n-nonane; 5, mesitylene; 6,n-decane; 7,
octamethylcyclotetrasiloxane. Reproduced with permission from ref
160. Copyright 2005 Royal Society of Chemistry.
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For sample collection, 0.25 L of analyte-loaded air was
drawn at 25 mL/min through the preconcentrator, where the
vapors were trapped. The preconcentrator was then heated
to 280 °C, and the desorbed vapor mixture was passed to
the column and sensors at flow rates below 10 mL/min for
separation and detection. A sample measurement is shown
in Figure 23.160 Figure 23a shows a 7-vapor chromatogram
from one of the sensors (Au-6-phenoxyhexane-1-thiolate-
coated sensor), illustrating that symmetric peak shapes and
adequate separations can be achieved at 1.3 mL/min with
the column temperature ramped from 25 to 80°C at 1.4
°C/s. The separation required only 75 s. For this test, the
entire desorbed sample volume was transferred to the
separation column. A fraction of the sample flow can be
diverted around the column and sensor array, since it was
shown that sharper injection pulses are obtained at higher
desorption flow rates (i.e., 0.3 mL/min) through the precon-
centrator, and since it was also shown that the flow restriction
imposed by the 3 m column length constrains the maximum
flow rate through the column to values of<3 mL/min. The
split ratio was adjusted by varying the length, and thereby
the flow resistance, of the bypass. Figure 23b shows the
chromatogram obtained with a 4:1 ratio: the preconcentrator
flow rate (5.1 mL/min) was four times that passing through
the column (1.3 mL/min). Retention times were increased
slightly and all peaks became sharper and better separated
than without a flow split (compare Figure 23a). Increasing
the split ratio to 8:1 and reducing the column flow rate to
0.75 mL/min yielded the chromatogram shown in Figure 23c.
The separation is improved substantially due to the narrower
injection band and due to the operation of the column at a
lower velocity. However, the time required for the separation
increased by∼50%, and the magnitudes of all peaks are
reduced because of the smaller fraction of the desorbed
sample being passed through the column and because of the
slight increase in dilution associated with the higher desorp-
tion flow rate.160 The system is capable of separating,
recognizing, and quantifying mixtures of moderate complex-
ity (e.g., 11 vapors) in<1.5 min. The needed preconcen-
tration time ranges from∼1 min (industrial work places,
analyte concentration in the single ppm range) to 10 min or
more for less-contaminated office or residential environments
(ppb range).160

Development efforts in the field of microanalytical systems
have taken another step forward in devising extremely
compact monolithic systems with all components realized
on the same silicon substrate.158,173There are advantages to

hybrid systems, such as modular replacement of components,
and the fact that the thermal isolation of the individual
components is much easier to accomplish in hybrid systems,
which is important, since the individual components often
have different operation temperatures. However, the mani-
folds previously described often have cold transfer lines
interconnecting the components. This can cause collection
or condensation of analyte in the transfer lines, ultimately
reducing sensitivity. Although the size of the manifold
channels may be subminiature, there is still excess dead
volume present. Moreover, the assembly of the hybrid system
can add to the cost of the completed system, and physical
isolation strategies and system timing can be used to mitigate
thermal isolation issues for the monolithic system.158 A
monolithic “MicroChemLab” system on a 5× 6 mm2 size
chip developed at the Sandia National Laboratories, Albu-
querque, NM, is shown in Figure 24. The length of the spiral
GC column is 8.1 cm in one design and, in another, 11.8
cm. The 8.1 cm long, 50µm wide GC column is integrated
with a preconcentrator and a novel magnetically actuated
pivot-plate resonator sensor pair. The pivot-plate resonator
is potentially more sensitive than the magnetically actuated
flexural-plate-wave transducer used before158 and is also
actuated by making use of Lorentz forces. The pivot-plate
resonator consists of a central paddle supported by two
torsional beams. An alternating current passing through the
transducer lines interacts via the Lorentz force with an
orthogonal, in-plane magnetic field, causing the paddle to
oscillate around the torsional beams (Figure 24c).158

The monolithic chip design also incorporates a surface-
micromachined bypass valve, intended to switch the flow
between the sampling and separation/detection portions of
the overall analysis system. The valve consists of an
electrostatically actuated silicon nitride flap situated over the
bypass port. Machined glass lids, baseplates, and packages
have been fabricated to coat and test the monolithic system,
which is work in progress.158

6. Are More Sensors Better?
In the introduction to this chapter, we suggested that

increasing the measurement-data dimensionality, either by
adding more sensors or by extracting additional features,
could offer substantial benefits with respect to the analytical
capabilities of the instrument. The issue of whether or not
“more sensors are better” is an ongoing debate in the
chemical-sensor-array community.174-177 Providing a general

Figure 24. Optical photographs of a monolithic microanalysis system. (a) Front side surface micromachining is shown: dual pivotal-plate
resonator sensors are evident as are multiple oblong through-wafer access ports, a preconcentrator in the lower left, and a gas chromatography
resistive heater and circular coating ports in the lower right. (b) Reverse side deep etching: the spiral GC is on the lower left. (c) Close-up
of the pivot-plate resonator, rotated 90° with respect to images (a) and (b). The direction of the magnetic field, set up by miniature magnets,
is indicated by an arrow. Current lines follow the perimeter of the paddle and the two torsional suspension beams. Reprinted with permission
from ref 158. Copyright 2006 IEEE.
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answer to this question is difficult, if at all possible. On the
one hand, the use of multiple sensors is central to the
“electronic nose” paradigm; arrays of cross-selective sensors
(i.e., first-order arrays) do provide more analytical capability
and power than the individual sensors. Further, while it is
evident that adding “orthogonal” sensors can improve the
selectivity of the instrument, the use of redundant sensors
can also be beneficial, e.g., in terms of increasing the fault-
tolerance and sensitivity of the array. On the other hand,
increasing the dimensionality of the feature space can have
detrimental effects in terms of increased computational
complexity, higher levels of noise, and an increased risk of
overfitting (i.e., the modeling of noise in the training set),
even if the additional dimensions are orthogonal. In the
following subsections, we will provide a more detailed
treatment of these issues.

6.1. Characteristics of High-Dimensional Vector
Spaces

Humans have an uncanny ability to perceive patterns in
the three-dimensional world in which we live. We can
understand speech (a first-order signal) under much degraded
acoustic conditions, recognize a familiar face (a second-order
signal) at a large distance, or appreciate the gracefulness of
a ballerina (a third-order signal) already upon a short glance.
Unfortunately, our capabilities in the three-dimensional space
do not scale up to higher dimensionality. To illustrate this
point, we will highlight a few geometric and statistical
characteristics of high-dimensional hyperspaces that defeat
intuition.178

Consider a hypersphere of radiusr, defined ind dimen-
sions. It can be shown that the volume of the hypersphere is
given by179

whereΓ() is the gamma function, an extension of the factorial
function to complex and noninteger numbers. Using elemen-
tary calculus, the fraction of this volume that is contained
in an outermost shell of thickness,ε, can be computed as

It then follows that, as the dimensionality of the hyper-
sphere increases, so does the fraction of the volume
concentrated in the outermost shell. Likewise, it can be
shown that the volume of a hypercube tends to be concen-
trated in the corners. Thus, high-dimensional spaces tend to
be mostly empty, and the data tend to be concentrated in a
low-dimensional manifold. The latter suggests that data can
be projected onto a low-dimensional subspace without a
significant loss of information. Unfortunately, finding an
optimal projection becomes increasingly harder with more
dimensions. According to the central limit theorem, any sum
of independent and identically distributed random variables
tends to be more normally distributed than the variables
themselves, even if these are markedly non-Gaussian. Thus,
as the dimensionality of the feature space increases, low-
dimensional projections of the data have the tendency to

become normally distributed, which may destroy any natural
clustering of the data in a high-dimensional space.178

In addition, computation in higher-dimensional spaces
increases the amount of data that is required to effectively
train the models. It has been shown that the number of
training samples should grow linearly with the feature space
dimensionality for linear models,180 in a quadratic fashion
for Gaussian models, and exponentially for nonparametric
models.181 What this means is that, for a defined dataset size,
there is an optimum number of dimensions, beyond which
the performance degrades;182 see Figure 25. Therefore, on
the basis of statistical considerations, and assuming a given
number of training samples, the smallest number of sensors
that can provide the necessary chemical discrimination is
better.

6.2. Orthogonality versus Independence
One of the potential advantages of higher-order sensor

arrays, such as arrays based on different transducers, is their
ability to produce “orthogonal” features.88,183In this context,
two features are said to be orthogonal if they convey
information about, e.g., different physicochemical properties
of the target compounds. Thus, orthogonality is a geometric
property defined in chemical space, where each dimension
represents a unique molecular chemical or physical property.
It is important to note, however, that sensor orthogonality is
neither necessary nor sufficient to ensure higher analytical
power of an array. In fact, the addition of an orthogonal
sensor may even lower the performance of the array through
the introduction of noise, if the information provided in the
respective added feature is irrelevant to the discrimination
and quantification of target compounds or, worse, if the
feature is sensitive to the chemical background or to
interferents. Consider, for instance, the problem of develop-
ing a new sensor array for CO, an example given by Stetter
and Penrose.177 One may be tempted to combine an optical
infrared detector with a metal-oxide-covered conductometric
device. Both sensors can be considered to be orthogonal,
since the IR sensor measures molecular vibrations and the
metal-oxide-based sensor relies on electronic effects. By
adding a metal-oxide-based sensor, however, we may obtain
little additional information. More importantly, since metal-
oxides are very sensitive to a broad variety of gases, we may
have rendered the array more vulnerable to interferences.

On the other hand, two sensors are said to be independent
if the knowledge of the response of one sensor upon exposure
to a target compound does not provide any information about
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Figure 25. Performance of a statistical pattern classifier as a
function of the feature-vector dimensionality,n, for a fixed dataset
size,m. Reprinted with permission from ref 182. Copyright 1968
IEEE.
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the response of the other sensor.183a In other words, inde-
pendence is a statistical property defined in the feature space,
where each dimension represents a certain feature or sen-
sor.184Thus, in contrast to orthogonality, sensor independence
cannot be ensured unless the sensor array has been designed
for an a priori known set of target analytes. In this context,
more sensors are better, in the sense that increasing the
number of sensors in the array also increases the odds that
a subset of independent sensors can be found for a wider
range of applications.

6.3. Cross-sensitivity and Diversity
The inherent cross-sensitivity of chemical sensors is

commonly seen as both beneficial, to the extent that it
broadens the detection range of the array, and detrimental,
in that it makes the instrument vulnerable to interferences.
Common sense seems to indicate that, if one were able to
develop sensors that are specific to only one of the target
compounds, the resulting array would be more accurate than
a similar array of cross-sensitive sensors. Quite the contrary
has been suggested by a number of theoretical results in
computational neuroscience (see, e.g., Brown and Ba¨cker185

and references therein) and machine olfaction.175 According
to these studies, arrays of broadly tuned sensors provide a
more accurate representation of a stimulus than arrays of
highly specific sensors, assuming that the stimulus is of high
dimensionality (e.g., large number of target compounds). In

fact, using computational models, Alkasab et al.186 have
estimated that an optimum configuration should include
arrays in which each individual sensor responds to 25-35%
of the target compounds. Several authors (see, e.g., refs 187
and 188) have also reported that the overall performance of
large sensor arrays can be improved by allowing the
individual sensors to have different degrees of selectivity
by combining, e.g., broadly tuned and narrowly tuned
sensors; see Figure 26. This theoretical result is particularly
relevant in the case of higher-order devices, since different
transduction principles and sensitive layers can be combined
to produce sensor arrays of very distinct and diverse
sensitivity and selectivity patterns. Experimental results on
arrays combining selective and partially selective sensors are
also consistent with the above theoretical predictions.189

Therefore, from this perspective, one can argue that more
sensors are better, provided that the respective selectivity
profiles increase the diversity in the array.

6.4. Multiple Roles of Redundancy
Biological olfactory systems rely on a diverse and highly

redundant population of sensory neurons to gather informa-
tion about the stimulus; see ref 190 and references therein.
Depending on the animal species, it has been estimated that
100-1000 different types of receptors are involved in the
coding of chemical information at the olfactory epithelium.
Each type of receptor is expressed on a large number of

Figure 26. Array performance as a function of the relative proportion of broadly tuned (large) and narrowly tuned (small) sensors. The
results show that the maximum performance is obtained when the array contains a mixture of “large” and “small” sensors. Dashed vertical
lines indicate the performance of the array when all sensors have the same degree of selectivity. Reprinted with permission from ref 186.
Copyright 2002 Oxford University Press.
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sensory neurons, with each neuron being specialized on one
or a few receptor types. This massive degree of redundancy
serves multiple purposes. First, it allows the system to cope
with the massive turnover of sensory neurons, since the
distribution of sensory neurons can be considered to be
stationary over time with respect to the developmental stage
of the individual neurons. Second, the integration of the
response from multiple neurons can be used to average out
uncorrelated noise, which effectively increases the sensitivity
of the instrument. More specifically, theoretical estimates
and experimental results show that signal integration im-
proves the detection threshold by a factor ofxn, wheren is
the number of identical (or identically responding) sensors
in the array;191 this result is illustrated in Figure 27 for an
array of nominally identical tin-oxide sensors.192 Third, by
relying on a large population of sensors, the system becomes
more robust and fault-tolerant. Thus, from this perspective,
more sensors (of the same type) are better, provided that
their noise characteristics are also independent.

