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1. Introduction

Desired properties of a chemical sensor include high
sensitivity, a large dynamic range, high selectivity or
specificity to a target analyte, related low cross-sensitivity
to interferents, perfect reversibility of the physicochemical
detection or sensing process (short sensor recovery and
response times), and long-term stability of the sensor and
sensing materid.® Unfortunately, a sensor exhibiting all
these properties is a largely unrealizable ideal. Sensor
sensitivity, selectivity, speed of response, and reversibility
are determined by the thermodynamics and kinetics of sensor
material/analyte interactions. In particular, high sensitivity
and specificity on the one hand and perfect reversibility on
the other hand impose contradictory constraints on the sensor
design: high sensitivity and selectivity are typically associ-
ated with strong interactions, whereas perfect reversibility
requires weak interactions. Consequently, it is necessary to
compromise, and, in most cases, sensors showing partial
selectivity to only some of the detected species are used to
ensure reversibility. The output of an individual sensor
consists of, e.g., a certain current value measured at a fixed
potential or a resistance value of a certain material in
response to a chemical stimufus.This means that, usually,
one feature per sensor is monitored at a time, preferably
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ties®14 provided that the additional dimensions carry
complementary information and provided that suitable data-
analysis techniques are used, i.e., techniques to handle small
numbers of samples.

The notion of “order” has been frequently used in
instrumental analysis to categorize the dimensionality of the
feature space and, consequently, the richness of the informa-
tion obtained by a certain device or analytical instrurteit
and can, within certain limitations, also be applied to sensor
or sensor array configuratiofs.

A zero-order device or sensor would be a single, more-
or-less specific sensor. This sensor would be aimed at the
detection of a certain target compound. However, it would
not be possible to perform any reliable analyte quantification
in the presence of interferents. Even worse, there would not
be any evidence to let the operator know that the measure-
ment had been influenced by interferents.

A first-order device is then a sensor array, the sensors of
which differ in one domain, i.e., an array of identical
transducers such as chemoresistors featuring different sensi-
tive materials or layers or an array of chemoresistors featuring
the same sensitive material but operated at different
temperaturesprovided that temperature has a distinct effect
on the sensor selectivity. This is the case for, e.g., high-
temperature metal-oxide-based send®r&. A prerequisite
for the successful use of such first-order devices is the
establishment of a calibration model that includes the signals
of the species of interest and of all possible interferents. Then,
multicomponent analysis and outlier detection will be pos-
sible, but any unexpected interferent will invariably upset
the respective predictions. In other words, the calibration of
a first-order array allows interferences to be detected but not
to be compensated for.

This problem can be addressed by using second-order or
higher-order sensor devices. These devices utilize analyte
characteristics in at least two domains, which should be
ideally orthogonal, or, inasmuch as possible, independent
from each other (see section 6.2 for a definition of these
terms). Under certain conditions, the calibration of second-
order instruments allows the target analytes to be quantified
even in the presence of unknown interferents; this property
is commonly referred to as the “second-order advantage”.
Additional potential benefits of second-order devices include
the ability to perform calibration with a single mixture sample
and recover the response profiles of the individual target
analytes*

Higher-order sensor devices can, according to a paper

during an equilibrium-type or steady-state-type situation, in published by Gpel2 be generated by making use of various
which a certain analyte concentration can unequivocally be features to be exploited in chemical sensing. Though the
correlated to the resulting sensor response. Individual sensorgstimated overall number of features may be overly opti-
and the analysis of the respective individual signals or mistic (Figure 1), in particular with regard to “independent
features, however, show limited selectivity performance in features”, it may be interesting to briefly summarize the
most practical applications, as mentioned above. Therefore findings of this paper. The number of sensitive materials to
arrays of several sensors are commonly used, which effec-convert a chemical into, e.g., electrical information is
tively extends the “feature space”. A feature space is an estimated to be on the order of8l6he number of suitable
abstract space in which each sample (e.g., sensor measuraransducers (e.g., chemoresistor, microbalance, optical fiber,
ment value) is represented as a pointidimensional space,  etc.) is estimated to be-10%, the number of transducer
whose dimension is determined by the number of featuresgeometries (e.g., electrode distance, shape, etc.) is estimated
evaluated. Features are the individual measurable heuristiao be on the order of 20and the features that can be added
properties of the phenomena being observed, in our casethrough variation of modulation of external (e.g., gas
e.g., sensor measurement values. The acquired informatiorswitching strategies, use of filters, catalysts, etc.) and internal
is then processed using pattern recognition and multicom- parameters (e.g., light frequency, operation temperature, bias
ponent analysis toof$:'2 Increasing the measurement or voltage, etc.) is estimated to be on the order of. he
feature space dimensionality is an attractive approach todistinctive way to modulate these parameters (e.g., stepwise,
obtain a substantial improvement in analytical capabili- sinusoidal, ramp, etc.) is assumed to account for an additional
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Figure 1. “Hyperspace” of chemical sensor features with more th&hibilependent features according top@b Redrawn with persmission
from ref 25. Copyright 1998 Elsevier.

1@ features, and, finally, multiple modulations that can be characteristics. For hybrid or discrete devices, any material,
performed simultaneously (e.g., simultaneous variation of or the optimum sensor material, can be used, and a wealth
bias voltage, temperature, and gas flow) are assumed toof fabrication techniques is available.

account for another f(features. While the above consid-

erations are of hypothetical nature, and the number of viable 1.1.2. Performance

parameters and realizable variations will be massively lower,  wicrosensors frequently also generate “microsignals”, and

the exercise shows that a large variety of parameters iSperform pronouncedly better in monolithic designs owing
available that can be used to identify or quantify a Specific 5 the fact that the signals can be conditioned at the site of

analyte or complex f‘mxture. o . generation (filters, amplifiers, etc.), e.g., by means of on-
Higher-order (i.e., “hyphenated”) instrumentation, such as chjs electronics, so that the influence of parasitic and
the combination of gas chromatography (GC) and mass qrogsia|k effects can be reduc&dOn-chip analog-to-digital
spectrometry (MS), is vastly used in modern laboratory .qnyersion is another feature that helps to generate a stable
analytical chemistry. Although the data-analysis methods gengor utput that can be easily transferred to off-chip units.
applied to sensor and analytic-instrument data are mostly gor hyprid or discrete microsensors, it is sometimes very

the same, there is no direct analogy between the preprocessgiticit to read out rather minute analog sensor signals.
ing of a sample to separate it into multiple, less complex

samples that are then characterized by an analytical methody, 1.3, Auxiliary Sensors/Smart Features

and the attempts to enhance the selectivity of a set of sensors o

by modulation of physical parameters. Yet, it is striking that | €mperature or flow sensors can be monolithically co-
higher-order methods are still uncommon in the field of intégrated with the chemical sensors on the same chip.
chemical sensors. This holds particularly true, since the Calibration, control, and signal processing fun_ctlons as We_II
higher-order advantage may be important due to unpredict-2S Self-test features can be realized on-chip. For hybrid
able changes in the sample matrix composition. This situation d€Signs, additional devices and off-chip components are
is arguably a consequence of the requirements for sensord€quired.

or sensor systems, which include low costs, small physical
size, and ease of use. The progress in micro- and nanotech
nology, microelectronics, and in data-processing speed and The number of electrical connections prominently con-
capability will help to address many, if not all, of these tributes to the overall system costs (failure probability and
issues®®3° rather complex and versatile microsensor and packaging costs). The monolithic implementation of, e.g.,
microanalysis systems operable directly through standardan array of gas sensors (see also later in this article) with
interfaces from a laptop or palmtop by means of standard multiplexer structures and interface units requires only a few
software are already available, as will be also demonstratedconnection$®3* A hybrid/discrete approach will require

1.1.4. Connectivity

in this article. many more connections, since each sensor has to be
_ individually addressed and since there are no interface units
1.1. Integrated versus Discrete Sensor Arrays available on the sensor side.

_In this context, we want to address the _ad_vantages and1.1'5' Sensor Response Time
disadvantages of integrated or even monolithic multisensor
arrays or systems versus the use of sets of discrete sensors The response time of, e.g., a gas sensor array is, in most
and electronics, particularly, since both types of sensor arrayscases, determined by the volume of the measurement
or systems will appear in the following sections. There is a chamber and the flow rate (other relevant processes include

number of aspects that have to be taken into account, whichalso analyte diffusion or dissociation). Using the monolithic

will be briefly discussed her&. or integrated approach and a suitable packaging technique,
] o such as flip-chip packaging, the volume of the measurement
1.1.1. Materials and Fabrication Processes chamber can be kept very small as a consequence of a small-

For monolithic designs or integrated systems, the selectionSiZ€; flat and planar sensor or sensor array. Therefore,
of materials is restricted to a few, e.g., CMOS-technology- Parameter modulation, such as flow variations or dynamic
related materials and CMOS-process-compatible materials,Protocols, can be easily realized. For hybrid or discrete
as well as to a set of specific fabrication s#pECMOS arrays, the volume is dependent on sensor geometries and
technology, complementary-metal-oxide-semiconductor tech- 2Ty arrangements.
nology, is an industrial standard fabrication technology for 1.1.6. Package
integrated circuits on silicon microchips). High-temperature =~
steps (e.g.7~400 °C) can be detrimental to metallizations To package monolithic designs, microelectronics-derived
(metal oxidation, diffusion) and may alter semiconductor packaging techniques can be modified and adapted, such as
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flip-chip technology or simple epoxy-based packaging calibration for higher-order sensing, with an emphasis on
methods. Hybrid implementations require complex packagesmultiwvay and dynamical models. Section 11 will include

to reduce sensor interference (e.g., high-frequency acousticimethods to optimize arrays for specific applications, includ-
wave sensors), to minimize electric crosstalk, and to optimize ing sensor selection, feature selection, and optimization of
the critical connections. This further complicates the already temperature programs. This article will be concluded by a

difficult task of chemical sensor packaging. short summary and outlook.
Before embarking upon the subject of multisensor arrays,
1.1.7. Summary there is a last note on terminology. The term “electronic

The main disadvantages of integrated or monolithic arrays Nose” has been very popular for more than a decade to
or systems include the restriction in materials and the limited describe multisensor and multitransducer arfa§s! We
choice of fabrication processes and steps. On the other handbelieve, however, that this term can be very misleading for
integrated systems offer unprecedented advantages ovefeveral reasons. Following a definition of Gardner and
hybrid or discrete arrays, especially with regard to signal Bartlett, an “electronic nose” is “an instrument comprising
quality, device performance, increased functionality, and an array of electronic chemical sensors with partial specificity
available packaging solutiods.These advantages, in our and an appropriate pattern recognition system, capable of
opinion, clearly outweigh the drawbacks and limitatidhs. ~ recognizing simple or complex odor®*®3’The majority of
In the case of well-established physical sensors, such assuch “electronic noses” may be capable of differentiating
acceleration and pressure sensors, a trend toward integrateBetween analytes or analyte mixtures from the headspace of
monolithic solutions can be identified for large production different foods or beverages, but, in most cases, the sensor

volumes and severe cost restrictions. response patterns cannot be directly correlated with human
olfactory perception. Another more important point concerns
1.2. Outline the general applicability implied by the term “electronic

) , . ) . ) nose”. Most of the sensor systems perform well in certain
_The topic of this review is “higher-order devices”, i.e., key applications, but there are few systems, if any, that
neither single sensors nor homogeneous transducer arraygyhibit the enormously broad applicability spectrum, at once
featuring only different coatings will be treated any further. including the sensitivity and discriminating power of a human
The latter constitute, according to the text in the introduction o, animal nose. In addition, successful sensor systems have
above, a first-order system, since analyte exposure generateg, pe designed and optimized with the key application in
a one-dimensional data vector (row or column). In Some mind to guide the selection of coatings, transduction mech-
publications, an array of sensors with different coatings is gnisms, etc. As yet, however, there is no universally
referred to as a zero-order arfaith an array being itself  gpplicable system that invariably provides satisfactory per-
a first-order device. We here prefer to use a categorization formance under all circumstances. Therefore, we will use
a_tccording to the data output format (O_th or_der, single value; this term sparingly and only in quotation marks. Similar
first order, vector; second order, matrix; third order, tensor; -gnsiderations apply to “electronic tongues”, ion-sensitive
etc.). or lipid-film based sensors in liquid phase. An article on

~ We decided to apply a rather broad scope in this review «glectronic noses” by Weimé&tis included in this issue.
in order to give the reader a comprehensive overview on

strategies to increase the information that can be extracted L .
from sensor systems or arrays. In section 2, devices consist-z' Arrays and Systems Comprising Identical

ing of arrays of identical transducers (with different coatings) Transducers

will be described, for which an extension to a higher order | this section, we will treat arrays of identical transducers
has been realized by adding additional dimensions such asyjth, e.g., different coatings, for which an extension to a
time (sensor dynamics and transients) or by varying internal higher order has been realized by adding additional dimen-
and external operation parameters such as temperaturgjons in the feature space. These additional dimensions may
modulation or the use of a catalyst for analyte decomposition. jnclude time (sensor dynamics and transients), or the
In this section, it will also be shown how different informa-  yariation of internal and external sensor operation parameters

tion, e.g., in the physical and chemical domains, can be (temperature variation, use of a catalyst for analyte decom-
extracted from an array of identical transducers. Section 3 position). It will also be shown how information in the

focuses on different monolithic and discrete sensor arraysphysical and chemical domains can be extracted from
making use of more than one transduction principle. In mjcroarrays and microsystems. A short glance at differential
section 4, we will briefly describe practical measurement and oy ratiometric methods concludes this section.

setup considerations for using multitransducer sensor arrays

and for recording transients or applying parameter variations. 2 1 Parameter Variations

Section 5 includes sensor-based complex microanalytical

systems, consisting of preconcentration, separation, and Following Gipel and Weima#f;3°the parameters that can
detection stages. In section 6, we will discuss the relations be varied during sensor operation include internal parameters,
between dimensionality, information, cross-selectivity, and such as sensor temperature, electrode bias voltage, or
redundancy, concepts that are important when dealing with measurement frequencies, and external parameters, such as
higher-order sensor systems. Section 7 presents a review othe use of filters or catalysts to change the gas composition.
two important data preprocessing procedures for chemosen- In looking at the literature, it is evident that one type of
sors: baseline correction and scaling. Section 8 will be internalvariation, the sensor operation temperature variation,
dedicated to methods for drift compensation. In section 9, is very popular in particular for conductometric metal-oxide-
we will review computational methods to extract information based sensof§.This development has been fueled by the
from transient and temperature-modulated responses ofappearance of microhotplates with low thermal nfaseghich
chemosensors. Section 10 is dedicated to multivariate allow for millisecond-scale temperature variations, so that
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within which the variations can be realized; and the massively
lower instrumental complexity and overall power consump-
tion.

A temperature-modulation example is shown in Figufé 3,
which shows a sinusoidal modulation of the operation
temperature of a single tin-oxide sensor between 200 and
400 °C that produces characteristic frequency-dependent
resistance features. Resistance changes of the micromachined
sensor upon exposure to CO, l@nd a mixture of CO and
NO; in synthetic air at 50% relative humidity are displayed.
By applying this temperature-modulation profile and by using
fast Fourier transformation techniques for feature extraction
and data evaluation, a single sensor could be used to
qualitatively and quantitatively analyze a binary mixttfe.
Figure 2. Scanning-electron micrograph of microhotplates. The 1he authors ascribe the possibility to differentiate between
suspended plates exhibit a polysilicon heater, an aluminum planethe two gases, CO and NQo the different reaction kinetics
for homogeneous heat distribution, and electrodes for measuringof the two gases at the sensor surface and, in particular, to
the resistance of a semiconductor metal oxide. Reprinted with the presence of oxygen species at the surface at low
permission from ref 51. Copyright 1998 American Chemical temperature as a consequence of the fast temperature
Society. modulation. These surface oxygen species would not exist

L ._on the surface under equilibrium conditions at the lower
the temperature variations are faster or on the same t'metemperatures in the cycling range (200)47

SC?'e as the clhemica_l processes occgrring durrng _ga_s/ m_etal- Additionally, an example foexternalparameter variation
oxide interaction. This enables effective gas discrimination | i pe given, which includes the use of a catalyst located

via the use of analyte-specific dedicated temperature promes'upstream of the sensor array in the analyte gas ffiét.