7. Data Preprocessing
The term “data preprocessing” broadly refers to any

transformation performed on the raw sensor data prior to
building the main analysis model. The goal of data prepro-
cessing is typically two-fold: (i) reduction of noise or
removal of information that is known to be irrelevant to the
analysis problem and model (e.g., interferences, drift) and
(ii) numerical preconditioning of the data, such as scaling
or normalization.192 The selection of a suitable data-
preprocessing approach can have a significant impact on the
performance of the analysis model,193 but, unfortunately, the
data-preprocessing approach is highly dependent on the
sensor technology (e.g., metal-oxide chemiresistors vs quartz
crystal microbalance), the type of analysis (e.g., classification
vs regression), the type of model (e.g., nearest-neighbors vs
multiway), and the type of noise present in the data (e.g.,
baseline drift vs concentration effects). Thus, there is only a
handful of general guidelines as to how to select the appro-
priate preprocessing technique (see, e.g., ref 194), and, in
practice, a suitable technique must be selected empiric-
ally.195-197

Data preprocessing is particularly important in the case
of higher-order sensor arrays, since these devices can employ

a number of different transducer types and/or take advantage
of the dynamical responses of the sensors. In the first case,
a separate preprocessing technique may need to be applied
to each type of transducer and then globally to the multi-
variate response of the array. In the latter case, it is important
to ensure that the preprocessing technique does not destroy
the higher-order structure of the data (e.g., trilinearity).198

Preprocessing techniques can be grouped into three
categories: (1) baseline correction, (2) scaling, and (3)
dynamic feature extraction. Baseline correction and scaling
will be reviewed only briefly here, since they have been
extensively covered in the literature.192-196,199-201 Somewhat
related to baseline correction is the issue of drift compensa-
tion. Due to the potentially large impact of drift on the
analytical performance of the sensor array, computational
methods to handle sensor drift will be treated separately in
section 8. An emphasis will also be placed on dynamic
feature extraction, since it constitutes one of the easiest ways
to realize “higher-order” sensing; dynamic techniques will
also be reviewed separately in section 9.

7.1. Baseline Correction

The objective of baseline correction techniques is to
remove background noise from the raw sensor responses and
to increase the contrast. Three types of baseline correction
techniques are widely used: differential, relative, and
fractional techniques.193,202 Differential techniques subtract
a baseline value from the sensor response and can be used
to remove additive noise or interferences. Differential
techniques are typically used for piezoelectric sensors,203,204

where the response is a frequency or phase shift with respect
to a reference analyte (and/or an uncoated reference sensor),
and for MOSFET sensors,205 where the response is a voltage
shift in the I(V) curve. Relative techniques compute the ratio
between the sensor response to the sample and the sensor
baseline value and, therefore, can be used to reduce
multiplicative noise. The relative technique is commonly used
with metal-oxide devices, since their resistance upon expo-
sure to a sample,RS, is related to the baseline resistance,R0,
i.e., RS ) R0[C]-â.206 Fractional techniques subtract the
baseline value and then divide by the baseline value, which
yields a per-unit response. It has been shown202 that the use
of fractional changes in conductance provides the best

Figure 27. Effect of computing the average response of an array of homogeneous tin-oxide sensors: the variance of the array output
decreases with the square root of the number of sensors. Reprinted with permission from ref 192. Copyright 2002 Wiley-VCH, Weinheim.
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pattern-recognition performance for (n-type) MOS chemore-
sistors. Fractional changes in resistance are also commonly
employed with conducting-polymer chemoresistors.207,208

The above techniques operate on a sensor-by-sensor basis.
Instead, baseline effects on the data set may be treated by
means of multivariate techniques, such as multiplicative
scatter correction (MSC).209-211 Developed to remove light
scattering and particle-size issues in near-infrared spectros-
copy,212 MSC has so far received little attention in the
“electronic nose” or sensors community.213 Given a feature
vectorx(k) and a reference samplex(ref), MSC computes the

regression modelx(k) ) a(k) + b(k)x(ref), and then uses the
regression parameters (scalarsa(k) and b(k)) to rescale the
feature vector by subtracting the intercepta(k) and dividing
by the slope of the estimated regressionb(k): x(k) ) (x(k) -
a(k))/b(k). Thus, MSC can be used to correct for both
multiplicative and additive effects. Table 2 summarizes the
various forms of baseline correction techniques.

7.2. Scaling
The objective of scaling techniques is to either eliminate

irrelevant information from the sensor data (e.g., concentra-

Table 1. Dynamic Parameters That Can Be Extracted from Sensor Response Curves72

parameter description

baseline (1/5)‚∑T)gasOn-4s
gasOn (sensor value)

final response, response sensor value (averaged over 5 s) at gasOff-baseline
30/90 s on/off response sensor value (averaged over 5 s) 30/90 s after gasOn/Off-baseline
maximum response max (sensor value)-baseline
min/max derivative min/max difference between two samples during measurement
on/off derivative (sensor value 10 s after gasOn/Off-baseline)/10
plateau derivative (response- 90 s on response)/30
on integral ∑T)gasOn

gasOff (sensor value- baseline)
off integral ∑T)gasOff

gasOff+119s (sensor value- baseline)
short on/off integral ∑T)gasOn/Off

gasOn/Off+9s (sensor value- baseline)
response/on integral response/on integral
T0-90% time from gasOn for sensor value to reach baseline+ 0.9× response
T0-60% or baseline+ 0.6× response
T100-10% time from gasOff for sensor value to reach baseline+ 0.1× response
T100-40% or baseline+ 0.4× response
polynomial on/off Y ) A3x3 + A2x2 + A1x + A0

On: Y ) (sensor value- baseline) andx ) time from gasOn to gasOff
Off: Y ) (response+ baseline- sensor value),x ) time from gasOff to gasOff+ 240 s

1. exponential on/off Y ) A(1 - exp(-(x/T)), whereY andx are defined like in the polynomial fit
2. exponential on/off Y ) A0 + A1 exp(-x/T1) +A2 exp(-x/T2), whereY andx are defined like in the polynomial fit
ARX on/off y(t) ) a1‚y(t - 1) + a2‚y(t - 2) + b‚u(t - 1)

On: y(t) ) (sensor value- baseline),t ) time from gasOn- 5 s to gasOff andu(t) )
0 if test gas off and 1 if test gas on

Off: y(t) ) (response+ baseline- sensor value),t ) time from gasOff- 5 s to gasOff+
240 s andu(t) ) 1 if test gas off and 0 if test gas on

Table 2. Summary of Baseline Correction and Scaling Techniquesa

type name transform application notes

baseline correction differential xi
(k) ) xi

(k) - xi
(ref) removal of additive noise/drift

baseline correction relative xi
(k) ) (xi

(k)/xi
(ref)) removal of multiplicative noise

baseline correction fractional xi
(k) ) (xi

(k) - xi
(ref))/xi

(ref) has been shown to work well for
metal-oxide chemoresistors

baseline correction MSC x(k) ) (x(k) - a(k))/b(k) removal of information correlated with a reference
sample;a(k, b(k are estimated for each sample

global scaling feature norm xi
(k) ) (xi

(k) - min[xi])/(max[xi] - min[xi]) makes signal magnitudes comparable across sensors
but can amplify noise and is sensitive to outliers

global scaling autoscaling xi
(k) ) (xi

(k) - mean[xi])/std[xi] makes signal magnitudes comparable across sensors
but can amplify noise

global scaling mean centering xi
(k) ) xi

(k) - mean[xi] removal of common-mode signal across samples
global scaling whitening x ) Λ-1/2MTx yields uncorrelated, unit-variance features, but can

also amplify noise
local scaling vector norm xi

(k) ) (xi
(k)/x∑i(xi

(k))2) reduction of concentration dependence; useful for
qualitative (discriminative) analyses

local scaling SNV xi
(k) ) (xi

(k) - mean[x(k])/std[x(k] reduces within-class scattering but makes the data
“closed”

nonlinear transform logarithm xi
(k) ) log(xi

(k)) linearization and dynamic range compression
nonlinear transform square-root xi

(k) ) xxi
(k) linearization

nonlinear transform Box-Cox xi
(k) ) {((xi

(k))λ - 1)/λ λ * 0

ln( i
(k)) λ ) 0

compensates for nonlinearities and compresses the
dynamic range of the sensor

nonlinear transform Horner-Hierold xi
(k) ) (xi

(k)/xi
(ref))-1/âi linearization of metal-oxide chemoresistors;

parameterâi estimated from the data

a xi
(k) denotes the response of sensori to samplek. xi

(ref) denotes the response of sensori to a reference sample. Notation: mean() and std() denote
the sample mean and sample standard deviation.
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tion), or to precondition the data (e.g., decorrelating features).
Scaling techniques can be grouped into global or local
techniques, depending on whether they operate on a feature-
by-feature basis or on a sample-by-sample basis.194

7.2.1. Global Techniques

Global techniques transform the data on a feature-by-
feature basis across an entire database. The most common
techniques are feature normalization and autoscaling. Feature
normalization scales each feature to the range [0, 1] by
subtracting the minimum value and then dividing by the
overall measurement range of the sensor response, both
computed across the entire database. Feature normalization
makes full use of the input dynamic range but is very
sensitive to outliers, since the range is determined by extreme
values in the sensor data. In contrast, autoscaling normalizes
each feature by subtracting the sample mean value and then
dividing by the standard deviation, both computed across
the entire database. Autoscaling cannot provide tight bound-
aries for the input range but is more robust to outliers than
feature normalization. Moreover, robust statistics may be
used to reduce the sensitivity to outliers.214

Multivariate techniques can also be used to globally scale
the data. For instance, the whitening transform180 may be
used to produce uncorrelated and unit-variance features. The
procedure consists of first projecting the data along the
eigenvectors of the covariance matrix and then normalizing
bythe corresponding eigenvalues, i.e.,x ) Λ-1/2MTx, where
M contains the eigenvectors (arranged as columns) andΛ
is a diagonal matrix with the corresponding eigenvalues. The
whitening transform is closely related to principal-compo-
nents analysis (PCA), with the key difference to PCA being
that PCA only uses the eigenvectors corresponding to the
largest eigenvalues (for dimensionality-reduction purposes).
Note that the whitening transform is equivalent to autoscaling
if the sensors/features are independent and zero-mean.

Global methods are typically used to ensure that sensor
response amplitudes are comparable, preventing subsequent
pattern-recognition procedures from being overwhelmed by
sensors with arbitrarily large values. For instance, nearest-
neighbor procedures180,215,216are extremely sensitive to feature
weighting, and multilayer perceptrons, the most common type
of feedforward neural networks, may saturate for excessively
large input values. However, it must be noted that these
techniques can amplify noise since all the sensors (including
those which may not provide any useful information) are
weighted equally.217

7.2.2. Local Techniques

Local techniques transform the data on a sample-by-sample
basis across the feature vector. Local techniques include
vector normalization and standard normal variate correction.
In vector normalization, the response of each individual
sensor is normalized (i.e., divided) by the L2 norm of the

vector (|x|L2 ) x∑ixi
2). This forces the distribution of

samples to be located on a hypersphere of unit radius. Vector
normalization can be used to remove concentration effects,
provided that all sensors in the array have the same
concentration dependence, e.g.,xi ) kif([C]). This is the case
for surface and bulk acoustic wave sensors,206 electrochemi-
cal cells and fluorescent indicators,184carbon-black sensors,208

and metal-oxide sensors. Similar concentration-removal
effects can be achieved by normalizing each sensor with the

L1 norm (|x|L1 ) ∑i|xi|) or with the response of a reference
sensor. In the case of metal-oxide sensors, the concentration
removal requires that the exponentâ of the power-law
dependence be the same for all sensors. However, an
alternative normalization technique has been recently devel-
oped that allows this condition to be relaxed.218 Vector
normalization is beneficial for discrimination problems but
should be avoided in concentration-estimation problems or
whenever the vector norm is known to carry relevant
information. For hybrid array data, vector normalization
should be performed separately on groups of sensors with
the same concentration dependence, such as sensors of the
same type, possibly followed by a second normalization
across the entire array.

The standard normal variate (SNV) transform219 normal-
izes each sensor response by first subtracting the average
across the array (for a given sample) and by then dividing
through the standard deviation across the array (for a given
sample). Thus, SNV can be thought of as an autoscaling of
each feature vector. SNV is commonly used in near-infrared
spectroscopy to effectively reduce in-class variance but has
also been applied to chemical sensor transients.198

Care must be taken in employing local transforms, as they
render the data set “closed,” i.e., SNV forces the sum of the
features to become zero, whereas vector normalization
renders the sum-square equal to one. Closure can introduce
spurious positive correlations between the sensors featuring
the highest response levels and spurious negative correlations
between sensors exhibiting the lowest response levels.220 This
issue is particularly relevant in the case of hybrid arrays,
where each sensor type may have an intrinsically different
range of signal magnitude. It is then advisable to first scale
each sensor using a global technique, see, e.g., refs 221 and
222.

7.2.3. Nonlinear Transforms
Various transformations have been proposed to compen-

sate for nonlinearities in the data, such as concentration
dependencies, or saturation effects. They include logarithms,
square-roots,200 and the Box-Cox transform.223 Of particular
interest for metal-oxide sensors is a linearization transform
proposed by Horner and Hierold,224 which we describe here
for illustration purposes. The method assumes a resistance-
concentration dependence that can be described by

where R0i is the sensor resistance in air, [Cj] is the
concentration of gasj, q is the number of gases, andAij, mj,
and âi are model parameters. Suitable values for these
parameters can be found by fitting the model to experimental
data, {Ri,[Cj]}, by means of a nonlinear optimization
technique (Levenberg-Marquardt). Once these parameters
have been estimated, the following nonlinear transformation
can be applied to linearize the sensor response with respect
to the analyte concentration:

8. Drift Compensation
The most serious limitation of current sensor arrays is the

inherent drift of individual sensors, which results in a slow,

Ri ) R0i
(1 + ∑

j)1

q

(Aij[Cj])
mj)-âi (3)

ri ) (Ri/R0i
)-1/âi; [cj] ) [Cj]

mj (4)
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random temporal variation of the sensor response when
exposed to the same analyte under identical conditions. As
a result of drift, learned sensor response patterns may become
obsolete over time, so continuous recalibration may be
required. Following Holmberg and Artursson,225 drift-like
effects can be attributed to a number of sources. First, there
are issues related to the sensor itself, such as aging (e.g.,
reorganization of the sensing layer) and poisoning (e.g.,
irreversible binding); only aging and poisoning are strictly
considered as drift. These effects are very difficult to
compensate for and have been the subject of many investiga-
tions, as will be detailed below. Second, drift-like effects
can occur also in the measurement system due to, e.g.,
fluctuations in flow rate, temperature, pressure, or humidity
content in the sensing chamber, or analyte condensation in
the manifold. These types of artifacts can be most effectively
addressed by measuring the variables that are known to
fluctuate and by then compensating for the fluctuations in
software. This includes, e.g., removing any variance due to
fluctuating parameters from the sensor response. An effective
compensation may pose a major challenge, when small
environmental perturbations induce large changes in the
sensor response. In addition, issues related to experimental
procedures can give rise to effects that are often confounded
with drift, such as memory effects (hysteresis, systematic
errors due to fixed sampling sequences), short-term effects
(system warm-up, thermal trends), or even the degradation
of the samples themselves. These types of errors can be
addressed with a proper experimental design, whereas the
previously discussed two sources of drift will typically
require some form of signal processing.