More details on temperature-modulation strategies can berpg nople metal catalyst is heated to different temperatures

Lound irll se_ction(?.SZ of thicsmzrtigle, ?(S We{%ers "%.th? articles and decomposes (oxidizes) the incoming analyte molecules
y Benkstein and Semancdand Nakamott'in this issue. o hromotes chemical reactions of those. The resulting

A variety of hotplate structures has been used including ye5ction products are then detected by an array of, e.g
membranes“.4+47 spiderlike structuré8 ' (see Figure 2),  glectrochemical sensof&:® By varying the catalyst tem-
and bridgelike structureés. The most recent developments  perature, the sensor responses can be modified, and operation

in temperature-variable microhotplates include standalone regimes can be optimized for the detection of specific target
CMOS-based microsystems featuring temperature-control ;ompounds. The catalysts included, e.g., rhodium or platinum

loops, transistor heaters, digital circuitry, and standard fj3mentsé7-69 A test analyte pattern for 8 different electro-
interfaces, Which_ allow for the_ application of any arbitrary chemical sensors (4 CO sensors, 2 hydrogen sulfide sensors,
temperature profile to three differently coated hotplates via 1 gyifyr dioxide sensor, and 1 nitrogen monoxide sensor)
standard software and a USB interfa¢é’ and 7 different catalyst temperature steps is shown in Figure
Besides microhotplate-based systems, there have been alsgs7 Tpe sensor-response patterns vary according to temper-
static approaches to temperature variation using 38 metal-agryre and sensor type upon exposure to the 19 analytes.

oxide sensor elements (the array features a noble metalzgain, the use of the catalyst generates virtual sensors and
doping gradient) on a 4« 8 mn? bulk silicon substrate efficiently extends the feature space.

equipped with 4 meander heaters, which create temperature ) ) )
gradients between 3 and °C per mm in the array area, 2.2. Dynamic Methods and Transient Signals
producing a temperature difference of 8C over the The sensor-signal evolution over time can be used to
array®~5" This system consumes up 6 W atoperation  extend the feature space of a sensor array. The information
temperatures between 300 and 4@) which is 3-4 times content that can be extracted from a transient sidgls
the power consumption of microhotplate-based systems perconsiderably higher than that from a steady-state si§nal
detection spot or sensor. whereas the steady-state signal is given by a single number
The gas reactions at the metal-oxide surfaces and, hencef, the transient signd(t) provides a series of measurement
the sensor selectivity or sensitivity patterns, are highly values at discrete time intervalsMore detailed information
depending on the operation temperattt&%® carbon mon- on transient analysis can be found in section 9 of this article
oxide is usually detected at lower operation temperaturesand also in the article by Nakamdtan this review issue.
using a tin-oxide-based sensitive layer, whereas higher An example of transient signals is displayed in Figure 5,
temperatures are used for monitoring, e.g., methane. Thewhich shows how the creation of exposure steps and
variation of the operation temperature of a single sensor or transients of varying length can help to discriminate between
a small set of sensors can lead to a degree of selectivity thatmethanol and ethanol using a polymer-coated capacitive
would otherwise require arrays of fixed-temperature sensorsdevice’®
and, thus, effectively extends the feature space of single It is noteworthy that the recording of transient signals
sensors or small arrays. stringently requires a dedicated gas manifélé(permanent
With regard to static, fixed-temperature sensors, the fastgas flows, crossover valves, small dead volumes between
temperature variation of microhotplates, which generates avalves and measurement chamber, and small-volume cham-
large set of “virtual” sensors, is clearly preferable due to ber; for more information, see section 4.1 of this article), so
the almost infinite number of possible and target-analyte- that the recorded dynamics represent the real sensor dynamics
specific temperature-variation profiles (sinusoidal, ramp, and not those of the manifold or of the gas exchange in the
rectangular); the arbitrarily selectable temperature interval, measurement chamber. The time required for a full exchange

hotplate support beams contact pads 60 um
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Figure 3. Sinusoidal modulation of the operation temperature of a tin oxide sensor between 200 &ad(B68om) leads to characteristic
frequency-dependent resistance features (upper part). Changes of the resistance (R sensor) of the micromachined sensor upon exposure tc
50 ppm CO, 1 ppm Ng and a mixture of 50 ppm CO and 1 ppm Ni@ synthetic air (50% relative humidity). Reprinted with permission

from ref 47. Copyright 1997 Elsevier.
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Figure 4. Analyte test data of a sensor array consisting of 8 electrochemical sensors detecting the analyte gas reaction products at 7
different catalyst temperatures (30, 100, 200, 500, 600, 750;@pP0f an upstream Pt filament. The analytes included a set of 10 alcohols,

2 ketones, ammonia, an amine, 2 sulfides, and 3 aldehydes, all of which are characteristic for fish freshness. Reprinted with permission
from ref 67. Copyright 1994 Elsevier.
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Figure 5. Sensor signals for a series of concentration steps of

decreasing lengths from 160 down to 1 s. The capacitor was coatedsensors), the respective response times to reach equilibrium
with a 4.um-thick layer of poly(epichlorohydrin). The envelope of

the response profile is highlighted in gray. It is analyte-specific
and depends on the analyte absorption and desorption times in th

A wealth of parameters can be extracted from a sensor-
signal-versus-time representation and can be used as input
to multicomponent-analysis or pattern-recognition algorithms.
These parameters can include simple parameters like pulse
heights, derivatives, and integrals calculated directly from
the response curves or coefficients estimated from different
models of the transient response like polynomial functions,
exponential functions, or autoregressive models that have
been fitted to the response curvés.

For most types of sensors (metal oxides and polymer-based

state are on the order of tens of seconds. In general, there

Qare two different mechanisms determining the transient

respective polymer. Reprinted with permission from ref 70. S€Nsor response upon a sharp analyte concentration increase
Copyright 2006 American Chemical Society.

or decreasé® (a) diffusion within the sensitive layer, whereat
the diffusion processes in the measurement chamber should

of the measurement chamber volume is often underestimatedbe significantly faster, and (b) surface or bulk reaction
A recording of the setup and manifold dynamics using kinetics of the sensitive material. A nonlinear diffusien

sensors with very fast response times, e.g., sensors coatedeaction model for thick-film metal-oxide sensors has been
with very thin sensitive layer®,is, therefore, recommend-

able.

proposed by Gardné?,and similar models have been used
by other author$* 77 The sensors included, in most cases,
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Taguchi-type thick-film sensors, and it was found that the A D
response time is predominantly diffusion-limited (porous
thick-film layer) and not reaction-limiteé.
In many publications, polymer-based sensors are used, for B C
which no reactions occur, so that bulk dissolution processes,
i.e., analyte molecule diffusion into and out of the sensitive-
material matrix, determine the transient characterigti¢ss°
Mass-sensitive devices, such as thickness-shear-mode resdrigure 6. Sketch of the multipurpose sensor structure: temperature
nators, have been used by several authors to identify, e.g.petween pads A and B or C and D, conductivity between pads A,
the aromas of alcohof8,a variety of organic volatiled. 7 B and C, D, and amperometric working electrode with all pads

: ; (A—D) short-circuited against an additional reference electrode.
or wine aroma _compoundé.The polymeric layers are Reprinted with permission from ref 82. Copyright 1998 Elsevier.
usually <1 um thick.

The temporal or transient characteristics of sensor re- interdigitated structure for conductivity measurements results,
sponses upon different analytes can also be induced by

: . . - - “as has been shown for various potassium nitrate concentra-
applying modulation techniques similar to the ones described ;s “p\ short-circuiting all four pads (AD), the resulting
in the preceding section on parameter variation: the eXpoSUreyq e can be used for amperometric measurements against
interval of the sensors 10 the analytes can be varied byan additional reference electrode in a two-electrode setup,
actuating valves and by switching between analyte-loaded g ¢ heen demonstrated for different hydrogen peroxide
and pure carrier gas as displayed in Figuré She sensor ., cohiations. The heating can be performed by applying
signals in Figure 5 are given in Hertz, since on-chip a voltage between A and B, or C and D, and by using one

ferléchtjreor?(I:cs dgﬂgg[t A:[heolr?g‘%%g?gﬁ%?ﬁ_gﬁ;gg (Zﬁ? the of the meanders or both as resistive heaters. One meander
q Y : A poly(ep y can be used as a temperature sensor. Finally, by supplying

thickness) capacitive sensor has been used in these experiy ., ent g all four pads (AD) against an additional counter
ments, since measurements can be made very rapidly with

) ; lectr th nvironment can lectrolyz n
this transducer (no extended gate time needed as for resonarﬁ]eC ode, the aqueous environment can be electrolyzed and

. . ; ; . the local pH can be either increased or decreased (production
sensors), and since the dynamic sensor signal neither relieg, g or hydroxide ions), as has been demonstrated by
8Rar?geg§n(%%%/ duegtfﬁgspg|l§$n§2?|¥,t§['?§lfﬁﬁgeﬁgggug;vé%’. a coulometric titration of an aqueous acetic acid solution.
companying effects such as analyte-induced film plasticiza- In another approach, multifunctional modules have been

tion (acoustic-wave-based devices). Methanol and ethanolrealized on the basis of an array of ion-sensitive field-effect
. . 86 g i
exposure steps of varying duration (from 160 s exposure ansistors (ISFETS}™# A schematic is shown in Figure

: : - 78 The setup is arranged around a flow-through cell hosting
duration downd 1 s exposure duration) were applied to the o : " .
sensor. By applying long exposure intervals, all analytes a so-called “hybrid module” (2 ISFETs, 1 Pt-wire counter

reach absorption equilibrium and maximum signal amplitude, €'€ctrode, and 1 gold generator electrode), and an Ag/AgCI
whereas for short intervals, this holds true only for fast- reference electrode, all connected to external measurement

e i t. The ISFET sensors are either pH-ISFETs with
diffusing analytes. The sensor responses to methanol showF94/PMen X X
in Figure 5 reach saturation and sorption equilibria, even sensitive TaDs films (55-58 mV/pH-unit) or enzyme-

for relatively short exposure duration. For ethanol, which is {nodifiedt ISFETS (penicglirtljase ;?fsorb?_dlonzmg). The of
a larger molecule with a smaller diffusion constant, the sensortﬁmtr\’/\?ra};é%_:_s meas?rg té’.ﬁa : tefe”k'f'i measturin;len 0
signals do not reach equilibrium for medium or short "€ WO S Operated at ditterent working points. A fow-

exposure durations; as a result, the amplitude of the ethanolvoerlOglg:trg%aesl:gegggfrggﬁebrﬁigﬁeal'éﬁgr?t/e“.sc'::%th;hgenera’
response begins to decrease much earlier in comparison td ooty and b ni thy g ! ; t'( )
methanol. In conclusion, variations in the exposure interval €/€Ctrolysis) and by measuring the ion concentration down-

can be used to facilitate the discrimination of analytes that stream upon their arrival at one of the ISFETSs (pH-ISFET).
belong to even the same homologous sefles. By placing the ion generator electrode between two ISFETS,

Additionally, modulation techniques to produce transients the flow direction and flow velocity can be determined. If

and to reveal the temporal sensor signal characteristics cang}e Zﬂgﬁg dlsi'or:g gx;npf? gr:]htrﬁgggrggfaigiueﬁéé?ﬁ)géﬁgaoge
be combined with any other parameter modulation in the 9 > away ne g .
measured, and diffusion coefficients can be determined. An

preceding section, such as temperature modulations or theextended version including two of the “hybrid chips” in series
use of a catalyst. h . ;
as been detailed by the same authors, and, in the same paper,

2.3. Extracting Information in Different Domains ghe‘%scﬂfbee(;’;‘ an ISFET as a liquid-level sensor has been

In this last subsection on arrays of identical transducers, The multiparameter detection systems as described above
we will detail examples on how to extract, e.g., physical have been used to detect, besides the physical parameters
sensor data such as temperature or magnitude of flow from(temperature, flow, and diffusion), potassium ion concentra-
chemical sensors in addition to the chemical information they tions (limit of detection (LOD)= 5 uM) via valinomycin-
provide. A very simple multipurpose sensor/actuator structure containing poly(vinyl chloride) (PVC) membranes on the
offering three sensor operation modes (temperature, con-Ta,0s gate$®and pH changes, since also the penicillin sensor
ductivity, and amperometric measurements) and two actuator(LOD = 5 uM) detected the concentration ofHons
operation modes (local heating and pH gradient control) was resulting from an enzymatic penicillin hydroly$i&.26 Ex-
proposed by Langereis et@&land is displayed in Figure 6.  amples for other enzyme-based ISFETSs are given by the same

The temperature can be measured along two differentauthors’” An open question that remains is, whether or not
resistive paths between pads A and B or between C and D.the concept of using chemosensors with their well-known
By short-circuiting A and B as well as C and D, an drift- and stability problems for measuring physical param-
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Figure 7. Schematic of a multiparameter detection system with a hybrid module in a flow-through setup: PCB, printed circuit board; GE,
generator electrode; CE, counter electrode; ISFET, ion-sensitive field-effect transistor; PenFET, penecillinase-modified ISFET; R&, referenc
electrode; PC, personal computer. Redrawn with permission from ref 86. Copyright 2003 Elsevier.

eters (temperature, flow, and liquid level) will prove itself @)
in the long run, in particular, since rather simple fully
integrated temperature/flow units are commercially available. _ 7 10
As will be seen later in this review, the co-integration of c
temperature sensors has been realized with the aim to —_ 10k k- CO [ppm]
enhance the reliability of the chemical sensor sig#&is. 3 : 1°°200
w
n
3. Arrays and Systems Comprising Different o
Transducers | Pt-doped SnO, at 50% r.h.
L | 1 | L 1 L | \ | '
In this section, different monolithic and discrete sensor R 0 120 240 360 480 600 720
arrays making use of more than one transduction principle
will be detailed. The information gained from the different (b)
transducers should be as orthogonal or complementary as 406
possible (see discussion in section 6.2), i.e., different analyte- 6' 7 10
induced changes in the properties of the coating materials, = 15 0
such as resistivity and work function changes, or different 8 404 CO [ppm] 60
properties of the analyte molecules themselves, such as g 100
dielectric coefficients and mass, should be exploited. The = 200
application of different transduction principles for monitoring 402 - . . . .

changes in the same or in highly correlated physical
properties upon analyte dosage will not provide significantly
more information than applying only one transducer. In this time [min]
section, several multisensor arrays will be presented, which

include discrete transducers and fully integrated complex Figure 8. Simultaneously recorded sensor temperature and resis-

; ; ; tance traces upon dosage of CO at concentrations between 7 and
microsystems. We have categorized the different system5200 ppm to a Pt-doped tin oxide sensor at 50% relative humidity.

with regard_ to t.he thermodynamic pha?'e (gas and quuid)_ they Reprinted with permission from ref 91. Copyright 1999 Elsevier.
are operating in and then subcategorized them according to

the types of sensitive materials.

0 120 240 360 480 600 720

calorimetric signals (temperature decrease) upon surface
. reaction with Pt- or Pd-doped tin oxide, though the oxidation
3.1. Metal- and Metal-Oxide-Based Gas Sensors reaction and formation of CQs generally exothermig’%0-91

In the case of metal-oxide-based sensors, several ap-Exemplary resistance changes (resistance decreases) and
proaches have been made to extract more than only resissimultaneously recorded temperature changes (temperature
tance/conductance or impedance values. A rather obviousdecreases) are displayed in Figur¥ he thermal signature
possibility is to monitor gas-reaction-induced temperature can also be recorded for temperature-controlled microhotplate
changes on the heated stage of the metal-oxide-coated sensaflevices by monitoring the changes in the heating power (or
The reaction of, e.g., CO, methane, or alcohols at heatedin the source-gate voltage in the case of using a heating
metal-oxide surfaces featuring catalytic metals such as Pdtransistot?) for maintaining a preset temperature.
or Pt leads to changes in the heat budget, which either The recording of work function data and catalytic activity
increase or decrease the temperature of the heated strucn addition to the metal-oxide resistance has been reported
ture89-°1 on by several authof8. % A setup schematic for such

To explain the occurring temperature effects, all processesmeasurements is shown in Figure 9 for the example of tin
involved in the gas interaction process and contributing to oxide?* It includes a two-electrode resistance arrangement
heat budget changes have to be considered: adsorption(Taguchi-type sensor), a Kelvin probe for the work function
dissociation, surface reaction, and desorption of the products.measurements (Kelvin probe relies on the displacement of
The particular thermal gas signature is dependent on theseone of the two surfaces in a periodic oscillation so that a
different contributions. CO was found to provide negative sinusoidal current is produced, which is proportional to the
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co co, :ta:tiazji){;jc—»p by the simultaneous use of mass-sensitive thickness-sh_ear-
<02 mode resonators, a Kelvin probe to measure work function
o, A ( pevr (3 changes, and UV/vis spectrophotometrical methods to moni-
tor optical absorption characteristitdsMethanol transients
have been investigated, and it has been found that analyte
sorption is the driving force of the interactiéh.The
simultaneous use of two different transduction mechanisms,
work N& chemomechanical transduction by thickness-shear-mode
function | 9 resonators and chemoelectric transduction in conductometric
> ADIAD, _I_ measurements (resistance measurement ovenab@ide
= gap on one of the faces of the quartz crystal) has been shown

)

conductivity
—GIG,

O
L

- ; ; 99 i
Figure 9. Setup schematic for measurements of conductance for polypyrrole films:® Frequency decreases and resistance

change in work function, and catalytic activity of tin-oxide-based mcreasesgupon analyte sorption (various alcohols) have been
sensors. The catalytic activity is assessed by measuring theobserved? An array of eight solid-state field-effect-transis-

concentration of the formed G@ia spectroscopy or electrochemi-  tor-based sensors for simultaneous potentiometric and im-
cal sensors. Reprinted with permission from ref 94. Copyright 1990 pedance sensing in the gas phase using the conducting
Elsevier. polymer polyaniline has been studied by Polk et®&lThe
) _ sensor platform consisted of two different chips, a chemical-
work fUﬂCthln difference between the -tWO SurfaceS), and Sensing Ch|p (CSC), and an electronic service Ch|p (ESC),
spectroscopic methods or electrochemical sensors to, e.g.with the latter intended to be flip-chip bonded to the center
detect the concentration of G@rmed through the catalytic  area of the sensor chip. Two different measurands, the work
reaction of CO at the tin-oxide-sensor surface. function and the impedance or resistance changes upon
Since the setup and experimental efforts are quite sub-exposure of the polyaniline gate material to ammonia, have
stantial, this combination of methods has been used prevail-been simultaneously recorded, as is displayed in Figure 10.

mglyh to reve?l details 0{9 surfaccj:e reactions an% SENSOT  More recently, arrays of discrete chemical sensors relying
mechanisms for, e.g., CB.Conductivity or impedance . oical fibers (silica optical fiber, 1310 nm wavelength)
measurements provide information on band bending effect.sand thickness-shear-mode resonators (10 MHz, AT-cut,
and/or changes in the refative position of the Fermi level; quartz) with carbon-nanotube-based sensitive materials de-
the yvork function measurements addition.ally provide infor- posited using LangmuirBlodgett techniques have been
measurements simultancously.the different contributons to lSScE”'*"The authors find a signifcant mprovement in the

' identification of the organic vapors (alcohols, acetone,

the overall work function and resistance characteristics Cantoluene, and ethyl acetate) by combining the optical and

o o e Spaimass ensie sensr espondédSeveral ahors ave
- =P 9 combined capacitive and mass-sensitive sensors to detect

gg‘:fr:igbggsgr?dmr(ee gr(t)é dmoer:ht?nge\r/lgglogﬁpﬂ,b?gs Have sulfur dioxide®® or capacitive, mass-sensitive, and calori-
P y sever : . ._metric sensors (discrete devie¥s%® or integrated micro-
Because_of the large cross-sensitivity of the metal oxides system&.8819% to detect a wide range of organic volatiles.
to water, differently doped metal-oxide sensors have been 5, example of a polymer-based integrated microsystem in

combined with a commercially available humidity sensor to CMOS technology (complementary-metal-oxide-semicon-

éietld f.‘ fg‘;pr slys_terr} for n:_ore reliable ca_rblfn mq|r1cl))>|<ide ductor technology; standard fabrication technology for
etectiom” Simply implementing a commercially avaliableé - microelectronics) is shown in Figure 11.

humidity sensor, however, may not always be a good ) 8 . .
solution. Humidity sensors may not perform well over awide "€ Single-chip gas-detection system comprises three

dynamic range, and they may exhibit large cross-sensitivities POlymer-coated transducers (capacitive, mass-sensitive, and

to other analytes. calorimetric) that record changes upon analyte absorption.
In an example of a metal-based gas sensor approachThe absorption of the analyte in the polymeric coating alters

catalytic palladium nickel metal resistors (thin-film metal the physical properties of the polymer film, such as its mass

resistors) have been combined with catalytic metal-gate field- " VOlume, which is detected by the mass-sensitive cantilever;
effect transistors (FETS), FET-type heaters, and a temperaturdt €hanges the composite dielectric constant as detected by
diode in a single-chip integrated system for the detection of (€ capacitive transducer, or a certain amount of heat is
hydroger?®®’ The FET can detect hydrogen already at rather generated during the absorption process (heat of analyte
low concentrations (0.00841%), whereas the resistor is condensation or vaporization), which can be detected by the
aimed at measuring in the range of higher concentrations S€€Peck-effect-based calorimetric transducer (aluminum

(Up to 20%). The system can be utilized in a multitude of polysilicon thermopile). The three different transducers

sensing applications, and the respective calibration models€duire different operation conditions, the mass-sensitive and
have been presentég. the capacitive sensors rely on steady-state signals during

sorption equilibria, whereas the calorimetric sensor needs
3.2. Polymer-Based Gas Sensors sharp .concentration gradic_ents and a switching mechanigm,
since it only produces a signal upon sudden concentration

In analogy to the metal-oxide-based sensors above, dif-changes (no signal at equilibrium state). A strategy to deal
ferent transduction principles have also been used for organicwith these different operation requirements will be presented
materials, such as conducting polymers, to elucidate sensingn section 4.2. The polymer-coated cantilever responds to
mechanisms. The question whether charge transfer or sorpany analyte dosing with frequency decreases (increasing
tion characteristics drive the polymeanalyte interaction for ~ oscillating mass), and the calorimetric sensor shows two
the combination polypyrrole/methanol has been addressediransients per exposure, a positive one at the analyte
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Figure 11. Micrograph of the single-chip CMOS gas sensor
microsystem. The three different transducers (capacitive, mass-

082 T=90°C b sensitive, and calorimetric) and the additional temperature sensor
are marked. The driving and signal-conditioning circuitry of the
Ups =3V, Ip =100 pA ? . different sensors and the digital interface are integrated on chip.
L ar The total size of the chip is ¥ 7 mn?. Reprinted with permission
0.80 0 1200 2400 3600 from ref 107. Copyright 2006 American Chemical Society.
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Figure 10. (a) Schematic of the transducer setup to perform § 300 . | -
impedance and work function measurements. Work function and g 500 | ]
impedance response of one of the eight sensor modules coated with © oo | ; » —
polyaniline upon exposure to different concentrations of ammonia U uddduay =
(100 ppm to 1%) at 22C. The graph in (b) shows the potentio- 09 50 100 150 200

metric response (FET gate voltage changes), whereas the graph in_ N )

(c) shows the impedance response. Graphics kindly provided by Figure 12_. Sensor responses of capacitive sensors coated with a

Prof. Jiri Janata, GeorgiaTech, Atlanta, GA. 1.4um-thick poly(etherurethane) layer (PEUT) upon exposure to
various concentrations of ethanol and toluene. The analyte con-

. L centrations included 5662500 ppm, up and down. The dielectric
concentration onset (analyte condensation into the polymer e ticient of ethanol (24.3) is larger than that of PEUT (4.8), so

matrix) and a negative one upon switching off the analyte hat positive capacitance changes occur upon ethanol dosage, and
(vaporization of the analyte). The responses of the capacitivethe dielectric coefficient of toluene (2.36) is lower, producing
sensor can, in the case of thick polymer layerd @ um, negative signals.

larger than half the periodicity of the electrodes), be tuned

according to the ratio of the dielectric constants of analyte previously detailed and substantiated by simulati§hdt

and polymer. If the dielectric constant of the polymer is lower offers the possibility to pick polymers according to their
than that of the analyte, the capacitance will be increased,; if dielectric properties in order to differentiate selected analytes.
the polymer dielectric constant is larger than that of the Moreover, a blinding-out of selected analytes (same dielectric
analyte, the capacitance will be decreak¥&dhis effect is coefficient as that of the polymer) and the use of polymer
shown in Figure 12 for two analytes featuring a larger blends is possible. Another parameter that allows fine-tuning
(ethanol, 24.3) and smaller (toluene, 2.36) dielectric coef- is the layer thicknes¥? as the relative thickness of the
ficient than that of the sorptive polymer (4.8) and has been polymer layer with respect to the extension of the electric
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field lines is decisive for the observed capacitance changes, (a) Calorimeter
as will be shown in section 3.3.

All three transducer responses are simultaneously used to =0
characterize the analyte or analyte mixture. Methanol, e.qg.,
provides comparably low signals on mass-sensitive transduc- e 0t
ers because of its high saturation vapor pressure and low '
molecular mass. On the other hand, methanol has a dielectric
constant of 33 and provides rather high signal intensities on 1.0E-04

capacitors. Drastic changes in the thermovoltages on the
thermopiles are, e.g., measured upon exposure to chlorinated
hydrocarbons, which have a low dielectric constant and, thus, 5.0E-05 1
provide only low signal intensity on capacitors. The simul-
taneous probing and recording of changes in different
polymer properties upon gas exposure produces additional
dimensions in the feature space and provides more compre-
hensive and complementary information about the analyte  (b) cantilever
or the analyte mixture at hand. Since physisorption processes

of organic volatiles in polymers are strongly temperature- 0.0E+00
dependent, a temperature sensor has to be integrated in such

a system to enable reliable quantitative measurements. As a

rule of thumb, a temperature increase of XD decreases -3.0E-05
the fraction of analyte molecules absorbed into the polymer
by ~50%, which results in a drastic sensor signal reduction.
The temperature sensor in the microsystem exhibits an
accuracy of 0.1 K at operation temperatures betwed0

and 120°C. The sensor front-end circuitry that has been _9.0E-05 |
integrated on the chip includes all the sensor-specific driving

circuitry and signal-conditioning circuitry. The analog/digital

conversion is done on-chip as well. This leads to achieving -1.2E-04
a unigque signal-to-noise ratio, since noisy connections are EC PECH PEUT
avoided, and since a robust digital signal is generated on-
chip and then transmitted to off-chip un#s'1°

The sensor system has been used to demonstrate that the 4E-02
different transducers indeed provide complementary informa-
tion on the various organic volatiles and that this information
can be used for an analyte characterization according to the
respective physical propertié¥. The sensitivity values for
a set of analytes and polymers have been evaluated. These
sensitivity values have been normalized with regard to the
partition coefficients (divided by the partition coefficients)
so that all thermodynamic effects related to analyte absorp-
tion were accounted for and that the characteristics of the
different transducers should then become clearly visiile.
The partition coefficient is a dimensionless thermodynamic AE-02
equilibrium constant and is characteristic for a given volatile/ EC PECH PEUT
polymer combination; it is inversely proportional to the
saturation vapor pressure or proportional to the boiling at 30°C. Four different analytes{octane, toluene, propan-1-ol
temperature and vaporization enthapy. and trichloromethane) were é/etec(ted with three di'ffgreﬁt polym'ers

A selection of normalized sensitivity values is shown in (ethyl cellulose, EC; poly(epichlorohydrin), PECH; and poly-
Figure 13. The normalization of the sensitivity values with (etherurethane), PEUT). The analytes have been ordered with regard

respect to the partition coefficient allows the detection or Eo)tge deCiSiVehmfi'e(f?U'af Propt(?ftYffortlghe fleSPeCttive E{)%Sduceri
: o a) decreasing heat of vaporization for the calorimeter, ecreas-

trgnsdt:_ctlon protc_:t_ess_ to bﬁ. ﬁp“tthlmo tWOf parlfst (@) dthe ing molecular weight for the cantilever, and (c) decreasing analyte

absorption or parttioning, which IS the same 1or all transauc- giaectric coefficient for the capacitor Reprinted with permission

ers for a given polymer, and (b) the transducer-specific part, from ref 107. Copyright 2006 American Chemical Society.
which includes the measurand detected by the respective

transducer such as sorption heat (calorimetric), molecularvaporization heat of the respective analytes (propan-1-ol, 48.4
mass (mass-sensitive), and dielectric properties (capaci-kJ/mol; n-octane, 41.6 kJ/mol; toluene, 38.0 kJ/mol; and
tive).1%” For a selected set of analytes, the characteristic trichloromethane, 31.5 kJ/mol), the order in the cantilever
properties of which are sufficiently different, there should values is according to the analyte molecular mass (trichlo-
be a systematic order in the normalized sensitivity values romethane, 119.38 g/mat-octane, 114.23 g/mol; toluene,
with respect to the transducer-specific measurand. This is92.14 g/mol; and propan-1-ol, 60.10 g/mol), and the order
obviously the case and is clearly demonstrated in Figure 130of the capacitive values reflects the analyte dielectric
for any given polymer: The order in the normalized sensi- properties or dielectric coefficients (propan-1-ol, 20.45;
tivity values of the calorimeter approximately reflects the trichloromethane, 4.81; toluene, 2.38; amdctane, 1.95).
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3.E-02

Trichloromethane
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Figure 13. Bar graphs representingprmalized sensitity values
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Figure 14. System schematic of the modular sensor system (MOSES): independent sensor modules (mass-sensitive, calorimetric,
conductometric, temperature, and humidity) and gas intake and sampling units communicate via a digital bus with the overall system
controller. Several alternative gas intake units such as a headspace sampler or a purge-and-trap system can be chosen. The system can b
extended by additional modules. Redrawn with permission from ref 119. Copyright 1998 American Chemical Society.

The simultaneous recording from the different transducers and that a subset of 7 sensors (5 CHEMFETs and 2
causes a unigue response pattern for each volatile compoundconductometric sensors) or, after data preprocessing, even
Because of their fundamentally different transduction prin- of only 4 sensors (2 CHEMFETs and 2 conductometric
ciples, the sensors do (within experimental error) indeed sensors) showed the best discrimination performance. The
respond to the diverse physical properties of the analytes,authors concluded that the success in their application
such as the molecular weight, the dielectric constant, andcritically depended on the way of gathering the samples, the
the heat of vaporization, so that they provide orthogonal selection of sensors, and the data-preprocessing méthod.
information on a given analyte. To what extent the different Data-preprocessing strategies will be covered in detail in
responses are then also independent in the feature spacesection 7.

however, cannot be determined a priori (see also the Tnhe concept of a modular sensor system (MOSES)

respective discussion in section 6.2). _ . featuring an open architecture and the possibility to add new
Finally, combinations of the above-mentioned different sensor modules was introduced at the University dfifigen
transducers (mass-sensitive and optiéat® or calorimet-  in the late 1990819 A schematic of this system is displayed

rict%) coated with chiral receptors (e.g., cyclodextrins or in Figure 14.
amino-acid-derived compounds) dissolved in or bound to

polymers have been successfully used to discriminate enan- Arrays of different discrete transducers are located in the
tiomers respective sensor modules (mass-sensitive, electrochemical,

calorimetric, and conductometric modules), which, along

. . with temperature and humidity sensors and gas intake and

_3|_'3' Gdas SensgrSArra%S Rﬁ/lly'tng. OlnTD'ﬁerent sampling units, communicate via a digital bus with the
ransducer and ensitive-Material 1ypes overall system controller. The system can be extended by

Modular sensor systems including different types of additional modules or modified in any arbitrary way to
polymer-based transducers, metal-oxide-based transducergiccommodate the sensors and sampling units needed for a
noble-metal-gate field-effect transistors, and electrochemical SPecific applicatiort* According to the authors, the modu-
cells have been used as “electronic noses” by different groupslarity offers the best prospects to select sensors and features
to, e.g., qualitatively determine the quality of paper or from a potentially large variety and to optimize the mdmdu_al
packaging materiafs5116to identify odors and flavorsie117  sensors or components of the system. Moreover, it provides
or to assess food produdf§ Please note that a more detailed great flexibility in the feature selection for specific applica-

article on the concept and performances of “electronic noses”tions:  The information content of each feature can be
is included in this issug® analyzed with due regard to the application at hand, and the

Holmberg et al. used an array of 10 noble-metal-gate total number of features can then be optimized and reduced

CHEMFET devices (Pd, Ir, and Pt as gate metals) operategaccordingly (for more details about feature extraction issues,
between 150 and 1T, 4 metal-oxide base conductometric S€€ section 11 of this review).

sensors (Taguchi sensors), and an infrared-based carbon In most applications, a metal-oxide-based chemoresistor
dioxide sensor to differentiate various types of cardboard array (8 sensors), operated at temperatures between 200 and
papers’® An examination of the sensor correlation matrix 500°C, and a polymer-based 30 MHz thickness-shear-mode
revealed that many sensor responses were strongly correlatedesonator array (8 sensors), operated at room temperature,
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have been used. The polymer-based sensors are more stable
in the long term and show less drift in comparison to the
metal-oxide sensors. Moreover, metal-oxide-based and poly-
mer-based sensors show considerable differences in the
response time: the thickness-shear-mode resonators reach
equilibrium values 16-15 s after the dosing of the respective &2
analyte, whereas metal-oxide-based chemoresistors need af:,
least 66-90 s, with both transients being slowéf.While N
this feature could be used to advantage as described in sectiorgy
2.2, in most cases only the equilibrium signals or response &_’
maxima were evaluated. Principal-component analysis plots
of an application example are shown in Figure 15.
Principal-component analysis (PCA) is an orthogonal linear
transformation method that arranges the data in a new . .
coordinate system such that the greatest variance by any monanalC

projection of the data comes to lie on the first coordinate
(called the first principal component), the second greatest

1-pentanal

1-hexanal

1-heptanal

1-octanal

ratio PC1: PC2=1.221 PC1:71.4%

variance comes to lie on the second coordinate, and so

on1%-12 The new coordinates are orthogonal to each other. MOX &'.

PCA can be used for dimensionality reduction in a data set

by retaining those characteristics of the data set that (b) v
contribute most to its variancé:!? 1-octanal

Figure 15 shows the results of investigations on an
artificially rancidized vegetable oil. To have reproducible
and defined sample composition, a vegetable oil was
contaminated with 100 ppm of different aldehydes (pentan-
1-al, hexan-1-al, heptan-1-al, octan-1-al, and nonan-1-al),
since aldehydes have been identified as the key components
causing rancid taste and smell of degraded edible oils. Figure
15 shows three principal-component analysis (PCA) plots
for only the set of metal-oxide-based sensors (MOX), for \
only the set of thickness-shear-mode resonators (TSMRS), 1-pentanal
and for a combination of both sets. The added different . . _ . o
aldehydes are indicated; “blank” means that the oil is in its ratio PC1: PC2=1.265 PC1:78.2%
original state and has not been manipulated. The metal-oxide-
based sensors provide a discrimination of most oils according | TSMR + MOX

1-heptanal

RN Q™
L[]

]

\5 1-hexanal

PC2:17.7%

1-nonanat

to the added aldehydes, but the noncontaminated oil and the N 1 octanal
nonan-1-al-contaminated oil cannot be differentiated. The (c) . ocana
polymer-based TSMRs cannot really discriminate the short- - o )t-heptanal

[

chain (C5-C7) aldehydes. However, the use of both arrays g %
simultaneously leads to a clear separation and relatively small i (%, 1-hexanal

scattering within the different clustet¥. o "X\ 1-pentanal .
Other examples investigated with the same array config- o .
uration, and with an additional electrochemical module in % 1-nonanal

selected cases, include textile matertdlspdors of plastic
materials, coffees, olive oils, whiskey, and tobacco samifles.

In all cases detailed above, and in many other cases, the data
analysis of sensor-array or “electronic-nose” data is limited
to the drawing of PCA plots, which might be sufficient for blank
easy problems or problems with a small data set, where the ratio PC1 : PC2 = 1. PC1 : 70.4%

advantage of using a multitransducer array is rather large _. o : .

- - Figure 15. Principal-component-analysis (PCA) plots showing the
and obv_|ous. .PCA plots are not very representaﬂve_ for firgt two principa?compo%ents, PClyand(PCZ.) pDiscriminatign of
higher-dimensional measurement or feature spaces, simplyyomologous aldehydes (100 ppm) added to a vegetable oil matrix
because all the data are projected onto a two-dimensionalysing (a) eight polymer-based thickness-shear-mode resonators
plane irrespective of the original dimensionality. Thus, (TSMR), (b) eight metal-oxide-based sensors (MOX), or (c) a
multitransducer arrays may also be beneficial even if this is combination of both arrays. The PCA plot of the MOX sensors (b)
not immediately apparent from the respective PCA plots. The shows an overlap of the clusters of nonan-1-al contamination and

. L A the pure oil. In the case of the TSMRs (a), the clusters of the low-
important criterion is that a quantitative indicator of the array m olgcular-weight aldehydes (peman_lﬁa} to heptan-1-al) overlap.

performance, such as the test set error for some classifiers gy by using both arrays simultaneously, all different contaminated
is lowered!!® Feature selection and the selection of good or oils and the pure oil can be discriminated. Reprinted with permission
optimized sensor subsets for a given application, in this case,from ref 117. Copyright 2000 Elsevier.

the analysis of cured meat products (salami, ham, corned

beef, salmon, roast beef, and different packaging materials),polymer-based sensors, 8 metal-oxide-based sensors, and 4
has been performed using an extended MOSES array (7electrochemical cells):® The findings of the authors include
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Figure 16. Monolithic multitransducer system including four polymer-based sensors relying on two capacitive and two gravimetric transducers,
two metal-oxide-based conductometric sensors on temperature-controlled microhotplates (temperature modulation possible), the respective
driving and signal processing electronics, and a digital communication interface. Reprinted with permission from ref 122. Copyright 2007
Elsevier.