The modulation of the sensor operation temperature has
been used to generate features that are significantly more
stable than isothermal features. Along these lines, Roth et
al.226 alternated the temperature of a CO2 gas sensor coated
with an organic material and showed that the normalized
slope of the sensor response remained much more stable over
time in comparison to constant-temperature measurements.
Aigner et al.227 derived similar conclusions for Si-planar-
pellistors.

A number of drift-compensation algorithms have been
developed over the past decade, which can be grouped into

univariate and multivariate techniques. These two types will
be reviewed below.

8.1. Univariate Drift Compensation

Drift compensation may be performed for each sensor
individually. At the simplest level, one may employ the
baseline-correction techniques described in section 7.1;
differential measurements can be used to remove additive
(baseline) drift, whereas multiplicative (sensitivity) drift can
be compensated for by conducting relative measurements
using a reference gas (clean or purified air). Differential
measurements can be made with respect to a calibration
gas,228 which must be chemically stable over time, and whose
behavior should be highly correlated with the target ana-
lytes.229,230A practical calibration method that operates on a
sensor-by-sensor basis has been developed by Haugen et
al.,229 in which drift compensation is performed on two time
scales: (i) within a single measurement sequence and (ii)
between measurement sequences. At each time scale, the
method models temporal variations in a calibration gas by
means of a multiplicative correction factor, which is then
applied to the target samples. The process is illustrated in
Figure 28. A multiplicative correction scheme has also been
used by Sisk and Lewis.230 More interestingly, these authors
have shown that event-driven calibration provides superior
performance with respect to periodic calibration. The events
may be triggered when, e.g., unlabeled samples start to fall
outside the decision boundaries of the classifiers, when
outliers are detected, or after interruptions in the data
collection. Needless to say, event-driven calibration is also
most cost-effective, since it is only performed upon demand.

8.2. Multivariate Drift Compensation

Alternatively, one may correct for drift on the entire array
data as a whole, rather than on a sensor-by-sensor basis. The
advantage of this approach is that the procedure can exploit
correlations between the sensors. The majority of these
methods is based on adaptive modeling, system identification,

Figure 28. Illustration of the multiplicative signal correction method of Haugen et al.229 Response of an individual sensor to the calibrant
and target gases (a) before calibration, (b) after short-term correction (within sequence), and (c) after long-term correction (between sequences).
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orthogonal signal correction, or blind signal deconvolution
techniques, as will be detailed below.

Adaptive models are an interesting alternative for the
problem of drift compensation. The basic idea behind these
techniques is to model the distribution of training examples
with a codebook (i.e., a collection of cluster centers) and
then to adapt this codebook upon the presentation of the test
data: an incoming (unknown) sample is assigned to the
“closest-matching” class and is then used to adapt the class
parameters. A variety of adaptive models have been used,
which update one cluster center per class,231a single Kohonen
self-organizing map (SOM)232 for all the classes,233-235 or a
separate SOM per class.236,237A potential problem of these
approaches is that they rely on correct classification; mis-
classification errors will eventually cause the model to lose
track of the class patterns. In addition, all analytes need to
be sampled frequently to prevent their patterns from drifting
away too much.

System-identification techniques have also been used to
model sensor dynamics and then predict drift effects.
Holmberg et al.231,238have investigated a number of models
(e.g., AR, ARMA, Box-Jenkins) to generate a prediction
for the common-mode component of the drift for each sensor
using the remaining sensors as inputs to the model,

wherexs(k) is the response of sensors at timek andxi(k) is
the response of all other sensors at timek. Model parameters
{ai, bk, ck} can be learned off-line231 or online by applying
a recursive least-squares procedure.238 For classification
purposes, a separate dynamical model is built for each analyte
class, and unknown analytes are assigned to the class, whose
model displays the lowest prediction error. Nonlinear exten-
sions of this approach, such as Volterra series or artificial
neural networks, have been explored by Marco and co-
workers.239-241 Finally, Perera et al.242 have developed a
novelty-detection method based on recursive dynamic
PCA243,244 that can operate under drift conditions.

Approaches based on orthogonal signal correction245 have
been also successfully employed. As illustrated in Figure 29,
the basic idea behind these methods is to subtract from the
sensor-array response the components that account for as
much of the variance as possible but which are uncorrelated
with analyte information (mixture concentrations in multi-
component analysis or class labels in discrimination prob-
lems). Along these lines, Artursson et al.246 have developed
a drift-compensation method that first estimates the main
direction of drift by computing the first principal component
of the samples from a calibration gas. This direction is then
removed from the multivariate sensor response by subtracting
the corresponding bilinear component,

wherevcal is the first eigenvector of the calibration data,xcal.
A related procedure has been proposed by Gutierrez-
Osuna.247 Here, the experimenter first identifies a set of
variables (y) whose variance can be attributed to drift or
interferents. These variables can include, e.g., the response
to a purging or reference gas, the date and time when the
sample was collected, or measurements from temperature,

pressure, and humidity sensors. Any variance in the mea-
surement vector (x) that can be explained byy is then due
to drift or interferences and should be removed. This can be
done by means of regression/deflation methods as shown in
eq 7. This technique is also closely related to “target
rotation”.248

Kermit and Tomic249 have approached drift-compensation
as a linear, blind-source-separation problem. In this approach,
the sensor array response can be modeled as the weighted
sum of a number of independent “sources”, such as drift-
related noise and discriminatory information. The authors
use independent-component analysis (ICA),250 an extension
of principal-component analysis aimed at finding statistically
independent projections of the data. As described in section
6.2, two variablesx andy are said to be independent if their
joint probability density function (PDF)p(x,y) is equal to
the product of their marginal PDFs:p(x, y) ) p(x)p(y), in
other words, if knowledge of the value of one variable

xcorrected) x - (x‚vcal)vcal
T (6)

Figure 29. (a) Illustration of orthogonal signal correction; (b)
principal-components analysis of the responses of an array of metal-
oxide sensors to various food items. Notice that drift-related and
class-related information are nearly orthogonal. Reprinted with
permission from ref 217. Copyright 2002 IEEE.

xcorrected) x - Wy

whereW ) argmin|x - Wy|2 (7)
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does not provide any information about the value of the other
variable. In contrast, two variables are said to be uncorrelated
if the expected value (i.e., the average) of their product is
equal to the product of their expected values:E(xy) )
E(x)E(y), whereE[ ] is the expectation operator. Principal-
component analysis finds uncorrelated projections, whereas
independent-component analysis finds independent projec-
tions, which is a more restrictive criterion. To find the desired
solution, ICA uses higher-order statistics (i.e., entropy),
whereas PCA relies on second-order statistics (i.e., covari-
ance). A clarification is in place at this point: “higher-order”
statistics should not be confounded with “higher-order”
sensing; the latter refers to the way in which the data are
structured.

Experimental data in the study of Kermit and Tomic were
obtained from a hybrid array with 10 MOSFET and 12 metal-
oxide sensors, all of which were exposed to the dynamic
headspace of 6 analyte solutions (0.5% propanol, 1%
propanol, 2% propanol, 0.5% butanol, 1% butanol, and 2%
butanol). Ninety measurements were made, 15 per solution,
and processed off-line with fastICA.250 The left panels of
Figure 30 show the first three principal components, where
samples have been ordered first by label (e.g., the first 15
samples are those from the first class) and then by time of
presentation to the array. The right panel of Figure 30 shows
the corresponding independent components. The first ICA
captures information about the concentration of the analytes
(notice the six distinct steps, which correspond to concentra-
tions of 0.5%, 1%, 2%, 0.5%, 1%, and 2%), whereas the
second ICA source captures information about the drift
(notice the trend for the 15 measurements from each analyte),
and the third ICA source captures information about the
identity of the analytes (i.e., low for the first 45 samples
(propanol) and high for the last 45 samples (butanol)). Thus,
ICA is able to separate the three sources of information in
the sensor response: analyte identity, analyte concentration,
and drift effects. In contrast, PCA is only able to separate
concentration information (first principal component), but
analyte identity and drift are mixed together in the second
and third principal components. It is important to note,

however, that the ICA model proposed here computes a
solution off-line, i.e., after all the data have been collected.
The question remains, though, whether or not these results
will hold, when the ICA demixing matrix (equivalent to the
eigenvectors in PCA) is tested on data that have not been
included in the training set.

9. Feature Extraction from Sensor Dynamics
As described in sections 2.1 and 2.2, one may achieve

“higher-order” sensing by exploiting the dynamic properties
of the sensors for analytical purposes. In this review, we
will concentrate on two strategies that have been extensively
used in the literature: the analysis of the transient response
of the sensors to sudden changes in the sample concentration
(or temperature) and the modulation of the operating tem-
perature of metal-oxide chemoresistors.

9.1. Transient Analysis
When performing data analysis of chemical sensor arrays,

it is, in most cases, convention to assume that the information
of interest is contained in the quasi-steady-state (or final)
response of each sensor. While this approach yields measure-
ments that are simple to conduct and evaluate, it ignores
useful information that may be contained in the transient
response of the sensor (see, e.g., Table 1). The transient
response is the result of dynamic processes that take place
when the sensors interact with the target sample. These
dynamic processes are unique for each sensor-analyte pair
and, therefore, are potentially very useful for analytical
purposes. They are typically triggered by modulating an
internal parameter of the sensor, such as the operating
temperature, or an external one, such as the gas-phase
composition of the sample.251

The most straightforward but not necessarily the most
robust approach consists of analyzing the evolution of the
sensor response upon dosing the sample. One of the earliest
accounts of this approach is the work of Mu¨ller and Lange,252

who showed that a single cross-selective sensor may be used
to discriminate a number of target compounds at different

Figure 30. (a) Three principal components and (b) three independent components extracted from the response of a hybrid array to six
different alcohols (headspace of 0.5% propanol, 1% propanol, 2% propanol, 0.5% butanol, 1% butanol, and 2% butanol in aqueous solution).
Samples are sorted according to classes and time stamps within each class. The estimated probability density functions (PDFs) of each
component are plotted at the right of each component. Note that most PCA and ICA projections have markedly non-Gaussian PDFs.
Reprinted with permission from ref 249. Copyright 2003 IEEE.
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concentrations (something that cannot be achieved using only
the steady-state response). In their landmark study, the
authors extracted two parameters from the transient response
of a zeolite-covered metal-oxide sensor: the initial slope (S1),
which was shown to be proportional to the concentration of
the gas, and the steady-state response (S2), which was
proportional to the square root of the concentration. As a
result, the authors showed that the variableS1/S2

2 could be
used to discriminate different simple gases regardless of their
concentrations. Though this concentration-independent pa-
rameter may be different for other sensors (see, e.g., Vilanova
et al.253 for a different case), the study of Mu¨ller and Lange
is important because it illustrates that more than one
parameter may be extracted from the sensor response.

While the transient response will depend on the odor
delivery system (see, e.g., the discussion in sections 2.2 and
4.1, as well as in Chapter 6 in ref 206), transient parameters
have, in some cases, been shown to be more repeatable than
static descriptors; see ref 254. In addition, transient analysis
can reduce the data acquisition and calibration time.255 If
the initial sensor transients contain sufficient discriminatory
information, one may avoid the lengthy acquisition time
required to reach steady state. As a consequence, the sensors
also require less time to recover to their baseline, a process
that can be particularly slow when the target analytes are
present at high concentrations. By reducing the duration of
the analyte pulse, and by thus minimizing irreversible
binding, the lifetime of the sensors can also be increased.
Furthermore, in the case of dynamic headspace analysis, a
steady-state response may not even be attainable, since the
volatiles in the headspace may be depleted faster than they
can be released from the sample. In these cases, the transient
response to a short concentration pulse, as illustrated in
Figure 31a, may provide sufficient information.256

The remainder of this section will provide an in-depth
review of different computational methods that have been
proposed to extract information from the transient responses
of gas sensors. These methods can be grouped into three
broad categories: (i) oversampling, (ii) parameter extraction,
and (iii) model-based methods, as illustrated in parts b-d
of Figure 31. Outputs from these methods can then be treated
using conventional pattern classification, regression, and
clustering techniques.217 Alternatively, the entire transient
response may be processed with suitable classification or

regression models; the reader is referred to section 10 for a
discussion of these methods.

9.1.1. Oversampling Procedures

The most straightforward approach to capture transient
information is to oversample the sensor transient at different
time intervals during the odor exposure and/or odor recovery
phase, as illustrated in Figure 31b. The term “oversampling”
is used here to emphasize that the sensor is sampled more
frequently than at steady state; the opposite term “decima-
tion” is sometimes used in the literature to emphasize that
the sensor transient is first measured with a very fine time
scale, and then a subset of those measurements is used as a
feature vector (i.e., the finely sampled transient is said to
have been decimated). Leaving aside terminology, when
using oversampling/decimation techniques the dynamic
information is represented implicitly, in the correlation of
these measurement values, rather than explicitly, as is the
case for the other two approaches. Nanto et al.257 character-
ized the transient response of thickness-shear-mode resona-
tors by means of nine parameters, which correspond to the
sensor response values at defined times{t ) 1, 2, 3, ..., 8,
14 min}, normalized with respect to the maximum sensor
response during the transient. The authors show that a
multilayer perceptron trained on these parameters was able
to discriminate among different types of wines and liquors
using a single sensor. Saunders et al.258 used the transient
response of thickness-shear-mode resonators during the odor
exposure and recovery times. The authors extracted 50
measurements from these transients and normalized them
with respect to the baseline frequency and the maximum
response of the sensor during the transient, and used then as
input features into a bank of multilayer perceptrons (one per
sensor). The normalized transient responses (termed “kinetic
signatures” in their article) were shown to be very consistent
for each sensor across repeated trials, despite a drift in the
baseline and in the maximum response parameters. Hongmei
et al.259 employed a similar kinetic-signature procedure to
simultaneously determine the concentration of sulfur dioxide
and relative humidity using a single piezoelectric quartz
thickness-shear-mode resonator. White et al.260 used an array
of fiber-optic sensors to identify single analytes, binary
mixtures, and the relative component concentrations. Ana-
lytes were delivered to the distal end of the fibers using a

Figure 31. Gas sensor transient response to a short odor pulse (a). Transient analysis approaches: (b) oversampling, (c) parameter extraction,
and (d) model fitting. Reprinted with permission from ref 194. Copyright 2002 Wiley-VCH, Weinheim.
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short 2 s pulse, and the transient response was resampled to
yield 10 measurement values, each representing the average
sensor response of 6 consecutive time points. Their results
show that multilayer perceptrons trained on the oversampled
transient significantly outperform those trained on only the
integral response of each sensor transient. Kermani et al.261

proposed a time-windowing technique to extract transient
information. Their method relies on four overlapping bell-
shaped kernel functions, which are used to compute a
weighted integral response of the sensor at different times
during the sensor transient. Using an array of 15 metal-oxide
sensors, their method was shown to significantly outperform
the steady-state and the transient integral on a number of
odor databases.196 A family of five uniform time-windows
was used by Brahim-Belhouari262 to extract information from
the transients of an array of eight SnO2 microhotplates.
However, while the time-windowed features outperformed
steady-state features, the authors showed that similar per-
formance could be obtained by combining steady-state
signals with the slope of each transient, measured during
the first minute of the sensor exposure.