that (i) subsets of selected sensors perform better than thebackground of changing humidity or alcohol content. For
whole array in most of the applications (test set error lowered this scenario, the microhotplates and the capacitive sensor,
by ~25%), (ii) selected sensors from different classes which acts in this case as a humidity or alcohol sensor, have
(different transducer types) show significantly better perfor- been used??
mance than sensors selected only from a single class, and The microhotplates can be covered with any metal oxide
(iii) subsets that outperform the whole array may be as smalland can be temperature-modulated using any arbitrary
as only two different sensors, such as one TSMR and onewaveform. The magnetically actuated cantilevers (Lorentz
electrochemical cefi!® Several modular multitransducer force'?® can be used to monitor organic volatiles or
systems based on discrete sensors are commercially availableterferents. Because of its high dielectric coefficient, humid-
(see, e.g., refs 120 and 121). More details on feature selectiority will have a major impact on any organic-volatile
can be found in section 11.2. measurement of the capacitor. However, there is a possibility
A monolithically integrated multitransducer array in to measure organic volatiles with capacitive transducers even
CMOS technology for the detection of organic and inorganic on a background of humidity or changing relative humidity.
gases has been recently preseftéd@he system comprises This method relies on the use of two differently thick
two polymer-based sensor arrays based on capacitive angolymer coatings on two identical capacitor structures and
gravimetric transducers (magnetically actuated cantilé4®rs  has been detailed previous8?The signal difference of two
a temperature sensor, a metal-oxide sensor array located omapacitors with different layer thicknesses in the range of
microhotplates (thermal time constan0 ms with metal- 0.8—4 um is almost insensitive to water but retains sensitivity
oxide coating), the respective driving and signal processing to low-dielectric-constant analytes like toluenensoctane.
electronics, and a digital communication interface (Figure Such differential or ratiometric methods have also been used,
16). The chip has been fabricated in industrialh8 CMOS e.g., for conducting polymefd%127 and constitute a very
technology with subsequent post-CMOS micromachining. useful approach in dealing with interferents, cross-sensitivi-
The system has been developed in the framework of aties, or low signal levels. It is very often more effective to
“toolbox strategy” relying on microelectronics standard purposefully select or deselect sensors or to use signal ratios
technology (CMOS), which was identified as the most or differential values instead of increasing the array size or
promising platform technology to achieve major progiés's® the transducer diversity. In summary, this system offers great
The toolbox strategy was chosen as a consequence of thdlexibility and can be used for various applications. The
fact that the sensor market is strongly fragmented and thatrespective system configuration can be selected, and all
there exist a large variety of applications with different parameters (sensor selection, differential or single sensor
specifications and sensor requirements. The components okignal measurement, and temperature modulation of the
the toolbox, such as transducers, sensor modules, and circuihotplates) can be varied and set by means of standard
modules, can be developed one by one. Thereafter, specificsoftware on a computer communicating with the digital
components that meet the respective applications needs caontrol circuitry on the chip??
be selected and assembled into a customized system. At the end of this section on multitransducer systems and
The simultaneous detection of organic and inorganic target “electronic noses”, it is noteworthy that a shortcoming of
analytes with the single-chip multitransducer system has beenmany multisensor-array or electronic-nose papers, besides
demonstrated in ref 122. Different organic volatiles have been the predominant use of PCA score plots, is that the qualitative
discriminated according to their dielectric properties and sensor results are not scientifically explained or substantiated
molecular mass in analogy to the results presented in theby a thorough chemical gas-phase or headspace composition
context of Figures 12 and 13 in the preceding section. analysis, so that it is not clear, which compounds or which
Another application possibility concerns the detection of chemical effects lead to a discrimination of the different
carbon monoxide (CO) or other inorganic gases on a samples. A more detailed analysis of the contributions of
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the different sensors, and of the underlying surface reactions (a) u o AR R

and physicochemistry of the different types of sensors, would s, il IR o i

be desirable. Varying humidity or alcohol content, e.g., may , — 1 ,
be more effective in changing the sensor array response to A /‘
different food, perfume, or wine samples than the presence :"";"r::; ‘i';"’

of aroma or odor components at very low concentration - Flow e Optical fibers
levels, which still are perceivable in human olfaction, but « Temperature * UV-absorption
which are no more detectable using chemical sensors. + Conductivity I RS

Moreover, sample-to-sample variability, sample deterioration,
and the strong influence of the sample preparation and "
sampling procedure on the sensor results, in particular for ®  pt themistor
natural products, are often underestimated, and the corre- _—
sponding information is missing in many papers. Information J il = e

. ? piezoresistive s T S
on sampling methods and how these influence sensor array pressure - _E L

results can be found in dedicated papé#d?® transducer
There are also a number of multitransducer sensor systems,

besides the already mentioned MOSES Il sytéhtom-

mercially available, such as the GDA 2 (electrochemical

cells, metal-oxide sensors, ion-mobility spectrometer, and Pt conductivity

photoionization detector) from Airsense Analytiés,the electrodes

FOX 4000 (metal-oxide sensors and polymer-based sen- i

sors: thickness-shear-mode resonators, conducting polymers) 3

and the RQ Box from Alpha M.0.5?the Hazmatcad Plus

(surface-acoustic-wave devices and electrochemical cells) and

the CW Sentry 3G (surface-acoustic-wave devices and

electrochemical sensor array) from Microsensor Systéns,

or microanalytics-based systems from RAE Systéihs.

thermal fluid
flow sensor

Figure 17. (a) Schematic of the microanalysis system including a
P } : multisensor chip, a micromachined flow-through cell, and optical
3.4. quUId Phase Chemo- and Biosensors fiber interfaces. (b) Micrographs of the different single sensors,
A liquid-phase chemical microanalysis system aimed at the temperature sensor, the pressure sensor, the conductivity
applications in liquid-phase chromatography has been de-electr_od_es, and the thermoele_ctric flow sensor. Reprinted with
veloped by Norlin et at*® The system includes a multisensor ~Permission from ref 135. Copyright 1998 Elsevier.
chip, a micromachined flow-through cell, and optical fiber . . _
interfaces to monitor pressure, flow rate, temperature, A Similar array of sensors including three temperature
conductivity, UV-absorption, and fluorescence. A schematic S€NSOrs (microelectronic propon|onal—to-abso_lgte—temperature
of the microanalysis system is shown in Figure 1¥fa. sensors), three pressure sensors (thin-silicon-membrane
The multisensor chip hosts integrated sensors for pressuregauge-type sensors with piezoresistive readout), two ISFETs
temperature, fluid flow, and conductivity; a flow-cell chip (silicon nitride and silicon oxide ISFET with Pt counter-
(silicon) defines the measurement chamber or liquid volume €lectrode to monitor pH), and some basic circuitry (multi-
(5 uL) and features ports for the optical fibers to monitor plexer, differential measurement ele_ctronlcs for chemical
structures is shown in Figure 17%.The substrate of the ~ Was realized on a CMOS Ch'% and is intended to be part of
sensor chip is quartz. The temperature sensor is a simple P drug delivery microsysteA®® The ISFET sensors were
thermoresistor. The pressure sensor consists of a closed cavit%‘te'f‘ded to control the pH value of the liquid to be delivered.
under a polysilicon membrane; the pressure-induced strainBesides test results of the pressure and temperature sen-
in the membrane is measured with piezoresistors (dopedSOrs. the sensitivities of the ISFET sensors were deter-
polysilicon). For conductivity measurements, planar Pt mined to be 26-30 mV/pH for the silicon-oxide ISFET and

electrodes (size: 50@m x 1000um; 400um gap) are used. 92 MV/pH for the silicon-nitride ISFET. A nonlinearity in
The principle of the fluid-flow sensor is to locally heat the the differential signal of both ISFETs was assessed to be
fluid with a heating resistor (polysilicon) and to measure the due to the nonlinearity in the silicon-oxide ISFE®.
temperature difference between two points up- and down- A Multisensor array of discrete ISFETS, light-addressable
stream from the heater using aluminum/polysilicon thermo- Potentiometric sensors (LAPB;silicon with SiG and TaOs

piles (thermoelectric or Seebeck effect). Two laterally ©n top), and miniaturized ion-selective electrodes (ISE,
connected optical fibers enable UV light to be introduced P-silicon, SiG, and metal electrode: 15 nm Ti, 30 nm Pt,
into and collected from the liquid volume (path length9 and 250 nm Au) with a chalcogenide glass material
mm). The fluorescence measurements are performed by usindCdSAgIASS;) as the sensitive layer (26@.300 nm thick-

a bundle of seven optical fibers connected laterally to the ness) to detect heavy metal ions in agueous solution was
chamber or from below. The excitation light from a laser presented by Kloock et aF’ The sensitive material was
diode (wavelengtt= 630 nm) is guided through the central deposited on the transducer structures by means of pulsed
fiber, and the six outer fibers transmit the fluorescent signal laser deposition, and the three different transducers were then
back to a photodetector. Initial results for the pressure sensorcompared in their sensitivity to €dions. The sensitivities

the thermistor, and the flow sensor have been shown as wellof all three potentiometric transducers are in the range of
as conductivity measurements for NaCl solutions with 22—25 mV per decade Cd, and the lower detection limit
concentrations between 0.001 and 1 mol/L and UV absorp- varied between 6x 1077 and 5.7 x 10~7 mol/L.**” The

tion signals for relative acetone contents between 0.1 anddifferent transducers may, according to the authors, be
1%135 combined in a future handheld “electronic-tongue” system.
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potentiostatic  conductometric circuitry necessary to perform a four-point conductometric

o P s kit Ekver measurement on-chip. In addition, the chip exhibits a
temperature-control unit to keep the system temperature at
a preset value (physiological conditions). This tempera-
ture-control unit includes a temperature sensor and a tran-
sistor heater. A single-bit EPROM (electrically program-
mable read-only memory) was implemented on-chip to make
sure that the chip is used only once and then is disposed of,
which is a crucial feature for medical applicatiofd%First
tests including amperometric oxygen measurements, the
assessment of potassium concentrations with ISFETs (by
directly connecting the ISFET buffer to a plotter), and
conductometric measurements with a buffer solution have
been performeéf®
Figure 18. Micrograph of the CMOS multiparameter biochemical  Disposable electrochemical multisensor systems for fast
sensor chip, which includes 6 ISFETSH@), an (amperometric)  blood analysis are marketed by, e.g., companies like Abbott
oxygen sensor (7), and a conductometric sensor (8a,b). The on-(formerly I-STAT) 4! Sodium, potassium, chloride, calcium,
chip circuitry includes an EPROM, a multiplexer and counter, a pH, and carbon dioxide are measured by ion-selective-
driver unit, a conductometric and potentiostatic circuit, and a heater. electrode potentiometry. Concentrations are calculated from
Reprinted with permission from ref 138. Copyright 2001 IEEE. the measured potential through the Nernst equation. Urea is
first hydrolyzed to ammonium ions in a reaction catalyzed
by the enzyme urease. The ammonium ions are also
) : e . S monitored by means of an ion-selective electrode. Glucose
mfor_ma_tlon. Slgn_lflcant differences exist in the transducer is measured amperometrically. Oxidation of glucose, cata-
fabr|c§1t|0n a’?d S|gr_1al readout complexw. _ lyzed by the enzyme glucose oxidase, produces hydrogen

A biochemical microsensor system aimed at continuous peroxide. The liberated hydrogen peroxide is oxidized at an
monitoring of ions, dissolved gases, and biomolecules in gjecirode to produce an electric current, the intensity of which
liquid phase, such as blood, has been presented recentlyg hronortional to the glucose concentration. Oxygen is also
(Figure 18)*and is based on an earlier design by Gumbrecht e aqred amperometrically. The oxygen sensor is similar
et al}*%%°The eight integrated chemical sensors comprise 4 5 conventional Clark-electrode. Oxygen permeates through
si.x ion-sensitive field-effect transistqrs (I_SFE?»':sl—G in a gas-permeable membrane from the blood sample into an
Figure 18), one oxygen sensor (7 in Figure 18) and onejnernga| electrolyte solution, where it is reduced at the
conductometric sensor (8a and 8b in Figure 18), all of which cahode. The oxygen reduction current is proportional to the
can be operated in paralféf An Ag/AgCl reference gisqolved oxygen concentration. Hematocrit is determined
electrode is also integrated on the CMOS chip to obviate qnqyctometrically. The measured conductivity, after cor-

the need for external references. The eight sensors cangciion for electroiyte concentration, is related to the hema-
continuously monitor ions, dissolved gases, and biomolecules; it

via enzymatic reactions that produce charged particles. A
flow channel (polyimide) restricts the liquid-phase access 3.5. Cell-Based Biosensors
to the sensor area.

The six ISFETSs allow for direct contact of the electrolyte ~ Whole living cells can be used to sensitively detect the
with the gate oxide. Either the gate oxide itself is pH- Ppresence of certain chemicals in their environnié¢ht* The
sensitive or the ISFET can be used asSmeringhaus™ cell reacts upon exposure to a chemical in a cell-specific
type pH-FET to measure dissolved carbon dioxide (detection response, which can include changes in the cell electrical-
of carbon dioxide via dissolution in water, formation of activity pattern in the case of electroactive cells (neuronal
“carbonic acid”, and monitoring of the pH change). The gate Cells and heart cells). The cellular responses can be monitored
oxide can also be covered with different ion-selective by a suitable set of different sensors, with the cell itself acting
membranes to achieve sensitivity to a range of target ions,as a transducer and constituting a very sensitive and selective
such as potassium. All six ISFETs or only a subset can be recognition system for different chemicals. It has to be noted
used. The idea was to make a standard chip to reducethat the cellular environment of living cells in in vitro
manufacturing costs and to then modify the chip with Situations differs considerably from their native environment
selective coatings according to user needs. The integratedn Vivo.
amperometric sensor can be used aSlark-type oxygen An example of a multiparameter sensor chip to monitor
sensor, which is based on a two-step reduction of gaseoughe cell-culture temperature, the cell-metabolism products,
oxygen in aqueous solution via hydrogen peroxide to the cell electrical activity, and the cell adhesion to the sensor
hydroxyl ions. The conductometric sensor consists of two surface has been developed by a group at the University of
parallel sensors (8a), which share one common electrodeRostock}49-1512The aim was to develop a sensor system that
(8b). A sinusoidal ac potential is applied to the electrodes, allows for the measurement of chemical or metabolic
and the current, which depends on the solution composition parameters as well as electrical signals with the same sensor
(concentration of charged particles or ions), is recorded. Thechip.
full system has been produced in a k& single-metal, The developed system, the concept of which is illustrated
single-poly CMOS process, and the chip size is 4x16.25 in Figure 19a, provides online monitoring of cellular reac-
mn?.1%8 The chip, operated at 5 V, hosts all driving cir- tions under well-controlled experimental conditions. The
cuitry of the sensors such as ISFET buffer amplifiers, a system includes cell-potential field-effect transistors (CPFET,
potentiostatic setup for the amperometric sensor, and thesensitive gate areas of>6 1 um?) and palladium electrodes

. =y

EPROM ISFETs multiplexer and counter

The benefit of using different transducers, however, is not
obvious, since all three transducers provide very similar
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Figure 19. (a) Cell monitoring system concept: thermoregulated cell culture chamber with fluid handling system and different microsensors
(ISFET, ion-selective field-effect transistor; ENFET, enzyme FET; ISE, ion-selective electrode; CPFET, cell potential FET; TD, temperature
diode; CCD, charge-coupled device; SPR, surface plasmon resonance). Reprinted with permission from ref 142. Copyright 1999 Elsevier.
(b) Extracellular recordings from one of the chip electroded( superimposed neuronal action potentials). Reprinted with permission
from ref 149. Copyright 2002 University of Prague. (c) Extracellular acidification measurements in a neuronal network on a silicon chip
as performed with ISFETSs in a flow-through system. The acidification was measured during the time when the pump was off. When the
pump was on, the medium was completely replaced with fresh medium. Output signal of four ISFETs on one sensor chip (ISFETs 1 and
2 with Ups = 0.2 V and ISFETs 3 and 4 witbps = 0.4 V ; Ips was 10 mA). The pump cycle was 5 min “pump on” and 10 min “pump

off”. During the pump-off period, the pH of the medium decreased significantly due to the acidification through the presence of the cells.
In the pump-on period, fresh medium is pumped through the chamber. Reprinted with permission from ref 142. Copyright 1999 Elsevier.

(10 um diameter) to measure the electrical cell activity as 4. Operational Considerations for Higher-Order
shown in Figure 19B%° a sensor to monitor the temperature Devices

of the cell culture, and ion-sensitive field effect transistors

(ISFETS) to monitor the pH in the cellular microenvironment, 4,1, Setup and Manifold Considerations

recordings of which are shown in Figure 1'9¢€The ISFETs

allow for monitoring local acidification and respiration in An often underestimated issue concerns the gas test setup
in vitro cell networks. The interdigitated electrodes are used and manifold for sensor measurements. The manifold for,
to measure the cell adhesion by means of impedancee.g., any type of gas sensors relying on fast steep concentra-
measuremente15aThe quality of the contact between the tion gradients and interval analyte dosing (thermopile sen-
electrically active cells and the transducers is of pivotal sors), or for performing dynamic measurements and applying
importance for applications in basic and biomedical research. modulation techniques, has to be carefully designed, so that
According to the authors, impedimetric measurements usingthe dynamics of the transient sensor signal reflect the sensor-
interdigitated electrode structures have been found to providespecific analyte diffusion and reaction characteristics rather
information on the cell density and number, the cell adhesion, than the gas flow dynamics of the setup and the measurement
and the cellular morphology, since an ac current betweenchamber. This means that all gas switching processes must
the electrodes is influenced by the presence and structurabe fast in comparison to the analyte-specific diffusion and
properties of living cells growing on these electrode struc- reaction dynamics. To this end, a manifold and flow setup
tures. More details on how different chemicals trigger cellular as shown in Figure 20 can be used. The most important
responses of prevailingly electrogenic cells can be found in features include a crossover flow architecture by use of a
the literaturegi#?-148.152 fast crossover 4-way valve, matched flow resistances of the
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Figure 20. Schematic of the gas manifold as designed for fast sensor signal
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two output gas lines of the 4-way valve, as well as a small

tubing volume between the valve and the sensor measure'Figure 21. Operation mode as developed for micromachined