9.1.2. Ad hoc Transient Parameters

Alternatively, a wide range of parameters may be extracted
from the transient response of a gas sensor, such as rise times,
derivatives and integrals, computed at different time points
during the exposure and recovery phases, as shown in Figure
31c. With little computational expense, these methods can
provide a more compact representation of the information
contained in the sensor transients. As discussed earlier, a
combination of the initial slope of the transient and the
steady-state response was used by Mu¨ller and Lange252 to
discriminate multiple analytes at different concentrations.
More recently, Llobet et al.254 characterized the transient
response of metal-oxide sensors by means of the conductance
rise time, measured from 20% to 60% of the total conduc-
tance change (G(0) - G(∞)). An important result of this
study is that the rise time appears to be significantly more
repeatable than the steady-state response. Moreover, an
analysis of variance also showed that the response time was
independent of the analyte concentration (toluene ando-
xylene in the range 25-100 ppm) and only depended on
the vapor/sensor pair. Roussel et al.263 evaluated a large
number of ad hoc features for the purposes of discriminating
off-odors in wines with an array of five tin-oxide sensors.
Different features were computed from the transient response
and their first- and second-order derivatives, including the
response values at different time intervals and the response
maxima/minima, yielding a total of 29 features per sensor.
Features were evaluated with respect to three different
criteria: repeatability across trials (within-class variance),
discrimination results (ratio of between-class to within-class
variance), and correlation with other features. Their results
show that (1) the best features include the maximum sensor
response values, the maximum slope during the exposure
transient, and the minimum slope during recovery, and that
(2) the most suitable features are the same for all five sensors.
Paulsson et al.264 performed a feature-selection study for
various preprocessing and transient-analysis techniques on
experimental data from a real-life application: the evaluation
of breath alcohol contents using a hybrid array of MOSFETs,
chemoresistors, and an infrared sensor. The sensor features
included the final response value, the maximum response
values, the response integral, and the maximum response

slope. However, their results showed no systematic advantage
for using any of these feature types.

Employing concepts from dynamic systems, Martinelli et
al.265 proposed to extract transient information from the phase
plot of each sensor. In their article, the state variables were
the sensor response and its derivative. A single transient
feature was extracted from each sensor: the area circum-
scribed by the phase plot of each sensor during the adsorption
and desorption processes. The method was validated on an
experimental database containing the transient response of
thickness-shear-mode resonators when exposed to the head-
space of apples with different degrees of internal defects.
The results showed that phase-space transient features
outperform steady-state features in terms of both uncorre-
latedness and discrimination capabilities. In a subsequent
study, Martinelli et al.266 proposed to extract additional
information from the phase space, arguing that the evaluation
of the area of the phase plot does not take into account
information that may be present in the shape of the trajectory.
For this purpose, they computed a number of higher-order
geometric moments267 from the phase plot of the sensor
transient. In this study, the phase space was defined by the
sensor response and a time-delayed version, i.e., [s(t), s(t -
τ)]. The use of such “dynamic moments” was shown to yield
better results for two experimental databases in comparison
to only using steady-state information. However, the authors
acknowledged that the optimum time delay (τ) is application-
specific and, more importantly, that the dynamic moments
tend to be rather sensitive to small changes in the sensor
dynamics. Similar results and conclusions for dynamic
moments have been reported on by Vergara et al.,268 using
metal oxide sensors to detect the rancidity of crisps (potato
chips). In a related study, Pardo and Sverbeglieri269 compared
five different features: the steady-state response, the phase-
space area,266 and the transient integral, with the latter two
computed for both the exposure and the recovery process.
While their results are not unequivocal as to which type of
feature is best, and while the evaluation was performed on
a small data set (coffee ripening), the authors suggest that
the phase-space area during the recovery process outperforms
steady-state and transient integral information and that
features calculated during the recovery interval (either phase-
space area or integral) consistently provide better perfor-
mance than those calculated for the exposure interval.

9.1.3. Model-Based Parameters
Transient information can also be captured by fitting an

analytical model to the experimental transient, and then using
the resulting parameters as features. Various types of models
have been used for this purpose, such as autoregressive and
polynomial methods, but multiexponential models are most
common due to the exponential nature of the transient
response, as shown in Figure 32. Transients are generally
modeled by a sum of exponential functions of the following
form:

Although conceptually easy, the task of modeling a curve
with a set of exponential functions with real exponents is
ill-conditioned. Unlike the familiar sinusoidal functions used
in Fourier analysis, exponential functions do not provide an
orthogonal expansion. Therefore, if one tries to determine

f(t) ) ∑
i)1

M

Gi e-t/τi (8)
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the coefficients{Gi, τi, i ) 1, ..., M} from finite-time and
finite-precision samples of the transient, the distribution
function of time constants will not be unique. An additional
problem is the determination ofM, the number of exponential
components that should be used for the fit. This issue has
been known for over 40 years, when Lanczos270demonstrated
that three-exponential curves with similar time constants
could be fitted accurately with two-exponential models with
significantly different amplitudes and time constants.

The task of performing a multiexponential fit according
to eq 8 is of importance in a variety of disciplines in sci-
ence, such as gas relaxation kinetics, fluorescence, radio-
activity, and nuclear magnetic resonance.271 A number of
methods has been developed, which can be grouped into three
classes:272

(a) Stepwise or exhaustive methods, which extract the
different exponential components in a sequential manner, as
in the case of the “graphical” peeling-off.273 These methods
can be considered as nonglobal, because each component is
extracted independently of the rest.

(b) Global approximation or least-squares methods, which
approximate the experimental transient using a defined
number of exponential components by minimizing a figure
of merit of the fit. These methods are not aimed at component
detection.

(c) Global detection or integral transforms methods. These
methods exhibit similarities to (a) and (b): like (a), they are
true component detectors, and like (b), they are global,
because all model parameters are extracted simultaneously.
Representative examples of these methods include the
Gardner transform,274 multiexponential transient spectros-
copy,271,275and the Pade-Laplace/Pade-Z transform.276

In the context of modeling chemical-sensor transients, the
vast majority of multiexponential approaches rely on global
approximation, arguably due to the broader availability of
optimization tools. One of the earliest reports on multiex-
ponential modeling is by Vaihinger et al.,69 who showed that
two or more exponentials were required to provide an
accurate fit to experimental data from amperometric sensors.
Their results suggest that the extracted time-constants are
gas-specific but concentration-independent, whereas the
corresponding amplitudes are concentration-dependent. Vil-
anova et al.253 used a diffusion-reaction model developed

by Gardner73 to fit transients of metal-oxide sensors exposed
to individual gases. Their method provides a single time
constant, which is also shown to be gas-specific and
concentration-independent. In ref 277, a general diffusion-
reaction model is applied to gas mixtures in the low-to-
medium concentration range, where interactions between gas
species can be ignored. This new model is shown to provide
a good fit to the transient response of binary mixtures and
yields time constants (one per gas in the mixture) that are
also concentration-independent. Eklo¨v et al.72 performed
curve-fitting to transients of Pt-MOSFET sensors with one-
exponential and two-exponential models (see Table 1). While
the two-exponential model provided a better overall fit to
the experimental transient, the model parameters were shown
to be unstable. In contrast, parameters from the single-
exponential model had rather high signal-to-noise ratios,
comparable to those of the “simple” parameters mentioned
already in section 2.2. Galdikas et al.278 used an array of ten
metal-oxide sensors to monitor the freshness of poultry.
Samples of poultry meat were stored in a room at 17°C
and 45% RH (relative humidity) and monitored continuously
with the sensor array. The authors analyzed the steady-state
response of the sensors, as well as the time constants of a
biexponential fit to the sensor transients. The steady-state
response did not show any significant changes until after 16
h, whereas the smallest of the two time constants started to
show significant changes after 2-3 h, which could be used
to provide an early detection of food spoilage. Nakamoto et
al.256 used two-exponential models to fit the recovery phase
of thickness-shear-mode resonators upon short pulses of
various odorants. Parameters of the exponential component
with the largest contribution to the response of each sensor
were then selected as features. In comparison to the
maximum response values of the sensors upon a concentra-
tion step, the transient parameters were shown to have better
discrimination properties. Di Nucci et al.279 used one-
exponential models to approximate the exposure and recovery
transients of thickness-shear-mode resonators to various
odorants. Their exponential parameters were shown to
provide more discriminatory information than the steady-
state response of the sensors, a result that is consistent with
those reported in ref 72. Baumbach et al.280 used a biexpo-
nential model to extract information from the transient
response of semiconductor microsensors upon steps in their
operating temperature. One exponential component was used
to explain temperature effects, which were relatively fast
owing to the low thermal mass of their microsensors. This
term had a fixed (i.e., gas-independent) time constant. The
second exponential component was used to explain the
slower effects, which were due to the interaction between
the gases and the sensing layer. This term had a gas-
dependent time constant. The authors showed that a simple
decision tree could be used to discriminate CO, H2, and their
mixture using the parameters of the biexponential model.

Global detection techniques have only in a few cases been
used to build multiexponential models for sensor transients.
Nakamura et al.281 proposed a system-identification method
to estimate the parameters of the exponential components:
an autoregressive (AR) model was fitted to the sensor
transient,

wherex(k) is the sensor response at timet ) kT, L is the

Figure 32. Transient responses of an array of conducting-polymer
sensors. Reprinted with permission from ref 283. Copyright 1999
Elsevier.

x(k) + ∑
i)1

L

aix(k - i) ) e(i) (9)
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order of the model, ande(i) is the residual error of the model.
While AR coefficients{ai} i)1

L could be used as features,
these parameters (also known as linear predictive coefficients
in speech processing) have poor interpolation properties.
Instead, by computing the real roots of the characteristic
equation, AR coefficients were converted into time constants
and amplitudes of a multiexponential model. The results
show that, in the case of single gases, 2-3 real roots
(exponential components) could be found using the AR
model, whereas 3-4 real roots could be found for gas
mixtures. However, only one of these exponential compo-
nents appeared to be stable from run to run (for both single
gases and mixtures), which, again, is a hint to the ill-
conditioned nature of multiexponential models. Artursson et
al.282 also used multiexponential models to extract informa-
tion from an electronic tongue based on pulse voltammetry.
Their model consisted of two exponential components, which
were assumed to represent the two types of currents present
during the measurement: Faradaic and capacitive currents.
Model parameters were found in a linear-least-squares
fashion through a reparametrization of the biexponential
model into a homogeneous differential equation. The result-
ing time constants were then converted into the coefficients
of the corresponding characteristic equation; this step ensured
that the final features were invariant to the optimization
algorithm. These final features were shown to provide better
class separability than the original data, while also filtering
out experimental noise and providing near-lossless compres-
sion.

Rather than finding the discrete coefficients of the mul-
tiexponential model in eq 8, one may instead attempt to
recover the spectrum of time constants,G(τ):

As pointed out by Samitier et al.,271 spectral methods have
several advantages. First, the number of exponential terms
does not need to be known a priori: the individual
exponential components will be detected as peaks in the
spectrum. Second, spectral methods are global methods, since
all the components are obtained simultaneously in the
spectrum. Third, the width of the peaks can be used to infer
the resolution power of the spectral method, e.g., wider peaks
suggest that two or more exponential components with
similar time constants have not been resolved. Multiexpo-
nential transient spectroscopy (METS) is one such spec-
tral method, which has been shown to be suitable for
modeling gas sensor transients.271,275 METS recovers a
spectrum of time constants through a multiple differentia-
tion of the experimental transient on a logarithmic scale;
higher spectral resolution can be achieved at higher orders
of differentiation at the expense of amplifying experimental
noise. Samitier et al.271 applied METS to the transient re-
sponse of electrochemical fuel cells; their results showed
that the amplitude of the spectral peak was proportional to
the concentration of the gases (ethanol, methanol, and
2-propanol in their study), whereas the location of the peak,
i.e., the time constant, was gas-specific. The Gardner
transform274 can also be used to recover a pseudo-spectrum
g(τ), in which the amplitude and time constants are
coupled: g(τ) ) G(τ)τ; this condition biases the Gardner
transform toward exponential curves for which the product
of the amplitude and the time constant of the components
are on the same order of magnitude, see, e.g., ref 283.

Alternatively, one may employ a fine-grained set of time
constants,{τi}, and solve eq 8 for the amplitudes by using
least-squares:

The resulting distribution of amplitudes{Gi} can be treated
as a spectral representation of the transient. This approach,
also known as the exponential series,284,285has the advantage
that the minimization problem in eq 11 is linear in the
amplitudes, so it can be solved efficiently. In practice,
regularization techniques need to be used to ensure a smooth
distribution of amplitudes, e.g., by adding an identity matrix
to the data covariance matrix that results from solving eq
11 through least-squares.286

An alternative approach to model sensor transients has
been recently proposed by Carmel et al.287 Their model is
derived from a simple physical description of the measure-
ment system,

whereRi is a sensor-specific constant,ti is the time it takes
a gas molecule to travel from the gas inlet to the surface of
the ith sensor,hi(u) represents the probability that a gas
molecule absorbed in theith sensor at timet is still present
at time t + u, andk(t) is the shape of the injected stimulus
(e.g., a step or a pulse in concentration). In ref 287, the
Lorentzian decay functionh(t) ) τi

2/(t2 + τi
2) was found to

provide a good fit to the exposure and recovery transients
of both thickness-shear-mode resonators and metal-oxide
sensors. Assuming a pulse function of durationT for the
injected stimulus, eq 12 can be transformed into the
following:

From this equation, the model parameters{âi, T, ti, τi}
that best fit the experimental transient can be found through
a simplex optimization procedure.288 Doing this for every
sensor-analyte pair yields a 4-dimensional feature vector
that captures the shape of both the exposure and the recovery
transient. In ref 287, the model was validated on experimental
data of a hybrid sensor array exposed to 30 different odorants.
The results showed that the Lorentzian model parameters
{âi, T, ti, τi} provide significantly better recognition perfor-
mance than standard transient features. Carmel et al.289 have
also shown that the Lorentzian parameters are robust with
respect to distortions in the sensor transients, a feat yet to
be matched by multiexponential models. The Lorentzian
model has also been generalized for the use with sensor
transients containing multiple peaks.290

9.1.4. Comparative Studies
Eklöv et al.72 provided a systematic investigation of

transient parameters, including simple features such as pulse

f(t) ) ∫0

∞
G(τ) e-t/τ dτ (10)

{Gi} ) arg min
Gi

[ ∑
k)0

N-1

(f(k) - ∑
i)1

M

Gi e-kT/τi)2] with

fixed {τi} i)1
M (11)

fi(t) ) Ri∫0

∞
hi(u)k(t - ti - u) du (12)

fi(t) )

{0 t < ti

âiτi tan-1(t - ti
τi

) >ti e t e ti + T

âiτi[tan-1(t - ti
τi

) - tan-1(t - ti - T

τi
)] t > ti + T
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heights, integrals, and derivatives at various times during
the exposure and desorption phases, and model-based
parameters obtained by fitting the experimental transient by
means of three types of analytical models (see also Table
1): multiexponential, autoregressive (ARX), and polynomial.
The data set consisted of the response of Pt-MOSFET sensors
exposed to mixtures of hydrogen and ethanol. Several
conclusions can be derived from this study. First, most of
the simple parameters have relatively high signal-to-noise
ratios, including those from one-exponential models. Second,
time-critical parameters such as derivatives, time constants,
short integrals, and ARX models tend to be very much
influenced by the exact timing of the gas delivery, which
renders them unsuitable for pattern-recognition purposes.
Third, the selection of model-based parameters based on their
fitting performance can be misleading; ARX and two-
exponential models provide the bests fits but also have very
low signal-to-noise ratios. The main conclusion of the study
is that a combination of simple parameters (final response,
windowed response, derivatives, and integrals) can provide
a performance comparable to parameters obtained through
computationally intensive fitting procedures. In a follow-up
study, Eklöv et al.291 performed a feature subset selection
on the same database to identify the most relevant param-
eters. Features were selected using a sequential forward
procedure (see section 11.2), where the selection criterion
was the root-mean-square reconstruction error from a mul-
tilinear regression model. Their results indicated that dis-
criminatory information is broadly distributed in the exposure
and desorption transients, with 7 of the top 10 features being
“simple” transient parameters.

Delpha et al.292 compared the performance of parameters
of a two-exponential model to the dynamic slope of the
transient on a database consisting of six Taguchi sensors.
The array was exposed to humid air at different relative
humidity levels, to dry Forane 134a (a refrigerant gas), and
to humid Forane 134a (different relative humidity levels).
The dynamic slope was computed using the sensor response
between 1 and 5 min after introduction of the sample,
whereas the biexponential parameters were computed from
the entire transient, once the sensors had reached steady state
in a 60 min long exposure. The prediction performance of
the biexponential parameters was 60% on the test data but
increased to 100% when combined with the dynamic slope.
Although no performance results were provided for the
dynamic slope alone, the authors concluded that the biex-
ponential and dynamic slope parameters provide comple-
mentary information.

Distante et al.293 compared several transformation and
feature extraction techniques using experimental data from
an array of metal-oxide sensors exposed to concentration
pulses of acetone, hexanal, and pentanone, each in humid
and dry air. In this study, the authors advocate the use of a
discrete-wavelet-transform (DWT) technique to extract tran-
sient information. Unlike the Fourier transform, which is only
localized in frequency only, wavelets are localized in space
and frequency, which renders them more suitable for the
analysis of transient signals since they capture both spectral
and temporal information. DWT coefficients were compared
to those of a fast Fourier transform (FFT) as well as with
feature vectors containing the integral and derivative in
several locations of the transient. Their results show that the
DWT provides the best performance, with integral features
being a very close second. Derivative and FFT features

appear to be only marginally worse than the previous two
techniques.

Gutierrez-Osuna et al.286 compared the performance of
METS,275 the Pade-Z transform,276 transient oversampling,196

the exponential series in eq 11, and steady-state isothermal
responses. All these methods were evaluated using a data
set of Taguchi sensors exposed to various concentrations of
acetone, isopropyl alcohol, and ammonia under a stepwise
change in temperature. As shown in Figure 33, the Pade-Z
was able to recover several stable multiexponential models
for the three analytes, though with different numbers of
exponentials. Since most pattern-recognition techniques
assume fixed-length feature vectorssbut see rational ker-
nels294 for an exceptionsthe Pade-Z models were trans-
formed into the coefficients of a fixed-length Taylor series
expansion. Experimental results show that the exponential
series method provides the best performance, whereas METS,
Pade-Z, and transient oversampling show comparable per-
formance, which is still better than that of using the steady-
state response.

Shafiqul Islam et al.295 compared a number of “simple”
parameters, such as levels, slopes, and integrals at different
times, to the coefficients of a third-order polynomial fit of
the sensor transient. The experimental data set consisted of
responses of an array of thickness-shear-mode resonators to
various solvent exposures. While the simple parameters
provided better separability than the polynomial coefficients,
a combination of these two types of features appeared to
improve the overall performance of the array. Altogether,
these studies indicate that models that provide the best curve-
fitting results do not necessarily contain the most analytical
information. Simple parameters should be used first, since
they tend to have higher signal-to-noise ratios, though
complex parameters can sometimes provide complementary
information.

9.2. Temperature-Modulation Analysis
It has long been known that the selectivity of metal-oxide

sensors is greatly influenced by the operating temperature
of the device, since the reaction rates of different volatile
compounds and the stability of surface-adsorbed oxygen
species are a function of the temperature.296 As a result,

Figure 33. Time constants and signal amplitudes extracted from
a 5-6V thermal transient of a TGS2620 sensor by the Pade-Z
method: A, acetone (10-4 volume %); I, isopropyl alcohol (10-1

volume %); M, ammonia (1 volume %). Four samples of each
analyte were extracted. Reprinted with permission from ref 286.
Copyright 2003 Elsevier.
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modulation of the operating temperature can give rise to gas-
specific temporal signatures, which provide a wealth of
discriminatory and quantitative information. One of the
earliest reports on the use of temperature modulation is a
1975 patent by Le Vine, in which a sensor was operated at
two temperatures: a low temperature, at which the sensor
was preferentially selective to CO, and a higher temperature,
at which the sensor was less selective, and which was used
to purge the sensor of CO.297 However, it is the modeling
work of Clifford and Tuma65 and the algorithms of Sears et
al.298 that are often credited for bringing the concept of
temperature modulation to the attention of the sensors
community. An excellent account of early work on temper-
ature modulation in the 1980s and 1990s was written by Lee
and Reedy.22 Hence, we will focus our review on later work
(1998-2007), with an emphasis on computational methods
for extracting information from temperature-modulated sig-
nals.

Temperature-modulation approaches for MOS sensors can
be broadly classified into two categories: (i) thermal
transients and (ii) temperature modulation. In thermal
transients, the sensor is driven by a step or pulse waveform
in the heater voltage, and the discriminatory information is
contained in the thermochemical transient induced by the
fast change in temperature. Thermal transients have the
advantage that one does not need to wait for the sensor to
stabilize following power-up, which allows for an immediate
evaluation of the signal. In addition, by intermittently
powering down the sensor, a significant reduction in power
consumption can be achieved. Data analysis for thermal
transients resembles that of concentration transients, so that
the methods described in section 9 will be generally
applicable here as well (see, e.g., ref 286 for an example of
multiexponential methods for thermal transients).

For temperature modulation, however, the sensor is
subjected to a continuous, sometimes periodic, heater voltage
variation. To help resolve the various peaks in sensitivity
that may occur during such a cycle, a slowly varying sine
wave is often used.299 If the heater waveform is slow enough
to allow the sensor to settle at the respective temperatures,
the behavior of the sensor at each temperature may be treated
as a “pseudo-sensor” by virtue of the relationship between
operating temperature and sensor selectivity. It is broadly
accepted that temperature cycling is the most promising
approach to temperature modulation22 and will, therefore,
be the focus of this section.

Information from the temperature-modulation response can
be captured in a variety of ways, but there are three general
approaches that parallel those of transient analysis. First, the
sensor response can be oversampled at a number of points
during the modulation pattern to form a feature vector.300,301

Second, a number of “simple” features can be extracted from
the response, such as maxima/minima, and their correspond-
ing occurrence times.301-303 Finally, transform methods such
as the fast Fourier transform (FFT) or the discrete wavelet
transform (DWT) may be used to convert the temporal
response into the frequency or time-frequency domain,
respectively. Most of the early work on transient analysis
relied on the FFT; see, e.g., refs 19 and 304-308. Recent
work, however, indicates that the DWT is a much better
choice for processing temperature-modulated patterns, which
are markedly nonlinear and nonstationary. The interested
reader is referred to ref 309 for a brief introduction to wavelet
analysis or to ref 310 for a more thorough presentation.

Corcoran et al.301 performed a systematic comparison of
temperature-modulation parameters. An array of eight Tagu-
chi sensors was exposed to the headspace of three types of
loose-leaf teas while modulating the operating temperature
with a triangular waveform (period) 240 s, temperature
range) 250-500°C). Three types of features were extracted
from the sensor conductance measurements: single temper-
ature measurements (STM), dynamic parameters (dynamic
parameter method, DPM), and total signature differences
(TSDs). In the STM, a single measurement was extracted
from the temperature-modulated response, yielding an 8-di-
mensional feature vector; the results of this method served
as a benchmark. In the DPM, eight different “simple”
measurements were obtained, including the derivative maxima/
minima and their occurrence times, resulting in a 64-
dimensional feature vector. In the TSD method, the temper-
ature-modulated response was oversampled at 26 different
times, yielding a 208-dimensional vector. In addition, a
genetic algorithm (GA) was used to select a feature subset
from the DPM feature vector using a measure of between-
to-within-class scatter as a figure of merit.217 Validation on
unseen test data using multilayer perceptrons showed that,
despite its relatively high dimensionality, the TSD method
provided the best overall performance. DPM features ranked
second, whereas STM features performed worst, as expected.
Feature subsets from the GA procedure ranked (on average)
between STM and DPM features. These results suggest that
there was more information in the temperature-modulated
response than could be captured by using the simple DPM
features. Gutierrez-Osuna et al.300 have investigated the effect
of the modulation frequency on the information content and
the stability of the sensor patterns. Two metal oxide sensors
were exposed to four analytes at dilution levels close to their
isothermal detection threshold. The sensors were heated using
sinusoidal heater voltage variations of different frequencies
(125 mHz, 250 mHz, 500 mHz, 1 Hz, 2 Hz, and 4 Hz) and
then exposed to the four analytes during 10 consecutive days.
The authors showed that the classification performance
decreased monotonically with increasing frequency, since the
sensors approached isothermal behavior. Normalization of
the raw temperature-modulated response patterns in the [0,
1] range was shown to minimize drift effects at low
modulation frequencies, where sufficient discriminatory
information is preserved in the shape of the response, but
not at high frequencies, at which information tends to be
contained in the dc response of the sensor.

Building upon extensive prior work,311-315 Nakata et al.316

analyzed the nonlinear properties of a TGS sensor exposed
to various target gases under sinusoidal temperature variation.
The purpose of this study was to investigate the effect of
the sinusoidal dc offset (T0) and the modulation frequency
on the sensor response. The effect of T0 is shown in Figure
34, which indicates that the optimum temperature range is
dependent on the gas species to be detected. FFT analysis
showed that the concentrations and the kinetics of the
different gas species were reflected in the higher-order
harmonics of the signals.317 Thus, the authors argue that the
nonlinear characteristics of chemical sensors should not be
viewed as a drawback but rather as a property to be exploited
for discrimination purposes. In a subsequent study, Nakata
and Ojima318 showed that these higher-order harmonics could
be used to estimate the concentration of a target analyte, even
in the presence of water vapor. More recently, Nakata et
al.319,320have proposed a method to increase the discrimina-
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tion capabilities of the nonlinear sensor responses by applying
a second-harmonic perturbation to the temperature-modula-
tion program. For a given heater voltage modulation,V1(t)
) Va0 + Va1 cos 2πf0t, the authors showed that superimposing
a second heater voltage function of the formV2(t) ) Va1/2
cos(4πf0t + θ2) can have a unique effect on the nonlinear
sensor response to each target analyte. Thus, by properly
selecting the phase shiftθ2 of the second-harmonic heater
voltage modulationV2(t), the sensor response can be opti-
mized for different analytes.