ment chambef®’* multisensor chips: operation states of valves and corresponding
The crossover flow architecture implies that there are two gas concentrations in the chamber (line2}, timing of the signal
input gas lines, one supplying pure carrier gas and the otherrecording for the different transducers, and resulting sensor signals
supplying carrier gas with defined doses of the analyte, and (lines 3-6). For details, see text.
two output gas lines, one leading to the measurement
chamber and the other leading directly to the exhaust. This dynamics and, consequently, influences the preset concentra-
architecture offers the advantage that both input flows and tions. Therefore, the output line without measurement cham-
both output flows are continuously flowing, and that the ber has to be designed to exhibit a flow resistance as similar
buildup time of a certain analyte concentration does not as possible to that with the measurement chamber, and the
influence the dynamic sensor response. With the dosing linetwo output lines of the 4-way valve should feed into the same
being routed to the exhaust (sensors exposed to pure carrieexhaust line after the measurement chamber.
gas), the desired analyte concentration can be adjusted by The overall gas volume between the valve and the sensors
means of flow controllers. After sufficient time for concen- has to be minimized, taking into account the target overall
tration stabilization, the crossover valve switches the dosing gas flow. The time span between switching the valve and
line to the sensors (carrier gas to the exhaust), which thenthe moment, at which the gas reaches the sensor, should be
experience a sudden steep concentration gradient. Using thes short as possible. The overall flow rate also may influence
crossover architecture, it is, hence, possible to rapidly switch the dynamic sensor signals if it is rather low or may influence
between pure carrier gas and carrier gas containing a definedhe operating temperature of high-temperature sensors if very
concentration of a certain analyte. high. The optimum flow rate for a given flow setup has to
The valve must be very fast, e.g., a pneumatically driven be assessed in prestudies.
4-way crossover valve with a switching time &f0.5 s,
which is commercially availabl&.The 4-way crossover gas  4.2. Multitransducer Operation Example
switching functionality can also be obtained with a pair of
appropriately connected 3-way valves, wired in parallel so ~ Since multitransducer systems include different types of
that a single switch activates both valves simultaneoti8ly. transducers that require different operation regimes, such as
The fast switching of the valves may generate pressure waveghe recording of steady-state or transient signals, it is
in the direction of the measurement chamber but also necessary to apply dedicated operation protocols, which
backward in the direction of the supply lines and the flow- enable reliable qualitative and quantitative measurements and
controllers. The system is open on the measurement-chambeg@llow for the extraction of a maximum of information. An
side, and no effect on the sensor signal is usually observed example strategy will be described here that has been
On the side of the flow controllers, additional measures have developed for the polymer-based multitransducer unit de-
to be taken since pressure-wave-induced artifacts can oth-scribed in section 3.2 and that meets the operational
erwise be observed: flow controllers are very sensitive to requirements of the different transducers.
pressure transients occurring either at their inlet or their  The signal baseline is established by purging with filtered
outlet, so that an additional empty glass bubbler (large ambient air or clean air from the gas manifold. The operation
diameter and volume) has to be mounted in between the flow state of the valve and the resulting analyte concentration in
controller for the carrier gas in the dosing line to eliminate the measurement chamber is displayed in Figure 21, which
these artifacts (Figure 20). The glass bubbler acts as anadditionally shows the timing of the signal recording from
expansion chamber or accumulator commonly used inthe different transducers as well as prototypical sensor
pneumatic systems. signals. The gas manifold that can be used to perform the
Moreover, when switching the 4-way valve, any pressure respective measurements has been described in the previous
difference in the two output flow lines affects the gas flow section (4.1).
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Line 1 is used to indicate the valve status. “0” represents TA have been used in conjunction with mass-sensitive
the basic state of the valve, when pure carrier gas flows Rayleigh surface-acoustic-wave devices to detect the BTX
through the measurement chamber. In state “1”, fractions of compounds (benzene, toluene, and xylene) in the low ppm
the carrier gas pass one or more vaporization units or and sub-ppm rangé? or with thickness-shear-mode resona-
bubblers, and analyte molecules are present in the gadors (temperature of the preconcentrator was modulated) for
stream: analyte-loaded gas is flowing over the sensors. Inapple and banana flavot& A two-step preconcentrator to
line 2, the corresponding analyte gas-phase concentrationsenrich organic volatiles and to remove water vapor from the
are displayed. In the beginning of a measurement sequencesample air (first and second stages feature a hydrophobic
there is no analyte gas in the measurement chamber, whichcoating, which enriches organic volatiles and which lets water
is purged with pure carrier gas. Baseline signals of the pass) was used for analyzing exhaled air or human breath
capacitive and mass-sensitive transducers are recorded, thwith the help of carbon-black/polymer-coated chemoresis-
measurement timing of which is displayed in line 3. The tors®?Low levels of organic volatiles in human breath could
valve is then switched to the analyte line for, e.g., 30 s, which be detected®?
leads to an instantaneous analyte concentration increase since Several groups have used sensors as detectors at the end
analyte-loaded gas is now flowing through the measurementof standard desktop chromatographic u#is6The use of
chamber. Equilibrium state capacitive and mass-sensitivebulky chromatographic units to boost the discrimination
signals in analyte-loaded air are then recorded. The resultingperformance of small and cheap sensors, however, defeats
sensor signals (mass changes or capacitance changes) athe purpose of having small and portable units, in particular
schematically shown in line 4. since the performance of the sensors is, in most cases, not

The valve is then switched back to pure carrier gas, which superior to that of a standard flame-ionization detector (FID).
generates a sharp decrease in analyte concentration. The ladt also has been proposed to combine a metal-oxide-based
switching would not be necessary for the equilibrium-based chemoresistor (zinc-oxide pellet) with a 80 mm long fused
sensors, but it is necessary to get the second calorimetricsilica capillary to record diffusion-dependent sensor responses
transient, as shown in line 6. As already described in sectionand to identify certain target analyt&s.

3.2, the calorimetric sensor relies on transients and provides Miniaturized gas chromatographic units were first pre-
signals exclusively upon concentration changes. Therefore,sented in the late 19788and, then, in the mid-1996€°In

the calorimetric recording has to be performed at high most cases, they have been realized as spirals (column
temporal resolution (1 kHz) in two short intervals covering lengths= 0.6—0.9 m; widths= 100—200 um; and depths
both flanks of the concentration signal (line 2), i.e., at the = 200-400 um) micromachined into a planar silicon
maximum gradient of the analyte concentration. The two substrate {1 cn?) with a glass plate bonded to the silicon
transient signals of the calorimetric transducer (positive upon substrate to close the column (see Figure 22 and Figure 24).
analyte absorption, negative upon analyte desorption) areMore recently, rather long (up to 3 m) square-type micro-
displayed in line 6. Usually, the areas of the respective peaksmachined columns on 3.% 3.3 cn? dies have been
(absorption and desorption peaks) are integrated and therpresented® Within this review, we will not give more details

averaged to obtain the final value. on micromachined gas chromatographic units but will
describe two approaches to miniaturized, sensor-based, low-
5. Sensor-Based Microanalytical Systems power microsystems potentially capable of comprehensive

environmental vapor analysis.

In this section, we briefly describe more complex minia- A hybrid microsystem developed in a broad-based effort
turized analytical systems based on gas sensor arrays, whickt the University of Michigaffs157.159.160.163contains the
resemble most closely higher-order analytical instruments. following components (Figure 225° a sample inlet with
The sensor arrays act as detector units in those systems. Iiparticulate filter, an on-board calibration-vapor source, a
most cases, preconcentration (see also the article of Grate efnultistage preconcentrator/focuser, a dual-column separation
al. in this issu&‘) and/or separation stages have been module with pressure- and temperature-programmed separa-
combined with the sensor array for better analytical perfor- tion tuning, an array of microsensors for analyte recognition
mance of the resulting systeltf-1°® The preconcentration  and quantification, and a pump and valves to direct the
stages lower the detection limits for the sensors through sample flow. MEMS (micro-electromechanical system)
enrichment of the target analytes in a sorptive matrix. After processing technologies have been used to fabricate the
some time allowed for the analyte enrichment, a sharp system with the ultimate goal of creating a fully operational
heating pulse is applied to the sorptive material so that all micro-instrument that occupies only-2 cr?, requires an
the analyte molecules, which were absorbed during a user-average (battery) power of just a few mW per analysis,
defined time span, desorb at once. In this manner, considerprovides rapid determinations of mixtures of at least 30
ably higher analyte concentrations hit the subsequent sepavapors of arbitrary composition at low- or sub-part-per-billion
ration (micro-GC) and/or detection unit (sensor arf&¥}>”  (ppb) levels, has an embedded microcontroller, and can be
The preconcentration stages can be classified into tworemotely interrogated through an RF-MEMS (RFradio
groups: (i) dynamic headspace or purge-and-trap systemsrequency) wireless communication li#% The calibration-
and (i) solid-phase microextraction methods using fibers vapor source, shown in Figure 22a, is designed to generate
coated with absorbing materidf§.Nanoporous carbon, sel calibrant vapor at a constant rate by passive diffusion from
gels, ceramic matrices, polymers, and commercial packing a liquid reservoir. Analysis of this “internal standard”, along
materials are commonly used as absorption matrixes. Inwith vapors captured from the environment, provides the
comparison to sensors without preconcentrators, improve-means to compensate for aging, drift, or other factors that
ments in the lower detection limit range between 1 and 3 might affect analytical performance. The calibration-vapor
orders of magnitude can be achieved, so that the lower ppbsource is a 3-layer structure, whose base contains a deep
range (relevant for many applications) becomes accessible porous-Si (PS) reservoir for retaining the volatile-liquid
Preconcentrators with commercial material such as Tenaxcalibrant, a glass spacer layer with a central aperture that
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Figure 22. Schematic and components of the Michigan analytical microsystem: (@) calibration-vapor source before (left) and after (right)
assembly; (b) 3-stage adsorbent micropreconcentrator prior to loading and sealing (top left), with close-up SEM images of each section
loaded with adsorbents (lower left);)(8 m separation-column chip (lower right) with close-up views of the channel cross sections prior

to (top right) and after (top left) sealing; (d) detector assembly with 4-chemiresistor-array chip (right), Macor lid (white square structure),
and sealed detector with connecting capillaries mounted on a custom fixture (left). Reproduced with permission from ref 160. Copyright
2005 Royal Society of Chemistry.

12 4 5 is manually packed with porous, carbon-based adsorbents
@, (total mass~ 5 mg) in order to increase the specific surface
4 6 area. Adsorbents are loaded through a stencil mask to
maintain segregated sections of each material.
(b) As can be seen in Figure 22c, a large single-substrate

column was used, which consisted of a convolved square-
spiral silicon channel (158m wide, 240um deep, and 3 m
long) on a square die, 3.3 cm on a side, capped with an
© A anodically bonded Pyrex glass cover plate. Figure 22¢ shows
a sealed column, with the inset providing a closer view of
/\ the channel cross section. A polydimethylsiloxane stationary

phase (thickness ef1 um) was employed and was deposited
dynamically from a dilute pentane solution.

0 20 40 60 80 100 120
Time (sec)

Figure 23. Seven-vapor chromatograms of the Au-6-phenoxyhex-  1he detection unit (Figure 22d) included an integrated

ane-1-thiolate-coated chemiresistor showing the effect of micro- array of four chemiresistors, designed to produce a set of

preconcentrator-desorption and column-elution flow rates and flow- partially selective responses to vapors eluting from the

rate ratios on resolution and analysis time. For Sp'lt-ﬂOW operation, Separation column. The response pattern can then be

a portion of the flow through the micropreconcentrator was diverted combined with the retention time to identify the vapor, and

around the separation column: (a) no split flow, 1.3 mL/min; (b) th itude of th f th b d
4:1 split ratio, 5.1 mL/min (micropreconcentrator)/1.3 mL/min 1€ Magnitude orthe responses from the sensors can be use

(column); (c) 8:1 split ratio, 5.8 mL/min (micropreconcentrator)/ 0 quantify the vapor concentration. Each sensor consists of
0.75 mL/min (column). Vapors: 0, water; 1, toluene;r2putyl 20 pairs of interdigital Au/Cr electrodes (1.4 mm long, 15
acetate; 3m-xylene; 4,n-nonane; 5, mesitylene; @-decane; 7,  ym wide, and spaced by 18n) on a Si substrate. Intersensor
octamethylcyclotetrasiloxane. Reproduced with permission from ref spacings are~1 mm. The chemiresistor array employs

160. Copyright 2005 Royal Society of Chemistry. interfacial films of Au-thiolate monolayer-protected nano-

defines the headspace region, and a Si cap that contains aflusters, whose resistances are shifted to different extents
etched diffusion channel and exit port. upon vapor sorptiof’!172

The three-stage micropreconcentrator (Figure 22b) is There are many parameters in this complex system that
designed to capture organic vapors quantitatively and to influence its performance and have to be optimized with due
thermally desorb them into a much smaller volume, thereby regard to the target analytes and the analysis problem, such
increasing the effective concentration to facilitate detection as gas flow velocity, flow rates, temperatures and temperature
as well as providing a sharp injection plug to facilitate high- programs of GC column and preconcentrator, preconcentra-
speed chromatographic separati$ii$>’The preconcentrator  tion time, and column and preconcentrator materials.



Higher-Order Chemical Sensing Chemical Reviews, 2008, Vol. 108, No. 2 583

==

bl e AP S et ]
Valve (b) (c)

Figure 24. Optical photographs of a monolithic microanalysis system. (a) Front side surface micromachining is shown: dual pivotal-plate
resonator sensors are evident as are multiple oblong through-wafer access ports, a preconcentrator in the lower left, and a gas chromatography
resistive heater and circular coating ports in the lower right. (b) Reverse side deep etching: the spiral GC is on the lower left. (c) Close-up

of the pivot-plate resonator, rotated°dfith respect to images (a) and (b). The direction of the magnetic field, set up by miniature magnets,

is indicated by an arrow. Current lines follow the perimeter of the paddle and the two torsional suspension beams. Reprinted with permission
from ref 158. Copyright 2006 |IEEE.

For sample collection, 0.25 L of analyte-loaded air was hybrid systems, such as modular replacement of components,
drawn at 25 mL/min through the preconcentrator, where the and the fact that the thermal isolation of the individual
vapors were trapped. The preconcentrator was then heated@omponents is much easier to accomplish in hybrid systems,
to 280°C, and the desorbed vapor mixture was passed towhich is important, since the individual components often
the column and sensors at flow rates below 10 mL/min for have different operation temperatures. However, the mani-
separation and detection. A sample measurement is showrfolds previously described often have cold transfer lines
in Figure 23'%° Figure 23a shows a 7-vapor chromatogram interconnecting the components. This can cause collection
from one of the sensors (Au-6-phenoxyhexane-1-thiolate- or condensation of analyte in the transfer lines, ultimately
coated sensor), illustrating that symmetric peak shapes andeducing sensitivity. Although the size of the manifold
adequate separations can be achieved at 1.3 mL/min withchannels may be subminiature, there is still excess dead
the column temperature ramped from 25 to ®D at 1.4 volume present. Moreover, the assembly of the hybrid system
°Cl/s. The separation required only 75 s. For this test, the can add to the cost of the completed system, and physical
entire desorbed sample volume was transferred to theisolation strategies and system timing can be used to mitigate
separation column. A fraction of the sample flow can be thermal isolation issues for the monolithic syst&hA
diverted around the column and sensor array, since it wasmonolithic “MicroChemLab” system on a & 6 mn? size
shown that sharper injection pulses are obtained at higherchip developed at the Sandia National Laboratories, Albu-
desorption flow rates (i.e., 0.3 mL/min) through the precon- querque, NM, is shown in Figure 24. The length of the spiral
centrator, and since it was also shown that the flow restriction GC column is 8.1 cm in one design and, in another, 11.8
imposed by te 3 m column length constrains the maximum cm. The 8.1 cm long, 5@m wide GC column is integrated
flow rate through the column to values ef3 mL/min. The with a preconcentrator and a novel magnetically actuated
split ratio was adjusted by varying the length, and thereby pivot-plate resonator sensor pair. The pivot-plate resonator
the flow resistance, of the bypass. Figure 23b shows theis potentially more sensitive than the magnetically actuated
chromatogram obtained with a 4:1 ratio: the preconcentrator flexural-plate-wave transducer used beféteand is also
flow rate (5.1 mL/min) was four times that passing through actuated by making use of Lorentz forces. The pivot-plate
the column (1.3 mL/min). Retention times were increased resonator consists of a central paddle supported by two
slightly and all peaks became sharper and better separatedorsional beams. An alternating current passing through the
than without a flow split (compare Figure 23a). Increasing transducer lines interacts via the Lorentz force with an
the split ratio to 8:1 and reducing the column flow rate to orthogonal, in-plane magnetic field, causing the paddle to
0.75 mL/min yielded the chromatogram shown in Figure 23c. oscillate around the torsional beams (Figure 24%).

The separation is improved substantially due to the narrower  The monolithic chip design also incorporates a surface-
injection band and due to the operation of the column at a micromachined bypass valve, intended to switch the flow
lower velocity. However, the time required for the separation between the sampling and separation/detection portions of
increased by~50%, and the magnitudes of all peaks are the overall analysis system. The valve consists of an
reduced because of the smaller fraction of the desorbedelectrostatically actuated silicon nitride flap situated over the
sample being passed through the column and because of theypass port. Machined glass lids, baseplates, and packages
slight increase in dilution associated with the higher desorp- have been fabricated to coat and test the monolithic system,
tion flow rate!®® The system is capable of separating, which is work in progres?s

recognizing, and quantifying mixtures of moderate complex-

ity (e.g., 11 vapors) in<1.5 min. The needed preconcen- 6. Are More Sensors Better?

tration time ranges from~1 min (industrial work places, ' '

analyte concentration in the single ppm range) to 10 min or  In the introduction to this chapter, we suggested that
more for less-contaminated office or residential environments increasing the measurement-data dimensionality, either by
(ppb range}&° adding more sensors or by extracting additional features,

Development efforts in the field of microanalytical systems could offer substantial benefits with respect to the analytical
have taken another step forward in devising extremely capabilities of the instrument. The issue of whether or not
compact monolithic systems with all components realized “more sensors are better” is an ongoing debate in the
on the same silicon substrdfé:'"*There are advantages to chemical-sensor-array communit{f.*’” Providing a general
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answer to this question is difficult, if at all possible. On the 0.75 i
one hand, the use of multiple sensors is central to the ) f\_‘:‘{:a\
“electronic nose” paradigm; arrays of cross-selective sensors 5 070 o ST
(i.e., first-order arrays) do provide more analytical capability < b T (O oo
and power than the individual sensors. Further, while it is é i %\\ < \\ \\ \\ AN =5
evident that adding “orthogonal” sensors can improve the 5 L ) NS
selectivity of the instrument, the use of redundant sensors & ”f P \\\\\_“}'00
can also be beneficial, e.g., in terms of increasing the fault- E 055 # e
tolerance and sensitivity of the array. On the other hand, 2 y i Bl 2
increasing the dimensionality of the feature space can have 0.50 e

detrimental effects in terms of increased computational =
complexity, higher levels of noise, and an increased risk of

Overflt.tfmtgh (I'ea’dt.?.e mloc(jflmg qf noise in t?ﬁ traml?glsettr)]’ Figure 25. Performance of a statistical pattern classifier as a
even | € addiuonal dimensions are orthogonal. In e ¢,nction of the feature-vector dimensionality, for a fixed dataset

following subsections, we will provide a more detailed gjze,m. Reprinted with permission from ref 182. Copyright 1968
treatment of these issues. IEEE.
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6.1. Characteristics of High-Dimensional Vector become normally distributed, which may destroy any natural

Spaces clustering of the data in a high-dimensional sp&ée.
Humans have an uncanny ability to perceive patterns in !N addition, computation in higher-dimensional spaces
the three-dimensional world in which we live. We can Increases the amount of data that is required to effectively
understand speech (a first-order signal) under much degradedr@in the models. It has been shown that the number of
acoustic conditions, recognize a familiar face (a second-order'ining samples should grow l'?égﬁrly with the feature space
signal) at a large distance, or appreciate the gracefulness 0?|men3|on.al|ty for Illnear models? in a I?u?dratm fashion
a ballerina (a third-order signal) already upon a short glance. 0" Gal,llglsmn models, and exponentially for nonparametric
Unfortunately, our capabilities in the three-dimensional space Models-* What this means is that, for a defined dataset size,

do not scale up to higher dimensionality. To illustrate this
point, we will highlight a few geometric and statistical

intuition.17®
Consider a hypersphere of radiysdefined ind dimen-

there is an optimum number of dimensions, beyond which
the performance degrad&g;see Figure 25. Therefore, on

characteristics of high-dimensional hyperspaces that defeat!€ Pasis of statistical considerations, and assuming a given

number of training samples, the smallest number of sensors
that can provide the necessary chemical discrimination is

sions. It can be shown that the volume of the hypersphere isP&tter:
given by"® ]
6.2. Orthogonality versus Independence