Other authors have also investigated temperature-modula-
tion procedures in recent years. Fort et al.18 have compared
the performance of chemical transients, temperature tran-
sients, and temperature modulation. In this study, an array
of eight metal-oxide sensors was exposed to the headspace
of water solutions containing basic constituents of wine.
Principal-components analysis suggests that the chemical
transients can only be used to detect the presence of esters.
In contrast, a PCA of the first, third, and fourth harmonics
of the temperature-modulated response shows a clear dis-
crimination of the different solutions. These results suggest
that temperature modulation provides maximum discrimina-
tory power.321 Schütze et al.303 used a single semiconductor
gas sensor to discriminate six model substances (benzene,
diethyl ether, isopentane, methyl butyl ether, methyl alcohol,
and propylene oxide). The sensor was operated using two
different temperature programs (each consisting of several
steps in temperature during a period of 20 s). Then, a number
of “simple” features was extracted, such as signal levels at
different temperatures and response slopes after a temperature
change. The resulting feature vector was processed in a
hierarchical fashion, so that different types of features were
used to discriminate subgroups of target gases. Most interest-
ingly, the authors showed that a division of the temperature-
modulated conductance-value pattern by its average value
almost entirely eliminated the effects of relative humidity
in the sample and also improved the repeatability of the
responses over a period of several months. Huang et al.322

investigated the effects of temperature modulation, frequency,
and waveform on the response patterns of thick-film tin-
oxide sensors exposed to various gases (butanone, acetone,
ethanol, methanol, formaldehyde, and cyclohexanone). The
authors compared the sensor responses to temperature pulse
trains in five different temperature ranges (25-100, 100-
150, 150-200, 200-250, and 250-300 °C). In the low-
temperature ranges, the sensor response were shown to be
monotonic (first-order response) and did not carry much
information, since most reactions occur at the surface level.
At high temperatures, response patterns became complex and
characteristic of the target gases, as they increasingly

involved bulk reactions. The authors also com-
pared several temperature-modulation waveforms, including
rectangular, triangular, sawtooth, sinusoidal, and trapezoidal
shapes. Each waveform gave rise to a unique sensor-response
pattern, which the authors ascribed to characteristic changes
in the actual surface temperatures of the sensor.

For well over a decade, Semancik and co-workers at the
National Institute of Standards and Technology have used
temperature programming for microhotplate-based gas
sensors.21,51,323-328 While a review of this technology will
be available in an article by Benkstein and Semancik in this
issue,42 it is noteworthy that this research group uses a unique
approach to measuring the conductivity of the sensors. As
illustrated in Figure 35, conductance is always measured at
room temperature, so that thermally controlled chemical
effects can be separated from temperature-dependent changes
in the sensing material; this is possible because of the very
low thermal time constant of the microhotplates, which has
been estimated to be on the order of a few milliseconds.

A great deal of work on temperature modulation has been
performed by Llobet and co-workers during the past few
years268,329-334 (see also section 11.3). In ref 335, the authors
compared the DWT and the FFT for the purpose of extracting
information from the response of a tin-oxide microhotplate
sensor exposed to mixtures of CO and NO2. The temperature
of the sensor was modulated between 243 and 405°C by
means of a 50 mHz sinusoidal waveform. Four temperature-
modulation cycles were used to compute the FFT, from
which the amplitudes of the first six harmonics were used
as features. In contrast, a single temperature-modulation cycle
was used to compute the DWT. Experimental results show
that the DWT leads to improved separability as compared
to the FFT. In addition, the DWT coefficients can be obtained
from a single modulation cycle, whereas the FFT require a
larger number of cycles to accurately estimate the spectral
content of the signal (a more in-depth analysis of these results
may also be found in ref 330). Later studies have also
suggested (through simulation) that DWT features are more

Figure 34. Dynamic response of a semiconductor sensor to (a) methane, (b) ethane, and (c) propane in different temperature ranges with
a modulation frequency off ) 0.04 Hz. Reprinted with permission from ref 316. Copyright 1998 Elsevier.

Figure 35. Temperature-programmed sensing: (a) temperature
pulse amplitude (20-450 °C), (b) pulse duration (10-300 ms),
and (c) delay (5 ms). Notice that the conductance is measured
immediately after the sensor returns to room temperature. Reprinted
with permission from ref 21. Copyright 1998 Elsevier.
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robust than FFT features to additive noise and additive
drift.334 Ding et al.336 have also compared the DWT and FFT
for the purpose of extracting information from temperature-
modulated signals. Two commercial metal-oxide sensors
were exposed to CO, H2, and CH4 at concentrations ranging
from 50 to 1000 ppm under a 20 mHz sinusoidal tempera-
ture-modulation signal. Sensor signals were first normalized
to the [0, 1] range and then processed with the DWT and
FFT. The results showed that the DWT features are gas-
dependent and fairly stable across various concentrations;
more importantly, these features were shown to be repeatable
across sensor responses recorded 4 months apart. In contrast,
FFT harmonics were shown to be noisier and had a more
pronounced concentration dependence.

10. Multivariate Calibration
Once dynamic features have been applied using the tech-

niques reviewed in section 9, the experimenter will usually
build a calibration model to obtain the dependent variables,
such as class labels or concentrations, from those features.
A number of pattern-recognition techniques are available at
this point, which include various statistical methods (nearest-
neighbor or quadratic classifiers), multilinear regression
methods (partial least-squares (PLS) or principal-components
regression), and neural networks (multilayer perceptrons,
radial basis functions, or support vector machines), to
mention but a few. These models have been extensively
reviewed in a number of recent articles and book chap-
ters.195,199,217,337,338For this reason, we will focus our attention
on calibration techniques that are particularly well-suited to
handle the raw time-dependent response of the sensor,
without the need of a preceding feature-extraction stage.

10.1. Multiway Analysis
The transient (or temperature-modulated) response of a

chemosensor array is naturally represented as a two-dimen-
sional matrix, where each row corresponds to the response
of a sensor over time (or operating temperature), and each
column represents the response of the array at a particular
time or temperature. When the time-dependent response of
the array is recorded for multiple samples, then the data set
is naturally represented as a 3D matrix, a tensor, as shown

in Figure 36b. While it is possible to unfold this data set
into a 2D structure, where each row represents a sample and
each column represents a variable (see Figure 36c), this
“unfolding” adds extra degrees of freedom to the model,
because it treats the response of each sensor at a given time,
[x1(t), x2(t), ..., xN(t)]T, as an independent variable, where in
reality these measurement data were collected at the same
time or at the same temperature. Preserving the multiway
structure of the data in Figure 36b can lead to a more
parsimonious, i.e., simpler, solution, which is likely to be
more robust and easier to interpret. It may also provide the
“second-order” advantage discussed in section 1 so that target
analytes can be quantified even in the presence of unknown
interferents.339,340Despite these potential advantages, how-
ever, multiway methods have only recently received attention
in the “electronic nose” literature.197,198

A number of decomposition methods have been developed
to analyze multiway data, with the most common being
parallel factor analysis (PARAFAC),341,342 Tucker3,343 and
unfold-PCA. As illustrated in Figure 37b, PARAFAC
decomposes a 3-way data matrixX (a tensor) in a trilinear
fashion,

whereF is the number of factors in the decomposition. Figure
37b shows the case forF ) 2. The solution to this
decomposition, i.e., the loading matricesA, B, and C, is
commonly found by a method known as alternating least-
squares (ALS), which works as follows: first, two of the
loading matrices (sayB and C) are initially set to a good
starting value,339 and the third matrix (A, in this case) is
estimated by least-squares regression fromX, B, andC. This
process is subsequently repeated for matrixB and thenC,
and the cycle (reestimateA, thenB, thenC) is repeated until
convergence occurs. It can be shown339 that ALS will
improve the solution with every iteration. The algorithm can
be computationally intensive, but several acceleration strate-
gies have been devised.339 More importantly, PARAFAC is
also known to produce a unique solution under certain rank
constraints (e.g., the sum of linearly independent columns
in matricesA, B, andC must be larger than or equal toF +

Figure 36. (a) Transient or temperature-modulated response of a sensor array naturally leads to (b) a 2D matrix per sample, and a 3D
matrix for all the samples in the dataset. (c) Unfolding the data leads to the traditional 2D data structure, where each row represents a
sample and each column represents a feature.

xijk ) ∑
f)1

F

aifbjfckf + eijk (14)
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2). Unlike PCA, where the loadings (eigenvectors) and scores
(principal components) can be rotated without increasing the
reconstruction error, there is only one rotation of the
PARAFAC loadings that provides a minimum error: using
PCA, one can replace the top eigenvectors with linearly
independent combinations of these (which constitutes a
rotation) and will still capture the same percentage of the
total variance in the data. Unlike two-way data, however,
centering and scaling (see section 7) must be done carefully
to preserve the trilinearity of the data. The reader is referred
to Gurden et al.344 for a discussion of preprocessing strategies
for multiway data.

Tucker3 (named after Ledyard R. Tucker, who proposed
the model in 1966345) provides a more flexible decomposition
of the data matrixX, where the main difference with
PARAFAC is the addition of a “core” matrixG, which
defines how the individual loadings in the different modes
(A, B, andC) interact:

Finally, unfold-PCA first converts the tensorX into a 2D
matrix (see parts b and c of Figure 36) and then performs a
bilinear decomposition:

The decompositions performed by each of the three
methods are graphically summarized in Figure 37 (parts a-c
and e). It can be shown346 that PARAFAC is a “constrained”
version of Tucker3, which, in turn, is a constrained version
of unfold-PCA. Here, “constrained” means that there are

fewer degrees of freedom to fit the data. An example by
Bro339 will help one to understand this hierarchy of models.
Consider an experiment in which 10 samples have been
collected from 20 sensors, with each sample measurement
extending over 100 s. These data can be represented by a
10 × 100× 20 matrix. Assume that we seek to decompose
these data into five factors. For unfold-PCA, this will produce
a model with 10 500 parameters (!), whereas Tucker3 will
require 775 parameters and PARAFAC will require only 650
parameters. Clearly, unfold-PCA will provide the best fit to
the data in terms of mean-square-error (in fact, PCA does
provide optimal reconstruction in the mean-square sense180),
whereas Tucker3 and PARAFAC will produce larger errors.
But, as has been pointed out in section 9.1, curve-fitting
accuracy does not necessarily lead to good analytical
performance. If PARAFAC returns results that are reason-
able, then it is very likely that the extra degrees of freedom
in Tucker3 and unfold-PCA will be used to model noise in
the data.339 Thus, all things being equal in terms of curve-fit
(and sometimes things not being equal), the simpler model
should always be preferred.

In the context of chemical sensor arrays, however,
PARAFAC may be too restrictive, since it is unable to model
shifted profiles or different shapes; this may occur, for
instance, if the sensors are placed at different locations along
the manifold or have intrinsically different dynamics. In these
cases, the additional flexibility of Tucker3 may be helpful.347

However, this comes at a price: unlike PARAFAC, Tucker3
is sensitive to rotational ambiguities, i.e., a unique solution
does not exist. Alternatively, an extension of PARAFAC
known as PARAFAC2348 may be used in some cases. As
illustrated in Figure 37c, PARAFAC2 allows each sensor to
have a unique set of time loadings so that PARAFAC2 can
deal with non-trilinear data (as Tucker3 does), while a unique
solution is ensuredsprovided that some constraints on the
Bk matrices are met.197

Shaffer et al.349-351 provided one of the first studies of
multiway analysis methods for sensor-based instruments. In
this work, the authors developed a second-order instrument
that consisted of an array of five surface-acoustic-wave
sensors and a preconcentrator unit. Samples of four nerve
agents (ethylN,N-dimethylphosphoramidocyanidate, GA;
O-ethyl-S-(2 isopropylaminoethyl)methyl phosphonothiolate,
VX; pinacolylmethylphosphofluoridate, GD; isopropylmeth-
ylphosphonofluoridate, GB) and one nontoxic simulant
(dimethylmethylphosphonate, DMMP) were absorbed in a
preconcentrator unit in the presence of several interferents
(water, bleach, ammonia, sulfur dioxide, isopropanol, dichlo-
roethane, diesel exhaust, and jet fuel) and then subsequently
rapidly desorbed by heating the sorbent column, a process
that additionally provided some chromatographic separation
of the mixture components. The response of the instrument
to a mixture of water, gasoline, and one nerve agent (GA)
is shown in Figure 38a. To analyze these responses, the
authors compared three types of score plots: (1) PCA
performed on the peak signal amplitude of each sensor
response, (2) PCA of the peak signal amplitude and the peak
location, and (3) unfold-PCA on the entire sensor transient.
As shown in Figure 38 (parts b-d), combining peak
amplitude and peak location provides better discrimination
performance than using peak amplitudes alone; unfold-PCA
further decreases the spread of the nerve agent VX and the
dimethylmethylphosphonate DMMP clusters, but it also
seems to impair the discrimination of the GA samples. A

Figure 37. (a) Bilinear decomposition with unfold-PCA. The three-
way data matrix is first unfolded into a two-way matrix (see Figure
36 for an example) and then modeled as a sum of terms, with each
term being the outer product of two vectors. The termE is the
residual error. (b) Trilinear decomposition with PARAFAC. In this
case, the three-way data matrix is modeled with three factors, one
per dimension. The termE is also a residual error. (c) PARAFAC
illustrated in compact form. (d) PARAFAC2 is an extension of
PARAFAC, which allows each sensor,k, to have its own time
loadings,Bk. (e) Tucker 3 is an extension of PARAFAC, which
introduces a core matrixG to allow different interactions among
loadings. Adapted from ref 347.
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visual comparison of PCA scatter plots, however, can be
misleading; a more objective measure of performance is the
predictive accuracy on test data. To this end, the authors
compared the performance of two classifiers (nearest-
neighbors and linear discriminants) on three feature vec-
tors: (1) the peak amplitudes, (2) the peak amplitudes and
their locations, and (3) the entire sensor transient. Using the
entire sensor transient provided the highest performance
(96-100% correct classification), closely followed by peak
amplitudes and locations (94-98%), and then peak ampli-
tudes (81-83%). A second comparison of four models was
performed: unfold-PCA, multiway-PCA (PARAFAC), unfold-
PLS, and multiway-PLS. This comparison, however, failed
to show any advantage of PARAFAC and multiway-PLS
over their unfolded counterparts. Interestingly, the location
of the peaks in Figure 38a is sensor-dependent, and the
authors report a shift of those peak locations with increasing
analyte concentration; both results suggest that the PARAFAC
model may have been too restrictive for these data. Further-
more, none of these four models performed better than a
direct classification using the raw data. It is quite possible,
though, that the lack of improvement may have been a result
of ceiling effects, since the raw data could already be
classified with 96-100% success.