_ 2792 One of the potential advantages of higher-order sensor
V() = d 1) arrays, such as arrays based on different transducers, is their
dr é) ability to produce “orthogonal” featuré183In this context,

two features are said to be orthogonal if they convey
| information about, e.g., different physicochemical properties
of the target compounds. Thus, orthogonality is a geometric
property defined in chemical space, where each dimension
represents a unique molecular chemical or physical property.
It is important to note, however, that sensor orthogonality is
neither necessary nor sufficient to ensure higher analytical
€\d power of an array. In fact, the addition of an orthogonal
r) sensor may even lower the performance of the array through
(2) the introduction of noise, if the information provided in the
respective added feature is irrelevant to the discrimination
It then follows that, as the dimensionality of the hyper- and quantification of target compounds or, worse, if the
sphere increases, so does the fraction of the volumefeature is sensitive to the chemical background or to
concentrated in the outermost shell. Likewise, it can be interferents. Consider, for instance, the problem of develop-
shown that the volume of a hypercube tends to be concen-ing a new sensor array for CO, an example given by Stetter
trated in the corners. Thus, high-dimensional spaces tend toand Penros&.” One may be tempted to combine an optical
be mostly empty, and the data tend to be concentrated in ainfrared detector with a metal-oxide-covered conductometric
low-dimensional manifold. The latter suggests that data candevice. Both sensors can be considered to be orthogonal,
be projected onto a low-dimensional subspace without a since the IR sensor measures molecular vibrations and the
significant loss of information. Unfortunately, finding an metal-oxide-based sensor relies on electronic effects. By
optimal projection becomes increasingly harder with more adding a metal-oxide-based sensor, however, we may obtain
dimensions. According to the central limit theorem, any sum little additional information. More importantly, since metal-
of independent and identically distributed random variables oxides are very sensitive to a broad variety of gases, we may
tends to be more normally distributed than the variables have rendered the array more vulnerable to interferences.
themselves, even if these are markedly non-Gaussian. Thus, On the other hand, two sensors are said to be independent
as the dimensionality of the feature space increases, low-if the knowledge of the response of one sensor upon exposure
dimensional projections of the data have the tendency toto a target compound does not provide any information about

wherel'() is the gamma function, an extension of the factoria
function to complex and noninteger numbers. Using elemen-
tary calculus, the fraction of this volume that is contained
in an outermost shell of thickness, can be computed as

B Vy(r) = Vy(r —¢) B rd— (r— e)d B
“ V() - rd B

1—@—
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Figure 26. Array performance as a function of the relative proportion of broadly tuned (large) and narrowly tuned (small) sensors. The
results show that the maximum performance is obtained when the array contains a mixture of “large” and “small” sensors. Dashed vertical
lines indicate the performance of the array when all sensors have the same degree of selectivity. Reprinted with permission from ref 186.
Copyright 2002 Oxford University Press.

the response of the other sen&8f.In other words, inde-  fact, using computational models, Alkasab et®lhave
pendence is a statistical property defined in the feature spacegstimated that an optimum configuration should include
where each dimension represents a certain feature or senarrays in which each individual sensor responds te 25%
sor®Thus, in contrast to orthogonality, sensor independence of the target compounds. Several authors (see, e.g., refs 187
cannot be ensured unless the sensor array has been designeahd 188) have also reported that the overall performance of
for an a priori known set of target analytes. In this context, large sensor arrays can be improved by allowing the
more sensors are better, in the sense that increasing théndividual sensors to have different degrees of selectivity
number of sensors in the array also increases the odds thaby combining, e.g., broadly tuned and narrowly tuned
a subset of independent sensors can be found for a widersensors; see Figure 26. This theoretical result is particularly

range of applications. relevant in the case of higher-order devices, since different
o . _ transduction principles and sensitive layers can be combined
6.3. Cross-sensitivity and Diversity to produce sensor arrays of very distinct and diverse

sensitivity and selectivity patterns. Experimental results on
arrays combining selective and partially selective sensors are
also consistent with the above theoretical predictiShs.

The inherent cross-sensitivity of chemical sensors is
commonly seen as both beneficial, to the extent that it
C P . ' sensors are better, provided that the respective selectivity

ommon sense seems to indicate that, if one were able to rofiles increase the diversity in the arra
develop sensors that are specific to only one of the targetp y Y.
compounds, the resulting array would be more accurate than :
a singilar array of cross—gensiti)\//e sensors. Quite the contrary6'4' Multiple Roles of Redundancy
has been suggested by a number of theoretical results in Biological olfactory systems rely on a diverse and highly
computational neuroscience (see, e.g., Brown aruk&#® redundant population of sensory neurons to gather informa-
and references therein) and machine olfactiGiccording tion about the stimulus; see ref 190 and references therein.
to these studies, arrays of broadly tuned sensors provide aDepending on the animal species, it has been estimated that
more accurate representation of a stimulus than arrays of100-1000 different types of receptors are involved in the
highly specific sensors, assuming that the stimulus is of high coding of chemical information at the olfactory epithelium.
dimensionality (e.g., large number of target compounds). In Each type of receptor is expressed on a large number of
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Figure 27. Effect of computing the average response of an array of homogeneous tin-oxide sensors: the variance of the array output
decreases with the square root of the number of sensors. Reprinted with permission from ref 192. Copyright 2002 Wiley-VCH, Weinheim.

sensory neurons, with each neuron being specialized on onea number of different transducer types and/or take advantage
or a few receptor types. This massive degree of redundancyof the dynamical responses of the sensors. In the first case,
serves multiple purposes. First, it allows the system to copea separate preprocessing technique may need to be applied
with the massive turnover of sensory neurons, since theto each type of transducer and then globally to the multi-
distribution of sensory neurons can be considered to bevariate response of the array. In the latter case, it is important
stationary over time with respect to the developmental stageto ensure that the preprocessing technique does not destroy
of the individual neurons. Second, the integration of the the higher-order structure of the data (e.g., trilinearity).

response from multiple neurons can be used to average out Preprocessing techniques can be grouped into three
uncorrelated noise, which effectively increases the sensitivity categories: (1) baseline correction, (2) scaling, and (3)
of the instrument. More specifically, theoretical estimates dynamic feature extraction. Baseline correction and scaling
and experimental results show that signal integration im- will be reviewed only briefly here, since they have been
proves the detection threshold by a factowof, wheren is extensively covered in the literatut®&, 196.199-201 S5omewhat
the number of identical (or identically responding) sensors related to baseline correction is the issue of drift compensa-
in the array?®! this result is illustrated in Figure 27 for an tion. Due to the potentially large impact of drift on the
array of nominally identical tin-oxide sensdfd.Third, by analytical performance of the sensor array, computational
relying on a large population of sensors, the system becomesnethods to handle sensor drift will be treated separately in
more robust and fault-tolerant. Thus, from this perspective, section 8. An emphasis will also be placed on dynamic
more sensors (of the same type) are better, provided thatfeature extraction, since it constitutes one of the easiest ways
their noise characteristics are also independent. to realize “higher-order” sensing; dynamic techniques will
also be reviewed separately in section 9.

7. Data Preprocessing

The term “data preprocessing” broadly refers to any
transformation performed on the raw sensor data prior to The objective of baseline correction techniques is to
building the main analysis model. The goal of data prepro- remove background noise from the raw sensor responses and
cessing is typically two-fold: (i) reduction of noise or to increase the contrast. Three types of baseline correction
removal of information that is known to be irrelevant to the techniques are widely used: differential, relative, and
analysis problem and model (e.g., interferences, drift) and fractional technique¥32%2 Differential techniques subtract
(i) numerical preconditioning of the data, such as scaling a baseline value from the sensor response and can be used
or normalizationt®> The selection of a suitable data- to remove additive noise or interferences. Differential
preprocessing approach can have a significant impact on thetechniques are typically used for piezoelectric sen¥6i;
performance of the analysis mod&put, unfortunately, the ~ where the response is a frequency or phase shift with respect
data-preprocessing approach is highly dependent on theto a reference analyte (and/or an uncoated reference sensor),
sensor technology (e.g., metal-oxide chemiresistors vs quartzand for MOSFET senso?8 where the response is a voltage
crystal microbalance), the type of analysis (e.g., classification shift in the 1(V) curve. Relative techniques compute the ratio
Vs regression), the type of model (e.g., nearest-neighbors vdbetween the sensor response to the sample and the sensor
multiway), and the type of noise present in the data (e.g., baseline value and, therefore, can be used to reduce
baseline drift vs concentration effects). Thus, there is only a multiplicative noise. The relative technique is commonly used
handful of general guidelines as to how to select the appro- with metal-oxide devices, since their resistance upon expo-
priate preprocessing technique (see, e.g., ref 194), and, insure to a samplds, is related to the baseline resistankg,
practice, a suitable technique must be selected empiric-i.e., Rs = Rq[C]#.2% Fractional techniques subtract the
ally 195197 baseline value and then divide by the baseline value, which

Data preprocessing is particularly important in the case yields a per-unit response. It has been shitthat the use
of higher-order sensor arrays, since these devices can employpf fractional changes in conductance provides the best

7.1. Baseline Correction
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Table 1. Dynamic Parameters That Can Be Extracted from Sensor Response Curvés

parameter

description

baseline

final response, response
30/90 s on/off response
maximum response
min/max derivative
on/off derivative

plateau derivative

on integral

off integral
short on/off integral

response/on integral
T0—90%

T0—60%

T100-10%
T100-40%
polynomial on/off

1. exponential on/off
2. exponential on/off
ARX on/off

(1/5) 3925000 45 (sensor value)
sensor value (averaged over 5 s) at-ghaSéfine
sensor value (averaged over 5 s) 30/90 s after gasakeffne
max (sensor valdbaseline
min/max difference between two samples during measurement
(sensor value 10 s after gasOn#hi@seline)/10
(response90 s on response)/30

S on(sensor value- baseline)

s toi = (sensor value- baseline)

g onion (sensor value- baseline)

response/on integral
time from gasOn for sensor value to reach basetifed x response
or baseline- 0.6 x response
time from gasOff for sensor value to reach basetir®1 x response
or baseline- 0.4 x response
Y = A+ A% + Aix + Ag
On: Y = (sensor value- baseline) anat = time from gasOn to gasOff
Off: Y= (responset baseline- sensor value) = time from gasOff to gasOff- 240 s
Y = A(1 — exp(=(x/T)), whereY andx are defined like in the polynomial fit
Y = Ag + Ay exp(—x/Ty1) +Az exp(x/Tz), whereY andx are defined like in the polynomial fit
y(t) = arry(t — 1) + a-y(t — 2) + beu(t — 1)
On: y(t) = (sensor value- baseline)t = time from gasOn- 5 s to gasOff andi(t) =
0 if test gas off and 1 if test gas on
Off: y(t) = (responset baseline— sensor value),= time from gasOff— 5 s to gasOff+-
240 s andu(t) = 1 if test gas off and 0 if test gas on

Table 2. Summary of Baseline Correction and Scaling Techniqués

type name transform application notes
baseline correction differential K = ¥ — y{red removal of additive noise/drift
baseline correction relative XM = ()g(k)/xi(fef)) removal of multiplicative noise
baseline correction fractional Xi(k) = (Xi (fef))/ (ref) has been shown to work well for
metal-oxide chemoresistors
baseline correction MSC xW = (x® — a®)/b® removal of information correlated with a reference

global scaling feature norm

global scaling autoscaling

global scaling

global scaling whitening

local scaling vector norm
local scaling SNV
nonlinear transform logarithm

nonlinear transform square-root

nonlinear transform BoxCox

nonlinear transform HornerHierold

o

mean centering

sampleak, bk are estimated for each sample
(k)

XM = (% — min[x])/(max[x] — min[x]) makes signal magnitudes comparable across sensors
but can amplify noise and is sensitive to outliers
XM = (¥ — meank])/std[x] makes signal magnitudes comparable across sensors
but can amplify noise
® =¥ — meank] removal of common-mode signal across samples
X = A"V2MTx yields uncorrelated, unit-variance features, but can

also amplify noise

reduction of concentration dependence; useful for
qualitative (discriminative) analyses

reduces within-class scattering but makes the data

X0 = (5

XM = (¥ — meank®)/std[x¥]

“closed”
k) = log (X, k)) linearization and dynamic range compression
Xi(k) _ Xi(k) linearization
w_ | (0 =1 a=0 compensates for nonlinearities and compresses the
I T ) 1=0 dynamic range of the sensor

linearization of metal-oxide chemoresistors;

k) - (X1k)/ fef)) 1B,
paramete; estimated from the data

¥ denotes the response of senistr samplek. x,'Ef) denotes the response of senstwr a reference sample. Notation: mean() and std() denote

the sample mean and sample standard deviation.

pattern-recognition performance fax-{ype) MOS chemore-

regression modex® = a® + b®xe), and then uses the

sistors. Fractional changes in resistance are also commonlyregression parameters (scalaf® and b®) to rescale the

employed with conducting-polymer chemoresist§f$°8

feature vector by subtracting the intercefit and dividing

The above techniques operate on a sensor-by-sensor basigy the slope of the estimated regressifft x® = (x4 —

Instead, baseline effects on the data set may be treated by®)/b®
means of multivariate techniques, such as multiplicative multiplicative and additive effects. Table 2 summarizes the
scatter correction (MSCY? 21! Developed to remove light
scattering and particle-size issues in near-infrared spectros-
copy?*?> MSC has so far received little attention in the
“electronic nose” or sensors community.Given a feature
vectorx® and a reference sampkée), MSC computes the

various forms of baseline correction techniques.

7.2. Scaling

. Thus, MSC can be used to correct for both

The objective of scaling techniques is to either eliminate
irrelevant information from the sensor data (e.g., concentra-
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tion), or to precondition the data (e.g., decorrelating features).L1 norm (IXl.1 = Yi|x|) or with the response of a reference
Scaling techniques can be grouped into global or local sensor. In the case of metal-oxide sensors, the concentration
techniques, depending on whether they operate on a featureremoval requires that the exponefitof the power-law

by-feature basis or on a sample-by-sample b#sis. dependence be the same for all sensors. However, an
) alternative normalization technique has been recently devel-
7.2.1. Global Techniques oped that allows this condition to be relax@8.Vector

normalization is beneficial for discrimination problems but
should be avoided in concentration-estimation problems or
Whenever the vector norm is known to carry relevant
Snformation. For hybrid array data, vector normalization

Global techniques transform the data on a feature-by-
feature basis across an entire database. The most commo
techniques are feature normalization and autoscaling. Featur

normalization scales each feature to the range [0, 1] by should be performed separately on groups of sensors with

subtracting the minimum value and then dividing by the the same concentration dependence, such as sensors of the

overall measurement range of the sensor response, botly, o e “ossibly followed by a second normalization
computed across the entire database. Feature normahza‘uogcrosS the entire array

Sensite to outiers, ince the range s determined by exreme_ T1E Standard normal variate (SNV) transfifmormal-
' - “izes each sensor response by first subtracting the average
Jcross the array (for a given sample) and by then dividing
ri!hrough the standard deviation across the array (for a given
sample). Thus, SNV can be thought of as an autoscaling of
each feature vector. SNV is commonly used in near-infrared

spectroscopy to effectively reduce in-class variance but has

each feature by subtracting the sample mean value and the
dividing by the standard deviation, both computed across
the entire database. Autoscaling cannot provide tight bound-
aries for the input range but is more robust to outliers than
feature normalization. Moreover, robust statistics may be also been applied to chemical sensor transidts.

used t? re_duce the §en5|t|V|ty 1D OUHIEES. Care must be taken in employing local transforms, as they
Multivariate techniques can also be used to globally scale rander the data set “closed,” i.e., SNV forces the sum of the
the data. For instance, the whitening transféftmay be features to become zero, whereas vector normalization
used to produce uncorrelated and unit-variance features. Thganders the sum-square equal to one. Closure can introduce
procedure consists of first projecting the data along the gprious positive correlations between the sensors featuring
eigenvectors of the covariance matrix and then normalizing {he highest response levels and spurious negative correlations
bythe corresponding eigenvalues, bess A*MTx, where  petyeen sensors exhibiting the lowest response |&¥dlis
M contains the eigenvectors (arranged as columns)And isgye s particularly relevant in the case of hybrid arrays,
is a diagonal matrix with the corresponding eigenvalues. The yyhere each sensor type may have an intrinsically different
whitening transform is closely related to principal-compo- ange of signal magnitude. It is then advisable to first scale

nents analysis (PCA), with the key difference to PCA being each sensor using a global technique, see, e.g., refs 221 and
that PCA only uses the eigenvectors corresponding to theooo.

largest eigenvalues (for dimensionality-reduction purposes).
Note that the whitening transform is equivalent to autoscaling 7.2.3. Nonlinear Transforms

if the sensors/features are independent and zero-mean. Various transformations have been proposed to compen-
Global methods are typically used to ensure that sensorgate for nonlinearities in the data, such as concentration
response amplitudes are comparable, preventing subsequenfapendencies, or saturation effects. They include logarithms,
pattern-recognition p_rocedures from bemg_ overwhelmed by square-rootd? and the Box-Cox transforn?23 Of particular
sensors with arbitrarily large values. For instance, nearest-interest for metal-oxide sensors is a linearization transform
neighbor proceduré®21521%yre extremely sensitive to feature proposed by Horner and Hierot@ which we describe here
weighting, and multilayer perceptrons, the most common type ¢, jjjystration purposes. The method assumes a resistance-
of feedforward neural networks, may saturate for excessively -gncentration dependence that can be described by
large input values. However, it must be noted that these

techniques can amplify noise since all the sensors (including q
those which may not provide any useful information) are R=R,(1+ Z(Aij[cj])m)—ﬁi 3)
weighted equally!’ ' =

7.2.2. Local Techniques where R, is the sensor resistance in airG] is the

. concentration of gag q is the number of gases, aig, m,
Local techniques transform the data on a sample-by-sample, 9k d g Ad. m

basi he L ocal hni includ and f; are model parameters. Suitable values for these
asls across the feature vector. Local techniques inclu eparameters can be found by fitting the model to experimental
vector normalization and standard normal variate correction.