Skov and Bro197 analyzed the transient response of an array
of 12 metal-oxide sensors exposed to three kinds of lic-

orice (good, bad, and fabricated bad). The authors applied
various types of baseline compression and scaling, and
compared the performance of three decomposition meth-
ods: PCA on the steady-state signals of the sensors,
PARAFAC, and PARAFAC2. For each of the PARAFAC
models, a two-factor decomposition was performed. Figure
39a shows the loadings of the PARAFAC decomposition,
whereas parts b and c of Figure 39 shows the loadings of
PARAFAC2 (two loadings per sensor). While the loadings
of PARAFAC are easier to interpret, those of PARAFAC2
indicate that the starting time of the transient responses of
some sensors may be shifted, which renders the PARAFAC
model too inflexible (interestingly, the “electronic nose” used
in this study contained two sensor chambers, which might
explain why some sensor transients appear to be shifted in
time). This interpretation can be confirmed by analyzing the
scores in parts d and e of Figure 39, which show that
PARAFAC2 provides much better separability of the three
types of licorice. Figure 39f shows the scores when only
the steady-state signal of each sensor is used as a feature.
While PARAFAC2 seems to return more compact clusters,
it also appears that the steady-state signals already contain
sufficient information to solve the discrimination problem.

Padilla et al.198 have also used PARAFAC to analyze the
transient responses of gas sensors. In this study, an array of
13 metal-oxide sensors was exposed to the headspace of

Figure 38. (a) Response of an array of SAW sensors to the thermal desorption of a preconcentrated ternary mixture of one nerve agent
(GA) and two interferents (water and gasoline). Score plots of (b) PCA of the peak amplitudes, (c) PCA of the peak amplitudes and their
locations, and (d) unfold-PCA on the entire sensor transient. Training and test data are depicted as solid squares and open circles, respectively,
whereas mixtures of GA with interferents are depicted as crosses. GA, ethyl-N,N-dimethylphosphoramidocyanidate; VX,O-ethyl-S-(2-
isopropylaminoethyl)methylphosphonothiolate; DMMP, dimethylmethylphosphonate; GD, pinacolylmethylphosphofluoridate; GB, isopro-
pylmethylphosphonofluoridate. Reprinted with permission from ref 351. Copyright 1998 Wiley, New York.

Higher-Order Chemical Sensing Chemical Reviews, 2008, Vol. 108, No. 2 601



potato chips with different amounts of flavor agents. To
check for trilinearity, the 3-dimensional data set (samples
× sensors× time) was unfolded onto each one of the three
dimensions, and the number of factors was computed for
each unfolded matrix by means of singular value decomposi-
tion. Each of the three matrices appeared to have the same
number of factors, which suggested that the data were
trilinear.347 The dataset was preprocessed by means of
differential baseline correction and standard normal variate
normalization methods (see section 7); these techniques were
found to preserve the trilinearity of the data, an important
safety check before applying PARAFAC. Using a core-
consistency diagnosis proposed by Bro and Kiers,352 the
authors determined that the dataset was best described using
a three-factor model. The corresponding scores (matrixA
in Figure 37c) were then used to predict the concentration
of the flavor additives by means of an inverse-least-squares
regression model. A correlation coefficient of 0.902 between
true concentrations and predictions on calibration data was
found using the PARAFAC-ILS model; predictions on a test
data set were comparably accurate.

10.2. Dynamical Models

Dynamical models may also be used to process informa-
tion directly from the sensor transient, i.e., without the use
of a feature extraction stage. Various types of recurrent neural
networks, as well as hidden Markov models, have been used
for this purpose, as will be reviewed in this section.

Pardo et al.241 investigated various approaches to model
the nonlinear inverse dynamics of a gas sensor array. The
overarching goal of this study was to build a model that could
predict the inputs (concentration pulses) to a gas sensor

system from the sensor responses, in particular for rapid
variations of the input concentrations. This inverse problem
is known to be ill-posed because of the collinearity across
sensors, nonlinearities in the steady-state and the response
dynamics of the sensors, and long-term drift, and the fact
that the sensors and the flow manifold act as low-pass filters.
An array of four thickness-shear-mode resonators with GC
stationary-phase coatings was exposed to mixtures of toluene
and octane, which were delivered as odor pulses of Gaussian-
distributed concentrations. It has to be noted here again that,
due to the very short response time of polymer-coated
thickness-shear-mode resonators, there is the risk of recording
the dynamic gas manifold characteristics rather than those
of the sensors. Several models were explored, which included
static models, linear autoregressive models, Elman networks,
Wiener series expansions, radial-basis function (RBF) net-
works, and multilayer perceptrons (MLP). In the static
models, the concentration inputs were predicted directly from
the sensor outputs on a sample-by-sample basis, whereas in
the linear autoregressive models, concentration inputs were
predicted from a short history of the sensor outputs. Elman
networks353 are recurrent neural networks whose hidden units
have feedback connections, which serve as a short-term
memory to enable the model to “remember” preceding inputs.
Wiener series expansions are a parametric model with finite
memory that approximates a nonlinear system by a series
of functionals, with the advantage of this model being that
the parameters can be estimated through least-squares
methods.239,240 Finally, radial-basis-function networks and
multilayer perceptrons are feedforward neural networks,
which act as nonlinear regression models;216 short-term
memory in these models was implemented by means of
tapped-delay inputs. Results of this study are summarized

Figure 39. (a) Loadings 1 and 2 of a two-factor PARAFAC decomposition. These loadings define matrixB in Figure 37c. (b) Loading 1
(one per sensor, as illustrated in Figure 37d) in a two-factor PARAFAC2 decomposition. (c) Loading 2 of the same two-factor PARAFAC2
decomposition. Loadings 1 and 2 in (b and c) represent the matrixBk in Figure 37d. Scores of the samples with (d) PARAFAC, (e)
PARAFAC2, and (f) PCA; the PCA decomposition used only the maximum response of each sensor. Separability in (d) is rather poor,
which indicates that the PARAFAC model is too restrictive to explain the data. In contrast, PARAFAC2 provides significantly better
separability. Note that PARAFAC2 is only marginally better than PCA; this result suggests that the peak response of the sensors already
contains most of the discriminatory information. Reprinted with permission from ref 197. Copyright 2005 Elsevier.
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in parts a and b of Figure 40. The best results were obtained
by the Wiener series, closely followed by the RBF network.
Surprisingly, the Elman network did not perform better than
the simple linear model. As expected, the static model

showed the poorest performance, since it does not account
for the dynamics of the system.

Roppel et al.354 used an Elman network to classify analytes
using the transient responses of an array of 15 metal-oxide

Figure 40. (a) Average prediction capability of various inverse dynamical models. (b) True concentration of toluene (dotted line) vs
predictions of the Wiener series expansions (solid line); residual errors are shown as dashed lines. Reprinted with permission from ref 241.
Copyright 1998 IEEE. (c) Structure of the time-delay neural network as used in the study of Zhang et al.357 Reprinted with permission from
ref 357. Copyright 2003 Elsevier.
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sensors. Sensor transients were converted into a binary
pattern by means of an adaptive-threshold method and then
passed on to an Elman network. A network with 15 input
units (one per sensor), 15 hidden units, and 9 outputs (one
per analyte class) was trained on a set of 27 samples (3
samples of each analyte). For validation purposes, the 27
training samples were presented in a different (random) order.
Since the network is time-dependent, this validation proce-
dure can give some indication of the degree to which the
network is able to generalize. However, no results were
reported on the generalization performance of the network
with respect to previously unseen transient signals. More
recently, Tan and Wilson355 have used hidden Markov
models (HMMs)356 for outlier detection. HMMs are the “gold
standard” in automatic speech-processing applications be-
cause of their ability to model nonstationary time series. The
goal of the study by Tan and Wilson was to determine
whether or not HMMs could be used to discriminate
“normal” transient responses of a sensor from “unhealthy”
ones. Training data consisted of the transient responses of
10 polymer-coated sensors to a concentration step of 5
different analytes. Ten HMMs (1 per sensor) were trained
on multiple transient responses to each of the 5 analytes.
For validation purposes, each HMM was then tested on
transient responses of a different sensor to each of the
analytes. HMMs were shown to be able to distinguish
“normal” responses (transients of the specific training sensor)
from “unhealthy” ones (transients of any other sensor).

Zhang et al.357 used a time-delay neural network (TDNN)
to classify four different types of spices using the transient
responses of an array of 12 conductive-polymer sensors. As
shown in Figure 40c, a TDNN is a feed-forward network
that has local memory in the form of a tapped-delay line (a
first-in-first-out buffer that stores previous values, a very
simple form of (short-term) memory) at the inputs and the
hidden units. In this study, the tapped delay was replaced
by a gamma memory,358 which can be thought of as a cascade
of low-pass filters (see insert in Figure 40c). The TDNN
was compared to a conventional MLP and a linear-discrimi-
nant-function (LDF) method, both trained on the steady-state
responses of each sensor. The TDNN was able to correctly
classify 100% of the samples in a separate test set, whereas
the MLP and LDF provided 63% and 59% correct clas-
sification. While these results cannot be extrapolated to other
data sets, the large improvement in the classification rate
suggests that the TDNN-gamma model is well-suited to
exploit differences in the transient responses of gas sensors.

11. Array Optimization

As described in the previous sections, a wide variety of
sensors and feature extraction methods are available to the
experimenter when approaching a new sensing problem.
Which of the sensors or features should be selected? How
should the experimenter proceed to find the “optimal”
combination? Both of these questions are intimately related
and have been extensively covered in the literature under
the notion of “array optimization” and “feature subset
selection”.

11.1. Sensor Selection

A number of theoretical studies have addressed the issue
of array optimization with nonspecific sensors. One of the
earliest investigations was performed by Zaromb and Stetter
over 20 years ago.359 The authors assumed an array ofS

sensors, each capable of operating inM distinct modes, to
develop a theoretical estimate of the minimum number of
parametersP ()S sensors× M modes) that would be
required to discriminate mixtures of up toA analytes from a
pool of n different analytes. Assuming the sensors to be
noiseless and binary (i.e., response/no response), this estimate
was shown to be

A rule of thumb is proposed in this study, according to which
sensors and operating modes should be selected so that each
of the P parameters does not respond to more thanP/A
individual compounds. While the assumption of noiseless
and binary sensor responses is clearly simplistic, the rule of
thumb is qualitatively similar to the simulation results of
Alkasab et al.,186 which have been discussed in section 6.3.
Niebling and Müller360 proposed an “inverse” feature space
to design sensor arrays. In this inverse feature space, each
of then analytes is represented as a separate dimension, and
each of thes sensors is represented as a point in this
n-dimensional space. The authors show that this visual
representation enables the experimenter to detect potential
discrimination problems and to design new sensors to address
these problems. Gardner and Bartlett37 proposed a compu-
tational model for cross-selective sensors that also considers
the effects of noise and errors. An upper limit of the number
of analytes that can be discriminated by a given array was
estimated by the ratio between the total volume of the sensor
space and the volume made up by the sensor errors. A
measure of performance was proposed, which was essentially
equivalent to the classical Fisher’s ratio (i.e., the ratio of
between-class distance to within-class variance). More
recently, Pearce and Sanchez-Montanes175 have improved the
model of Gardner and Bartlett by incorporating the concept
of hypervolume of accessible sensor space (VS), which is
defined as the volume in sensor space that contains the
sensor-array response to a set of analytes. As shown in Figure
41a for a three-odor, two-sensor problem, collinearity limits
the number of possible sensor responses. Therefore, the
maximum number of analyte mixtures that can be discrimi-
nated by the array is limited by the ratio betweenVS and
VN, the hypervolume defined by the accuracy of the sensor
array response, as illustrated in Figure 41b.

Assuming that errors/noise do not exhibit any correlation
with the analyte stimulus, the authors show that the geometric
interpretation in Figure 41 can be expressed by means of
the Fisher information matrix (FIM), defined as

where cb is a vector containing the concentration of the
analytes, xb is the response of the sensor array to the stimulus
cb, andp(xb|cb) is the conditional probability of observing the
sensor response xb upon a given stimulus cb. The FIM is
important because it provides a lower bound (i.e., best-case
case) on the accuracy with which the stimulus, cb, can be
predicted from the sensor response, xb. This lower limit has
been determined as
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where cb′ is the prediction of cb from xb through a calibration
model. To use these theoretical constructs in practice, one
would (1) assume a parametric densityp(xb|cb) for each
individual sensor, (2) estimate the parameters from experi-
mental data (i.e., by measuring the sensor array responses
to a number of analyte mixtures), (3) compute the FIM using
eq 18, and (4) compute the expected accuracy of the array
from eq 19. This accuracy estimate would then be used as a
“figure of merit” to select an optimal array configuration
from a pool of cross-selective sensors. Once this “optimal”
array has been found, further improvements can be obtained
by replicating the array a number of times; see Di Natale et
al.361 and Wilson362 for an authoritative discussion of
redundancy in sensor arrays.

11.2. Feature Selection
In most cases, however, array optimization is approached

empirically by defining alternative figures of merit that can
be computed more conveniently. This approach is typically
referred to asfeature subset selectionin the pattern-recog-
nition and machine-learning literature. A number of empirical
figures of merit can be used for this purpose, which can be
grouped into two categories: filters and wrappers.363 A filter

is a measure of the information content provided by a given
combination of features, where “information” can be associ-
ated with variance (e.g., assessed through the PCA eigen-
values), interclass discrimination (Fisher discrimination, e.g.,
measured with the LDA eigenvalues), or correlation (e.g.,
between the feature vectors and the dependent variables), to
name but a few. The advantage of this method is that the
“figure of merit” is independent of the type of calibration
model used to process these features. In contrast, wrappers
evaluate each combination of features by the predictive
accuracy of the calibration model trained on that particular
feature subset, measured by statistical resampling or cross-
validation of a dataset. Each approach has a number of
advantages and disadvantages.364 The wrapper approach
usually achieves better predictive accuracy since the feature
subset can be tuned with respect to the particular bias of the
calibration model. In addition, the wrapper has a mechanism
to avoid overfitting, since the feature subsets are evaluated
according to their performance on test data. Wrappers are,
however, computationally intensive, since the calibration
model must be continuously retrained. Filters usually find a
more general feature subset that works well on a wider range
of calibration models, and they are computationally attractive,

Figure 41. (a) Visualization of a three-odor-to-two-sensor transformation. (b) The maximum number of feature vectors that can be
discriminated is the ratio between the hypervolume of the accessible sensor space (VS) and the accuracy of the sensor array response.
Reprinted with permission from ref 175. Copyright 2003 Wiley-VCH, Weinheim.
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but it is difficult to design filters that correlate well with the
final predictive accuracy of the calibration model. Owing to
their respective pros and cons, both wrappers72,118,264,365-367

and filters368-372 have been used in different applications in
the field of “electronic noses”.

Once a measure of performance or “figure of merit” has
been designed, an “optimal” subset of features must be found.
One may be tempted to exhaustively evaluate all possible
combinations of features and to then select the global
optimum. However, due to combinatorial explosion, exhaus-
tive search is unfeasible for all but very small problems (see,
e.g., ref 118 for an exhaustive evaluation). Thus, several
methods have been devised that explore the space of all
possible feature combinations in a more efficient fash-
ion.180,373 These search strategies can be assigned to three
categories:374 (i) exponential, (ii) sequential, and (iii) random
strategies. Exponential techniques perform a search whose
complexity grows exponentially with the number of states.
Among these, branch and bound375 is guaranteed to find the
optimal feature subset of a given size if the evaluation
function is monotonic. Monotonicity assumes that the
addition of a new featurealwaysimproves the information
content of the subset. This assumption is, however, violated
in practical problems, since the addition of features does
increase the risk of overfitting. Sequential-search algorithms
are strategies that reduce the number of states to be visited
during the search by applying local search. The most popular
methods include sequential forward selection (SFS) and
sequential backward selection (SBS). SFS starts from the
empty set and sequentially adds features, whereas SBS starts
from the full set and sequentially removes features. These
two algorithms, however, have a tendency to become trapped
in local minima since they cannot backtrack from there (i.e.,
SFS cannot remove a feature once it is added, and SBS
cannot add a feature once it is removed). More recently,
sequential-floating methods with backtracking capabilities
have become popular since they do not require monotonicity
and often lead to optimal or near-optimal solutions in a
fraction of the computation time required by branch and
bound. Random search algorithms are an attempt to over-
come the computational costs of exponential methods and
to avoid the tendency of sequential methods to become
trapped in local minima. Among these techniques, simulated
annealing376 and genetic algorithms377 are most widely used.
Simulated annealing (SA) is based on the annealing process
of thermal systems. Starting from an initial solution, SA
updates the current solution in a local fashion (e.g., adding
or removing a feature). If the new solution is better, it is
accepted; if it is worse, it can still be chosen with a
probability, P, which depends on a global temperature
parameterT. The temperature is initially set to a high value,
which allows SA to perform a global search, butT is
gradually decreased, which allows the algorithm to converge
to a final solution. Genetic algorithms (GAs), on the other
hand, are inspired by the process of natural selection. Starting
from a random population of solutions, a GA will generate
a new population of solutions by means of mutation
operations (adding or removing features) and crossover
operations (combining features from two parent solutions).
Members for the new population are selected probabilistically
based on their fitness; better solutions have a higher
probability of making it to the new population, but “less-
fit” solutions are also allowed in order to promote diversity.
Because of their ability to perform global optimization and

the ever-increasing computational capabilities of personal
computers, the tendency in recent years has been to move
toward genetic algorithm methods.261,301,366,368,378-384

If the number of potential features is large, the selection
procedure can be computationally intensive. Therefore, it
may be advantageous to initially “weed out” poor features
with a filter and then use a wrapper-based selection on a
reduced set of features. It must be noted, however, that the
prescreening step may remove features that provide limited
but complementary information. Gualdron et al.385 proposed
a two-stage selection algorithm, where individual features
are first evaluated by their ratio of between-class to within-
class variance. A threshold is set, and only those features
whose ratio is higher than the threshold are retained for
further selection. The results showed that the performance
of this two-step method is comparable to that of a one-step
selection procedure, in which all features undergo full subset
selection, but it requires only 25% of the computation time.
On the basis of this work, Llobet et al.386 developed an
improved feature selection procedure for mass-spectrometry-
based “electronic nose” instruments. Their method evolves
in three stages. During the first stage, every possible pair of
features (each being a mass-to-charge ratio) is evaluated
according to their Fisher’s discriminant ratio (between-class
to within-class scattering), and only the top 30% features
are selected. Evaluating features in pairs prevents features
with low but complementary information from being thrown
away. During the second stage, the Pearson’s correlation
between every pair of features is computed, and a collinearity
threshold is set so that only the top 20% of the features (the
most uncorrelated) are preserved. During the third stage,
stochastic methods (simulated annealing and genetic algo-
rithms) are used to perform a suitable subset selection. The
overall method was validated on an experimental database
of various kinds of Iberian ham. The three-stage algorithm
selected 14 out of 111m/z ratios as features and yielded 95%
classification performance on test data, which compared
favorably to the 88% achieved by a classifier trained on the
entire feature set.

In addition to these techniques, a high-level view of the
information provided by the different sensors/features may
be obtained from a loadings plot of, e.g., PCA, LDA, or PLS.
In a loadings plot, each feature is displayed as a point,
typically in a 2D or 3D representation. The farther a feature
is located from the origin, the more information the feature
provides for the analysis (e.g., variance in PCA, discrimina-
tion in LDA, correlation with the dependent variable in PLS).
Boilot et al.379 performed a sensor fusion from four “elec-
tronic nose” instruments, an electronic olfactometer based
on a temperature-modulated metal-oxide sensor (INRA), an
array of 7 thickness-shear-mode resonators (ROMA), a
second array of 8 thickness-shear-mode resonators (UPM),
and an array of 32 conductive-polymer sensors (WAR-
WICK). The four instruments were used to measure the
headspace of various analyte samples (apple, pear, and peach
juices), and a total of 72 features was extracted from the
instruments. Figure 42a shows the PCA loadings plot of these
features. The analysis of this plot can provide insights on
how analyte information is detected by the instruments. First,
sensors of the same instrument tend to cluster together, which
suggests that they provide correlated information. Second,
sensors from the UPM and ROMA instruments also tend to
cluster together, a reasonable result since both instruments
are based on the same sensor technology. Third, the spread
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of the sensors within each instrument is an indication of the
degree of collinearity of the sensors; e.g., the conductive-
polymer sensors seem to provide very similar information,
possibly due to their large inherent cross-sensitivity to the
humidity present in the samples. Figure 42b shows the
loadings plot of the “simple” parameters in the study of Eklo¨v
et al.,72 which was reviewed in section 9.1.4. From this plot,
it is possible to identify a number of highly correlated
parameters, such as max/on derivative and short-on integral,
1-exp-OnTime constant and TO-60%, off integral and 30s-
off response. These features describe the same properties of
the response curve, and only one of them is thus needed.

11.3. Optimization of Excitation Profiles
Much less attention has been paid to the optimization of

temperature-modulation profiles for metal-oxide sensors.
While a number of articles report on empirical studies with
various temperature waveforms (e.g., rectangular, sine,
sawtooth, and triangular) and stimulus frequencies,300,304,322

only a handful of studies have approached the problem in a
systematic fashion. Kunt et al.21 developed an optimization
method for microhotplate devices that works in two stages.

First, a dynamical model of the sensor is developed from
experimental data; the model predicts the next conductance
value of the sensor (yi+1) from the previous values of the
conductance{yk} k)i

i-ny+1, as well as from the next and
previous values of the temperature set points{uk} k)i+1

i-nu+2,

whereny andnu represent the model order. A suitable model
F( ) is built from experimental data using a Wavelet
network.387 This model can be used to simulate the sensor
response to different temperature programs. In the second
stage, an optimization routine is used to find the “optimal”
program{ui}i)1

T that maximizes the distance between the
(simulated) temperature-modulated sensor responses to two
target gases:

This procedure is subject to a continuity constraint (|ui+1 -
ui| e 40 °C) to avoid drastic changes between consecutive

Figure 42. (a) PCA loadings plot of 72 features extracted from four different “electronic-nose” instruments. Reprinted with permission
from ref 379. Copyright 2003 Elsevier. (b) PCA loadings plot of the “simple” transient parameters in the study by Eklo¨v et al.72 Shadowed
areas mark groups of features that provide redundant information. Reprinted with permission from ref 72. Copyright 1997 Elsevier.

yi+1 ) F(yi, yi-1, ..., yi-ny+1, ui+1, ui, ...,ui-nu+2) (20)

{ui} i)1
T ) arg max

u1,u2,...,uT

d(ygas1,ygas2) (21)
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temperatures. Further improvements in smoothness are
achieved by means of a wavelet-based distance that uses only
the lower scales of the decomposition (lower scales capture
the general shape of the sensor response, whereas higher
scales capture its details). When applied to the discrimination
of methanol and ethanol, the optimization routine of Kunt
et al. returned the temperature program shown in parts c and
d of Figure 43. Whereas the sensor responses to ethanol and
methanol upon applying a simple linear ramp are highly
overlappingssee parts a and b of Figure 43sthe response
patterns upon applying the optimal temperature program are
nearly orthogonal.

Vergara et al.333 have proposed a system-identification
method for determining suitable temperature-modulation
programs for specific target gases. Their method is based
on pseudo-random binary sequences (PRBS) and maximum
length sequences (MLSs). PRBS-MLSs are square-wave
signals with several interesting properties: (1) they are
repeatable, which ensures that the respective results are
reproducible, (2) they have a flat power spectrum over a large
frequency range, which renders them very suitable for system
identification, and (3) they have a maximum length, so that
the impulse response of the system can be estimated from
the cross-correlation. This method is illustrated in Figure 44
and works as follows. First, a PRBS-MLS is used to drive
the sensor heater, while the sensors are exposed to various
target compounds (NH3, NO2, and mixtures). For each

individual target compound, the impulse responseh(t) is
computed as the cross-correlation between the excitation
signal (PRBS) and the sensor response, and the spectral
components are computed from the FFT ofh(t). Second, each
individual frequency is ranked on the basis of its information
content (between-class to within-class scatter ratio), and a
subset of the most informative frequencies is selected. The
authors show that this procedure can be used to discriminate
and quantify various gases and their mixtures using one
sensor and three modulating frequencies. This method was
extended in ref 388 to multilevel pseudo-random sequences
(ML-PRS), which are better suited than binary sequences to
estimate the linear dynamics of a system with nonlinearities.
In a subsequent investigation, Vergara et al.268 used the
dynamic moments of the sensor’s phase plot,266 which we
reviewed in section 9.1.2, to extract information from ML-
PRS responses. Their results show that similar or better
results than those in ref 388 can be obtained with the dynamic
moments, while using only a small fraction of the ML-PRS
response. Collectively, these studies have demonstrated that
temperature profiles with very short time scales can be found
that provide a maximum discrimination for a given set of
analytes.

12. Conclusion and Outlook
It can be concluded from the contents of this articlesand

many references hereinsthat the use of various transducer
types or inhomogeneous transducer arrays is, indeed, ben-
eficial with regard to the performance of such sensor arrays.
In many cases, the data analysis of sensor-array or “electronic
nose” instruments has been limited to an empirical qualitative
analysis or the drawing of PCA plots. While useful for rapid
visualization purposes, PCA plots are not very representative
for higher-dimensional measurement/feature spaces, simply
because (i) the data are projected onto a two-dimensional
plane irrespective of the original or intrinsic dimensionality
and (ii) PCA only captures directions of maximum variance,
which do not necessarily contain analytical information. A
quantitative indicator of the array performance, such as
predictive accuracy (e.g., classification rate or mean-square-

Figure 43. (a) Normalized conductance response to methanol (solid) and ethanol (dashed) upon applying a linear temperature ramp as
shown in (b). (c) Normalized conductance response to methanol (solid) and ethanol (dashed) upon application of the “optimal” temperature
program shown in (d); predictions from the model in eq 20 are shown as circles (methanol) and crosses (ethanol). Note the dramatic
improvement in discrimination between (a) and (c). Reprinted with permission from ref 21. Copyright 1998 Elsevier.

Figure 44. Optimization of the temperature-modulation frequency
using pseudo-random binary sequences. Reprinted with permission
from ref 333. Copyright 2005 IEEE.
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error) on unseen test data, should be used as a figure of merit.
A careful selection of sensor arrays, feature subsets, and
excitation profiles for a given application can further improve
the sensor-array performance.

Another shortcoming of multisensor-array or “electronic
nose” papers is that many of the studies have been performed
on food samples or their headspaces, the analyte composition
of which has been rather complex, hardly known, and highly
variable. Moreover, the qualitative sensor results have not
been scientifically explained or substantiated by a chemical
gas-phase or headspace composition analysis. Thus, it is not
always clear which compounds or chemical effects lead to
a discrimination of the different samples. Moreover, sample-
to-sample variability, sample deterioration, and the strong
influence of the sample preparation and sampling procedure
on the sensor results, in particular for natural products, are
often underestimated, and the corresponding information is
missing in many papers.

On the technological side, the progress in micro- and
nanotechnology, microelectronics, and in data-processing
speed and capability will dramatically influence the develop-
ment of chemical sensors and sensor systems in the near
future: rather complex and versatile microsensor and mi-
croanalysis systems operable directly through standard
interfaces from a laptop or palmtop by means of standard
software are emerging, as has been demonstrated in this
article. The end-user is interested in reliable, user-friendly,
and affordable sensor systems irrespective of the internal
system complexity, which, in most cases, will not be evident
to the user anyway. Therefore, we think that a concept of
versatileadaptiVe (micro)sensor systemscan be most suc-
cessful.AdaptiVe sensor systemsmay be devices that include
various transducer types, auxiliary sensors, eventually sepa-
ration and preconcentration units, which can respond or adapt
their operation to occurring analysis situations or events. In
the event that, e.g., a certain target analyte or a major
interferent is detected, the sensor selection, sensor operation
mode, feature extraction, and data treatment would be
adapted to this situation, and the protocols would be executed
in a way that the best-possible target analyte detection is
achieved or that the interferent can be recognized and its
influence on the sensor system output can be minimized or
suppressed. In dealing with interferents, cross-sensitivities,
or low signal levels, it may be very effective to purposefully
select or deselect sensors or to use signal ratios or differential
values instead of merely increasing the array size or the
transducer diversity.
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