In vector normalization, the response of each individual data, {R,[G]}, by means of a nonlinear optimization
X X Ay . technique (LevenbergMarquardt). Once these parameters
sensor is normalized (i.e., divided) by the L2 norm of the que ( q ) P

have been estimated, the following nonlinear transformation
vector (Ml = 4/ y.x?). This forces the distribution of  can be applied to linearize the sensor response with respect
samples to be located on a hypersphere of unit radius. Vectorto the analyte concentration:

normalization can be used to remove concentration effects,

provided that all sensors in the array have the same r= (R/ROV)’W‘; [g] = [Cj]r“ 4)
concentration dependence, exg= kf([C]). This is the case '

for surface and bulk acoustic wave sens8tglectrochemi- : ;
cal cells and fluorescent indicatdfé carbon-black sensof 8. Drift Compensation

and metal-oxide sensors. Similar concentration-removal The most serious limitation of current sensor arrays is the
effects can be achieved by normalizing each sensor with theinherent drift of individual sensors, which results in a slow,
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Figure 28. lllustration of the multiplicative signal correction method of Haugen é8%Response of an individual sensor to the calibrant
and target gases (a) before calibration, (b) after short-term correction (within sequence), and (c) after long-term correction (betweeh sequences

random temporal variation of the sensor response whenunivariate and multivariate techniques. These two types wi
d temporal t f th p h t d mult te techniq Th two typ I
exposed to the same analyte under identical conditions. Asbe reviewed below.
a result of drift, learned sensor response patterns may become
obsolete over time, so continuous recalibration may be 8.1. Univari ; i

. T S .1. Univariate Drift Compensation
required. Following Holmberg and Artursséf, drift-like P
effects can be attributed to a number of sources. First, there st compensation may be performed for each sensor
are 1ssues 'related to the Sensor itself, such as aging (e'g'i’ndividually. At the simplest level, one may employ the
reorganization of the sensing layer) and poisoning (€.9., aqeline-correction techniques described in section 7.1;

irreversible binding); only aging and poisoning are strictly differential measurements can be used to remove additive

considered as drift. These effects are very difficult to (baseline) drift, whereas multiplicative (sensitivity) drift can
compensate for and have been the subject of many investigas ' b y

tions, as will be detailed below. Second, drift-like effects be_ compensated for by conducting r_e_lative_ mea_surements
can occur also in the measurement system due to, e.g.,“s'ng a reference gas (clean or purified air). D|ffer_ent|e_1l
fluctuations in flow rate, temperature, pressure, or humidity meéasurements can be made with respect to a calibration
content in the sensing chamber, or analyte condensation indas:>®which must be chemically stable over time, and whose
the manifold. These types of artifacts can be most effectively behavior should be highly correlated with the target ana-
addressed by measuring the variables that are known tolytes?**%°A practical calibration method that operates on a
fluctuate and by then compensating for the fluctuations in Se€nsor-by-sensor basis has been developed by Haugen et
software. This includes, e.g., removing any variance due to al.??°in which drift compensation is performed on two time
fluctuating parameters from the sensor response. An effectivescales: (i) within a single measurement sequence and (i)
compensation may pose a major challenge, when smallbetween measurement sequences. At each time scale, the
environmental perturbations induce large changes in themethod models temporal variations in a calibration gas by
sensor response. In addition, issues related to experimentameans of a multiplicative correction factor, which is then
procedures can give rise to effects that are often confoundedapplied to the target samples. The process is illustrated in
with drift, such as memory effects (hysteresis, systematic Figure 28. A multiplicative correction scheme has also been
errors due to fixed sampling sequences), short-term effectsysed by Sisk and Lewf° More interestingly, these authors
(System warm-up, thermal trends), or even the degradationhaye shown that event-driven calibration provides superior
of the samples themselves. These types of errors can bé&erformance with respect to periodic calibration. The events
addressed with a proper experimental design, whereas they,,y he triggered when, e.g., unlabeled samples start to fall
previously discussed two sources of drift will typically  sige the decision boundaries of the classifiers, when

re(%ll{lléerr?c?&elai?or?o?ftﬁggzlnzgcoegzlrg%bn temperature hasoutliers are detected, or after interruptions in the data
been used to generate features that are significantly morecoIIectlon. Needless to say, event-driven calibration is also

stable than isothermal features. Along these lines, Roth etmoSt cost-effective, since it is only performed upon demand.

al 2% alternated the temperature of a £§as sensor coated o _ _

with an organic material and showed that the normalized 8.2. Multivariate Drift Compensation

slope of the sensor response remained much more stable over . . .

time in comparison to constant-temperature measurements. Alternatively, one may correct for drift on the entire array

Aigner et al??? derived similar conclusions for Si-planar- data as a whole, rather than on a sensor-by-sensor basis. The

pellistors. advantage of this approach is that the procedure can exploit
A number of drift-compensation algorithms have been correlations between the sensors. The majority of these

developed over the past decade, which can be grouped intanethods is based on adaptive modeling, system identification,
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orthogonal signal correction, or blind signal deconvolution (a) Y,
techniques, as will be detailed below.

Adaptive models are an interesting alternative for the
problem of drift compensation. The basic idea behind these
techniques is to model the distribution of training examples
with a codebook (i.e., a collection of cluster centers) and Direction orthogonal
then to adapt this codebook upon the presentation of the tes! to concentration vector
data: an incoming (unknown) sample is assigned to the
“closest-matching” class and is then used to adapt the class
parameters. A variety of adaptive models have been used,
which update one cluster center per cks, single Kohonen
self-organizing map (SOM¥ for all the classe$3* 2% or a Y,
separate SOM per clad¥:2%’ A potential problem of these
approaches is that they rely on correct classification; mis- Subspace correlated with
classification errors will eventually cause the model to lose concentration vector C
track of the class patterns. In addition, all analytes need to
be sampled frequently to prevent their patterns from drifting Y,
away too much.

System-identification techniques have also been used to(b)
model sensor dynamics and then predict drift effects. 8
Holmberg et af31238have investigated a number of models
(e.g0., AR, ARMA, Box-Jenkins) to generate a prediction
for the common-mode component of the drift for each sensor 2l
using the remaining sensors as inputs to the model,

4] ( ) NNE ( ) €] ( ) g

axk—n)= b x\k—n)+ ) celk—n o 2
,,Z=(; n;/_/ ;Z(; in i ”Z(; n%r—‘“ (5)

sensor s its a{l qther white noise 4 2

wherexs(K) is the response of senseat timek andx(k) is *
the response of all other sensors at tkn®odel parameters 8
{a;, by, &} can be learned off-lirfé" or online by applying
a recursive least-squares procediifeFor classification 0]
purposes, a separate dynamical model is built for each analyte -10 -5 0 5 10 15
class, and unknown analytes are assigned to the class, whos PCA,

model displays the lowest prediction error. Nonlinear exten- Figure 29. (a) lllustration of orthogonal signal correction; (b)
sions of this approach, such as Volterra series or atrtificial principal-components analysis of the responses of an array of metal-
neural networks, have been explored by Marco and co- oxide sensors to various food items. Notice that drift-related and
workers23%-241 Finally, Perera et &' have developed a class-related information are nearly orthogonal. Reprinted with
novelty-detection method based on recursive dynamic PErmission from ref217. Copyright 2002 IEEE.

PCA®24that can operate under drift conditions, pressure, and humidity sensors. Any variance in the mea
Approaches based on orthogonal signal correétdrave ’ P : .
PP g g surement vectorx] that can be explained byis then due

been also successfully employed. As illustrated in Figure 29, . . .
the basic idea behindythespe r)1/1ethods is to subtractgfrom thel drift or interferences and should be removed. This can be

sensor-array response the components that account for a§one by means of regression/deflation methods as shown in
much of the variance as possible but which are uncorrelated®d 7 TQE technique is also closely related to “target
with analyte information (mixture concentrations in multi- fotation:

component analysis or class labels in discrimination prob-

lems). Along these lines, Artursson et?4lhave developed Xeorrected— X — WY
a drift-compensation method that first estimates the main
direction of drift by computing the first principal component whereW = argmir|x — Wy}? (7

of the samples from a calibration gas. This direction is then
removed from the multivariate sensor response by subtractingKermit and Tomié*® have approached drift-compensation

the corresponding bilinear component, as a linear, blind-source-separation problem. In this approach,
the sensor array response can be modeled as the weighted
Xeorrected= X — (X*Vea)Veal (6) sum of a number of independent “sources”, such as drift-
related noise and discriminatory information. The authors
wherev, is the first eigenvector of the calibration daxay. use independent-component analysis (IGRpn extension

A related procedure has been proposed by Gutierrez-of principal-component analysis aimed at finding statistically
Osuna*” Here, the experimenter first identifies a set of independent projections of the data. As described in section
variables y) whose variance can be attributed to drift or 6.2, two variablex andy are said to be independent if their
interferents. These variables can include, e.g., the responsgoint probability density function (PDFp(x,y) is equal to

to a purging or reference gas, the date and time when thethe product of their marginal PDF9(X, y) = p(X)p(y), in
sample was collected, or measurements from temperaturepther words, if knowledge of the value of one variable
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Figure 30. (a) Three principal components and (b) three independent components extracted from the response of a hybrid array to six
different alcohols (headspace of 0.5% propanol, 1% propanol, 2% propanol, 0.5% butanol, 1% butanol, and 2% butanol in agueous solution).
Samples are sorted according to classes and time stamps within each class. The estimated probability density functions (PDFs) of each
component are plotted at the right of each component. Note that most PCA and ICA projections have markedly non-Gaussian PDFs.
Reprinted with permission from ref 249. Copyright 2003 IEEE.

does not provide any information about the value of the other however, that the ICA model proposed here computes a
variable. In contrast, two variables are said to be uncorrelatedsolution off-line, i.e., after all the data have been collected.
if the expected value (i.e., the average) of their product is The question remains, though, whether or not these results
equal to the product of their expected valugs(xy) = will hold, when the ICA demixing matrix (equivalent to the
E(X)E(y), whereE[ ] is the expectation operator. Principal- eigenvectors in PCA) is tested on data that have not been
component analysis finds uncorrelated projections, whereasincluded in the training set.

independent-component analysis finds independent projec-

tions, which is a more restrictive criterion. To find the desired 9. Feature Extraction from Sensor Dynamics

solution, ICA uses higher-order statistics (i.e., entropy),
whereas PCA relies on second-order statistics (i.e., covari-
ance). A clarification is in place at this point: “higher-order”
statistics should not be confounded with “higher-order
sensing; the latter refers to the way in which the data are

As described in sections 2.1 and 2.2, one may achieve
“higher-order” sensing by exploiting the dynamic properties
» Of the sensors for analytical purposes. In this review, we
will concentrate on two strategies that have been extensively
structured. used in the literature: the analysis of the transient response

Experimental data in the study of Kermit and Tomic were of the sensors to sudden changes in the sample concentration

obtained from a hybrid array with 10 MOSFET and 12 metal- (0" témperature) and the modulation of the operating tem-
oxide sensors, all of which were exposed to the dynamic Perature of metal-oxide chemoresistors.

headspace of 6 analyte solutions (0.5% propanol, 1% . .
propanpol, 2% propanol, 0.5% butanol,(l% bufangl, and 2% 9.1. Transient Analysis

butanol). Ninety measurements were made, 15 per solution, When performing data analysis of chemical sensor arrays,
and processed off-line with fastiICR? The left panels of it is, in most cases, convention to assume that the information
Figure 30 show the first three principal components, where of interest is contained in the quasi-steady-state (or final)
samples have been ordered first by label (e.g., the first 15response of each sensor. While this approach yields measure-
samples are those from the first class) and then by time of ments that are simple to conduct and evaluate, it ignores
presentation to the array. The right panel of Figure 30 shows useful information that may be contained in the transient
the corresponding independent components. The first ICA response of the sensor (see, e.g., Table 1). The transient
captures information about the concentration of the analytesresponse is the result of dynamic processes that take place
(notice the six distinct steps, which correspond to concentra-when the sensors interact with the target sample. These
tions of 0.5%, 1%, 2%, 0.5%, 1%, and 2%), whereas the dynamic processes are unique for each senanalyte pair
second ICA source captures information about the drift and, therefore, are potentially very useful for analytical
(notice the trend for the 15 measurements from each analyte) purposes. They are typically triggered by modulating an
and the third ICA source captures information about the internal parameter of the sensor, such as the operating
identity of the analytes (i.e., low for the first 45 samples temperature, or an external one, such as the gas-phase
(propanol) and high for the last 45 samples (butanol)). Thus, composition of the sampFk&?

ICA is able to separate the three sources of information in  The most straightforward but not necessarily the most
the sensor response: analyte identity, analyte concentrationfobust approach consists of analyzing the evolution of the
and drift effects. In contrast, PCA is only able to separate sensor response upon dosing the sample. One of the earliest
concentration information (first principal component), but accounts of this approach is the work of lu and Lange®>?
analyte identity and drift are mixed together in the second who showed that a single cross-selective sensor may be used
and third principal components. It is important to note, to discriminate a number of target compounds at different
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Figure 31. Gas sensor transient response to a short odor pulse (a). Transient analysis approaches: (b) oversampling, (c) parameter extraction,
and (d) model fitting. Reprinted with permission from ref 194. Copyright 2002 Wiley-VCH, Weinheim.

concentrations (something that cannot be achieved using onlyregression models; the reader is referred to section 10 for a
the steady-state response). In their landmark study, thediscussion of these methods.

authors extracted two parameters from the transient response ]

of a zeolite-covered metal-oxide sensor: the initial sl ( 9.1.1. Oversampling Procedures

which was shown to be proportional to the concentration of

. The m raightforwar roach re transien
the gas, and the steady-state respor3g, (vhich was e most straightforward approach to capture transient

information is to oversample the sensor transient at different

proportional to the square root of the concentration. As a time intervals durina the od
. > g the odor exposure and/or odor recovery
result, the authors showed that the variabls,* could be _phase, as illustrated in Figure 31b. The term “oversampling”

used to discriminate different simple gases regardless of theirig |, <o q here to emphasize that the sensor is sampled more
concentrations. T_hough this concentratlon-lndepend(_ant pa’frequently than at steady state; the opposite term “decima-
rameter may be different for other sensors (see, e.g., V|Ianovation,, is sometimes used in the literature to emphasize that

et al?**for a different case), the study of Mer and Lange o sensor transient is first measured with a very fine time
is important because it illustrates that more than one scale, and then a subset of those measurements is used as a
parameter may bg extracted from t.he SENSOr reSponse. - feature vector (i.e., the finely sampled transient is said to
While the transient response will depend on the odor have been decimated). Leaving aside terminology, when
delivery system (see, e.g., the discussion in sections 2.2 andsing oversampling/decimation techniques the dynamic
4.1, as well as in Chapter 6 in ref 206), transient parametersinformation is represented implicitly, in the correlation of
have, in some cases, been shown to be more repeatable thajhese measurement values, rather than explicitly, as is the
static descriptors; see ref 254. In addition, transient analySiSCase for the other two approachesl Nanto é¥’atharacter-
can reduce the data acquisition and calibration fithef ized the transient response of thickness-shear-mode resona-
the initial sensor transients contain sufficient diSCfiminatory tors by means of nine parametersl which Correspond to the
information, one may avoid the Iengthy acquisition time sensor response values at defined tiftes 1, 2, 3, ..., 8,
required to reach steady state. As a consequence, the sensotis mir}, normalized with respect to the maximum sensor
also require less time to recover to their baseline, a processresponse during the transient. The authors show that a
that can be particularly slow when the target analytes are myltilayer perceptron trained on these parameters was able
present at high concentrations. By reducing the duration of to discriminate among different types of wines and liquors
the analyte pulse, and by thus minimizing irreversible ysing a single sensor. Saunders e®&lsed the transient
binding, the lifetime of the sensors can also be increased.response of thickness-shear-mode resonators during the odor
Furthermore, in the case of dynamic headspace analysis, &xposure and recovery times. The authors extracted 50
steady-state response may not even be attainable, since thgyeasurements from these transients and normalized them
volatiles in the headspace may be depleted faster than theyyith respect to the baseline frequency and the maximum
can be released from the sample. In these cases, the transieRésponse of the sensor during the transient, and used then as
response to a short concentration pulse, as illustrated ininput features into a bank of multilayer perceptrons (one per
Figure 31a, may provide sufficient informatiét. sensor). The normalized transient responses (termed “kinetic
The remainder of this section will provide an in-depth signatures” in their article) were shown to be very consistent
review of different computational methods that have been for each sensor across repeated trials, despite a drift in the
proposed to extract information from the transient responsesbaseline and in the maximum response parameters. Hongmei
of gas sensors. These methods can be grouped into threet al?>® employed a similar kinetic-signature procedure to
broad categories: (i) oversampling, (ii) parameter extraction, simultaneously determine the concentration of sulfur dioxide
and (iii) model-based methods, as illustrated in partelb  and relative humidity using a single piezoelectric quartz
of Figure 31. Outputs from these methods can then be treatedhickness-shear-mode resonator. White ét%alised an array
using conventional pattern classification, regression, andof fiber-optic sensors to identify single analytes, binary
clustering technique®’ Alternatively, the entire transient  mixtures, and the relative component concentrations. Ana-
response may be processed with suitable classification orlytes were delivered to the distal end of the fibers using a
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shot 2 s pulse, and the transient response was resampled tslope. However, their results showed no systematic advantage
yield 10 measurement values, each representing the averagéor using any of these feature types.

sensor response of 6 consecutive time points. Their results Employing concepts from dynamic systems, Martinelli et
show that multilayer perceptrons trained on the oversampledal 2% proposed to extract transient information from the phase
transient significantly outperform those trained on only the plot of each sensor. In their article, the state variables were
integral response of each sensor transient. Kermani«t al. the sensor response and its derivative. A single transient
proposed a time-windowing technique to extract transient feature was extracted from each sensor: the area circum-
information. Their method relies on four overlapping bell- scribed by the phase plot of each sensor during the adsorption
shaped kernel functions, which are used to compute aand desorption processes. The method was validated on an
weighted integral response of the sensor at different timesexperimental database containing the transient response of
during the sensor transient. Using an array of 15 metal-oxide thickness-shear-mode resonators when exposed to the head-
sensors, their method was shown to significantly outperform space of apples with different degrees of internal defects.
the steady-state and the transient integral on a number ofThe results showed that phase-space transient features
odor database'$® A family of five uniform time-windows outperform steady-state features in terms of both uncorre-
was used by Brahim-Belhou#ito extract information from latedness and discrimination capabilities. In a subsequent
the transients of an array of eight Sn@icrohotplates.  study, Martinelli et aP® proposed to extract additional
However, while the time-windowed features outperformed information from the phase space, arguing that the evaluation
steady-state features, the authors showed that similar perof the area of the phase plot does not take into account
formance could be obtained by combining steady-state information that may be present in the shape of the trajectory.
signals with the slope of each transient, measured duringFor this purpose, they computed a number of higher-order

the first minute of the sensor exposure. geometric moment®’ from the phase plot of the sensor
transient. In this study, the phase space was defined by the
9.1.2. Ad hoc Transient Parameters sensor response and a time-delayed version, ()., $(t —

) ] 7)]. The use of such “dynamic moments” was shown to yield

Alternatively, a wide range of parameters may be extracted petter results for two experimental databases in comparison
from the transient response of a gas sensor, such as rise timesg only using steady-state information. However, the authors
derivatives and integrals, computed at different time points acknowledged that the optimum time delayié application-
during the exposure and recovery phases, as shown in Figurgpecific and, more importantly, that the dynamic moments
31c. With little computational expense, these methods cantend to be rather sensitive to small changes in the sensor
provide a more compact representation of the information gynamics. Similar results and conclusions for dynamic
contained in the sensor transients. As discussed earlier, anoments have been reported on by Vergara éfaiising
combination of the initial slope of the transient and the metal oxide sensors to detect the rancidity of crisps (potato
steady-state response was used billédiand Lang&? to chips). In a related study, Pardo and Sverbegfartompared
discriminate multiple analytes at dlffer_ent concentrations. five different features: the steady-state response, the phase-
More recently, Llobet et a&®* characterized the transient space are#® and the transient integral, with the latter two
response of metal-oxide sensors by means of the conductanceomputed for both the exposure and the recovery process.
rise time, measured from 20% to 60% of the total conduc- wwhile their results are not unequivocal as to which type of
tance changeG(0) — G(e)). An important result of this  feature is best, and while the evaluation was performed on
study is that the rise time appears to be significantly more 3 small data set (coffee ripening), the authors suggest that
repeatable than the steady-state response. Moreover, aghe phase-space area during the recovery process outperforms
analysis of variance also showed that the response time wassteady-state and transient integral information and that
independent of the analyte concentration (toluene @nd  features calculated during the recovery interval (either phase-
xylene in the range 25100 ppm) and only depended on space area or integral) consistently provide better perfor-

the vapor/sensor pair. Roussel ef®@levaluated a large  mance than those calculated for the exposure interval.
number of ad hoc features for the purposes of discriminating

off-odors in wines with an array of five tin-oxide sensors. 9.1.3. Model-Based Parameters
Different features were computed from the transient response
and their first- and second-order derivatives, including the
response values at different time intervals and the respons
maxima/minima, yielding a total of 29 features per sensor.
Features were evaluated with respect to three different
criteria: repeatability across trials (within-class variance),

Transient information can also be captured by fitting an
analytical model to the experimental transient, and then using
Ghe resulting parameters as features. Various types of models
have been used for this purpose, such as autoregressive and
polynomial methods, but multiexponential models are most
Lo T . o common due to the exponential nature of the transient
discrimination results (ratio of between-class to within-class response, as shown in Figure 32. Transients are generally

variance), and correlation with other features. Their results ; : ;
' . . modeled by a sum of exponential functions of the followin
show that (1) the best features include the maximum Sensore, . y P 9

response values, the maximum slope during the exposure

transient, and the minimum slope during recovery, and that M

(2) the most suitable features are the same for all five sensors. f)=SYG e v (8)
Paulsson et &4 performed a feature-selection study for =

various preprocessing and transient-analysis techniques on

experimental data from a real-life application: the evaluation Although conceptually easy, the task of modeling a curve
of breath alcohol contents using a hybrid array of MOSFETS, with a set of exponential functions with real exponents is
chemoresistors, and an infrared sensor. The sensor featuredi-conditioned. Unlike the familiar sinusoidal functions used
included the final response value, the maximum responsein Fourier analysis, exponential functions do not provide an
values, the response integral, and the maximum responserthogonal expansion. Therefore, if one tries to determine
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12 ' ' ' - ' ' ' - by Gardnef® to fit transients of metal-oxide sensors exposed
to individual gases. Their method provides a single time
constant, which is also shown to be gas-specific and
concentration-independent. In ref 277, a general diffusion-
reaction model is applied to gas mixtures in the low-to-
medium concentration range, where interactions between gas
species can be ignored. This new model is shown to provide
a good fit to the transient response of binary mixtures and
yields time constants (one per gas in the mixture) that are
also concentration-independent. BEklet al’? performed
curve-fitting to transients of Pt-MOSFET sensors with one-
exponential and two-exponential models (see Table 1). While
the two-exponential model provided a better overall fit to
the experimental transient, the model parameters were shown
to be unstable. In contrast, parameters from the single-
il : , : , : , : : exponential model had rather high signal-to-noise ratios,
0 o 20 3 4 5 6 70 80 90 comparable to those of the “simple” parameters mentioned

, , fme ) , already in section 2.2. Galdikas et&used an array of ten
Figure 32. Transient responses of an array of conducting-polymer 151 oxide sensors to monitor the freshness of poultry.
sensors. Reprinted with permission from ref 283. Copyright 1999 Samples of poultry meat were stored in a room at’C7

Elsevier. and 45% RH (relative humidity) and monitored continuously
with the sensor array. The authors analyzed the steady-state
response of the sensors, as well as the time constants of a
biexponential fit to the sensor transients. The steady-state
response did not show any significant changes until after 16
h, whereas the smallest of the two time constants started to
show significant changes after-3 h, which could be used

to provide an early detection of food spoilage. Nakamoto et
al»% used two-exponential models to fit the recovery phase
of thickness-shear-mode resonators upon short pulses of
various odorants. Parameters of the exponential component

to Lheggtz?:ko?fimperof?tranr:lcnegir? ?sgL?épogl?grsili fﬁn"zzc?r:dégg with the largest contribution to the response of each sensor
q P y P were then selected as features. In comparison to the

n h relaxation kineti fluor n radio- .
ence, such as gas rela at on etics, fluorescence, radio maximum response values of the sensors upon a concentra-
activity, and nuclear magnetic resonad€eA number of

. ' tion step, the transient parameters were shown to have better
methods has been developed, which can be grouped into thre%iscrimination properties. Di Nucci et &° used one-
classeg?? ' '

(a) Stepwise or exhaustive methods, which extract the exponential models to approximate the exposure and recovery

. . . . transients of thickness-shear-mode resonators to various
different exponential components in a sequential manner, as

. . . odorants. Their exponential parameters were shown to
in the case of the “graphical” peeling-6f These methods P P

b idered lobal. b h N rovide more discriminatory information than the steady-
can be consiaered as nonglobal, because each Component a6 response of the sensors, a result that is consistent with
extracted independently of the rest.

oY _those reported in ref 72. Baumbach et®lused a biexpo-

(b) Global approximation or least-squares methods, which nential model to extract information from the transient
approximate the experimental transient using a defined yagponse of semiconductor microsensors upon steps in their
number of exponential components by minimizing a figure onerating temperature. One exponential component was used
of merit of the fit. These methods are not aimed at component explain temperature effects, which were relatively fast
detection. _ _ owing to the low thermal mass of their microsensors. This

(c) Global detection or integral transforms methods. These term had a fixed (i.e., gas-independent) time constant. The
methods exhibit similarities to (a) and (b): like (a), they are gsecond exponential component was used to explain the
true component detectors, and like (b), they are global, sjower effects, which were due to the interaction between
because all model parameters are extracted S|m.ultaneouslyt.he gases and the sensing layer. This term had a gas-
Representative examples of these methods include thegependent time constant. The authors showed that a simple
Gardner transforr* multiexponential transient spectros-  gecision tree could be used to discriminate CQ,atd their
copy?"*"*and the Pade-Laplace/Pade-Z transféffn. mixture using the parameters of the biexponential model.

In the context of modeling chemical-sensor transients, the  Global detection techniques have only in a few cases been
vast majority of multiexponential approaches rely on global ysed to build multiexponential models for sensor transients.
approximation, arguably due to the broader availability of Nakamura et a8 proposed a system-identification method
optimization tools. One of the earliest reports on multiex- to estimate the parameters of the exponential components:
ponential modeling is by Vaihinger et &.who showed that  an autoregressive (AR) model was fitted to the sensor
two or more exponentials were required to provide an transient,
accurate fit to experimental data from amperometric sensors.

Their results suggest that the extracted time-constants are N
gas-specific but concentration-independent, whereas the x(k) + VA ax(k — i) = €i) (©)
corresponding amplitudes are concentration-dependent. Vil- =

anova et af>® used a diffusion-reaction model developed wherex(k) is the sensor response at time= kT, L is the

08f

06

04F 8

Resistance change (%)

02

o

the coefficient G, 7;, i = 1, ..., M} from finite-time and
finite-precision samples of the transient, the distribution
function of time constants will not be unique. An additional
problem is the determination &, the number of exponential
components that should be used for the fit. This issue has
been known for over 40 years, when LanéZédemonstrated
that three-exponential curves with similar time constants
could be fitted accurately with two-exponential models with
significantly different amplitudes and time constants.

L
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order of the model, an€(i) is the residual error of the model.  Alternatively, one may employ a fine-grained set of time
While AR coefficients{a} [, could be used as features, constants{z}, and solve eq 8 for the amplitudes by using
these parameters (also known as linear predictive coefficientsleast-squares:

in speech processing) have poor interpolation properties. N_1 M

Instea_ld, by compl_Jt_ing the real roots of_the _characteristic {G} = arg mif| ;(f(k) -G, e—kmi)z] with

equation, AR coefficients were converted into time constants = =

and amplitudes of a multiexponential model. The results fixed {7} M (11)
show that, in the case of single gases;32real roots il i=1

(exponential components) could be found using the AR The resulting distribution of amplituddsS} can be treated
model, whereas 34 real roots could be found for gas a5 a spectral representation of the transient. This approach,
mixtures. However, only one of these exponential compo- gisg known as the exponential seé&8has the advantage
nents appeared to be stable from run to run (for both single that the minimization problem in eq 11 is linear in the
gases and mixtures), which, again, is a hint to the ill- ampjitudes, so it can be solved efficiently. In practice,
conditioned nature qf muInexponentlaI models. Artursson et regularization techniques need to be used to ensure a smooth
al#*?also used multiexponential models to extract informa- gistribution of amplitudes, e.g., by adding an identity matrix
tion from an electronic tongue based on pulse voltammetry. 1, the data covariance matrix that results from solving eq
Their model consisted of two exponential components, which 11 through least-squaré.

were assumed to represent the two types of currents present o aiternative approach to model sensor transients has
during the measurement: Faradaic and capacitive currentsSpeen recently proposed by Carmel e%[Their model is

Model parameters were found in a linear-least-squaresgerived from a simple physical description of the measure-
fashion through a reparametrization of the biexponential pent system

model into a homogeneous differential equation. The result-

ing time constants were then converted into the coefficients f.(t) = aif“ h,(uk(t — t, — u) du (12)

of the corresponding characteristic equation; this step ensured 0

that the final features were invariant to the optimization whereq; is a sensor-specific constantjs the time it takes

algorithm. These final features were shown to provide better a gas molecule to travel from the gas inlet to the surface of

class separability than the original data, while also filtering the ith sensorhi(u) represents the probability that a gas

out experimental noise and providing near-lossless compres-molecule absorbed in thiéh sensor at time is still present

sion. at timet + u, andk(t) is the shape of the injected stimulus
Rather than finding the discrete coefficients of the mul- (e.g., a step or a pulse in concentration). In ref 287, the

tiexponential model in eq 8, one may instead attempt to Lorentzian decay functioh(t) = 7;?/(t2 + 7;?) was found to

recover the spectrum of time constarez): provide a good fit to the exposure and recovery transients
of both thickness-shear-mode resonators and metal-oxide
f(t) = f°° G(r) e " de (10) sensors. Assuming a pulse function of duratibrior the
0 injected stimulus, eq 12 can be transformed into the
following:

As pointed out by Samitier et a&’! spectral methods have
several advantages. First, the number of exponential termsf,(t) =

does not need to be known a priori: the individual [q t<t,
exponential components will be detected as peaks in the t—t
spectrum. Second, spectral methods are global methods, sincgz, tan * TI >t=<t=<t+T

all the components are obtained simultaneously in the i
spectrum. Third, the width of the peaks can be used to infer [t Lt =T

the resolution power of the spectral method, e.g., wider peaks pivi|tan TI —fan T;

suggest that two or more exponential components with

similar time constants have not been resolved. Multiexpo- ] .

nential transient spectroscopy (METS) is one such spec- From this equation, the model parametéfs T, ti, i}

tral method, which has been shown to be suitable for that bestfit the experimental transient can be found through
modeling gas sensor transieAts?”> METS recovers a @ simplex optimization procedu?® Doing this for every
spectrum of time constants through a multiple differentia- S€Nsof-analyte pair yields a 4-dimensional feature vector
tion of the experimental transient on a logarithmic scale; that captures the shape of both the exposure and the recovery
higher spectral resolution can be achieved at higher orderstransient. In re_f 287, the model was validated on experimental
of differentiation at the expense of amplifying experimental data of a hybrid sensor array exposed to 30 different odorants.
noise. Samitier et &* applied METS to the transient re- The results showed that the Lorentzian model parameters
sponse of electrochemical fuel cells; their results showed {#i, T. ti, i} provide significantly better recognition perfor-
that the amplitude of the spectral peak was proportional to mance than standard transient features. CarmeFéttave
the concentration of the gases (ethanol, methanol, andalso shown phat the Lorentzian parameters are robust with
2_pr0pano| in their Study)' whereas the location of the peak, respect to dlStOl’UOﬂS. in the Sepsor transients, a feat yet to
i.e., the time constant, was gas-specific. The GardnerbPe matched by multiexponential models. The Lorentzian
transforni’ can also be used to recover a pseudo-spectrummodel has also been generalized for the use with sensor
g(), in which the amplitude and time constants are transients containing multiple peaks.

coupled: g(r) = G(r)r; this condition biases the Gardner . .
transform toward exponential curves for which the product 9.1.4. Comparative Studies

of the amplitude and the time constant of the components Eklov et al’?> provided a systematic investigation of
are on the same order of magnitude, see, e.g., ref 283.transient parameters, including simple features such as pulse

t>t+T
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heights, integrals, and derivatives at various times during A

the exposure and desorption phases, and model-based 10

parameters obtained by fitting the experimental transient by 8 AAA
means of three types of analytical models (see also Table

1): multiexponential, autoregressive (ARX), and polynomial. 6

The data set consisted of the response of Pt-MOSFET sensors
exposed to mixtures of hydrogen and ethanol. Several
conclusions can be derived from this study. First, most of
the simple parameters have relatively high signal-to-noise 0
ratios, including those from one-exponential models. Second,
time-critical parameters such as derivatives, time constants, ’ il

g M MM

Amplitude
]
=

L)

short integrals, and ARX models tend to be very much -4

influenced by the exact timing of the gas delivery, which A

renders them unsuitable for pattern-recognition purposes. i .

Third, the selection of model-based parameters based on their 0 1 2™ ia 4 5 6
fitting performance can be misleading; ARX and two- Log (time constant)

exponential models provide the bests fits but also have veryFigure 33. Time constants and signal amplitudes extracted from
low signal-to-noise ratios. The main conclusion of the study @ 56V thermal transient of a TGS2620 sensor by the Pade-Z

; At : : method: A, acetone (18 volume %); |, isopropyl alcohol (16
is that a combination of simple parameters (final response, oo %): M, ammonia (1 volume %). Four samples of each

windowed response, derivatives, and integrals) can pl'OVideanaIyte were extracted. Reprinted with permission from ref 286.
a performance comparable to parameters obtained throughcopyright 2003 Elsevier.

computationally intensive fitting procedures. In a follow-up
study, Eklov et al?** performed a feature subset selection gppear to be only marginally worse than the previous two
on the same database to identify the most relevant param+echniques.
eters. Features were selected using a sequential forward Gutierrez-Osuna et & compared the performance of
procedure (see section 11.2), where the selection criterionpMETS 275 the Pade-Z transfori® transient oversamplin§®
was the root-mean-square reconstruction error from a mul-the exponential series in eq 11, and steady-state isothermal
tilinear regression model. Their results indicated that dis- responses. All these methods were evaluated using a data
criminatory information is broadly distributed in the exposure set of Taguchi sensors exposed to various concentrations of
and desorption transients, with 7 of the top 10 features beingacetone, isopropyl alcohol, and ammonia under a stepwise
“simple” transient parameters. change in temperature. As shown in Figure 33, the Pade-Z
Delpha et af®2 compared the performance of parameters was able to recover several stable multiexponential models
of a two-exponential model to the dynamic slope of the for the three analytes, though with different numbers of
transient on a database consisting of six Taguchi sensorsexponentials. Since most pattern-recognition techniques
The array was exposed to humid air at different relative assume fixed-length feature vectoisut see rational ker-
humidity levels, to dry Forane 134a (a refrigerant gas), and nels®* for an exceptiorrthe Pade-Z models were trans-
to humid Forane 134a (different relative humidity levels). formed into the coefficients of a fixed-length Taylor series
The dynamic slope was computed using the sensor responséxpansion. Experimental results show that the exponential
between 1 and 5 min after introduction of the sample, series method provides the best performance, whereas METS,
whereas the biexponential parameters were computed fromPade-Z, and transient oversampling show comparable per-
the entire transient, once the sensors had reached steady statermance, which is still better than that of using the steady-
in a 60 min long exposure. The prediction performance of state response.
the biexponential parameters was 60% on the test data but Shafiqul Islam et at?> compared a number of “simple”
increased to 100% when combined with the dynamic slope. parameters, such as levels, slopes, and integrals at different
Although no performance results were provided for the times, to the coefficients of a third-order polynomial fit of
dynamic slope alone, the authors concluded that the biex-the sensor transient. The experimental data set consisted of

ponential and dynamic slope parameters provide comple-responses of an array of thickness-shear-mode resonators to
mentary information. various solvent exposures. While the simple parameters

d provided better separability than the polynomial coefficients,

Distante et af’® compared several transformation an binati f'th WO t f foat d1t
feature extraction techniques using experimental data from& comoination ot tnese two types of features appeared 1o

an array of metal-oxide sensors exposed to concentration'"Prove the qverall performance of the array. Altogether,
pulses of acetone, hexanal, and pentanone, each in humi hese studies indicate that models that provide the best curve-

and dry air. In this study, the authors advocate the use of a.'t;'ng ret_sultssd_o nlot necessatmly c%ntzillg Lhe mozt fr_;\n?Iyt_|caI
discrete-wavelet-transform (DWT) technique to extract tran- Itﬂ orn:a 'gn't lhmp e phar?]me ers SI (t)u he uset_ |rst,hsmcr$
sient information. Unlike the Fourier transform, which is only ey Ien 0 have higher S'gna'o'n0'$§ ra |os,| oug
localized in frequency only, wavelets are localized in space _c?cmp ex parameters can sometimes provide complementary
and frequency, which renders them more suitable for the Information.

analysis of transient signals since they capture both spectral : :

and temporal information. DWT coefficients were compared b.2. Temperature-Modulation Analysis

to those of a fast Fourier transform (FFT) as well as with It has long been known that the selectivity of metal-oxide
feature vectors containing the integral and derivative in sensors is greatly influenced by the operating temperature
several locations of the transient. Their results show that the of the device, since the reaction rates of different volatile
DWT provides the best performance, with integral features compounds and the stability of surface-adsorbed oxygen
being a very close second. Derivative and FFT features species are a function of the temperatt¥feAs a result,
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modulation of the operating temperature can give rise to gas- Corcoran et at®* performed a systematic comparison of
specific temporal signatures, which provide a wealth of temperature-modulation parameters. An array of eight Tagu-
discriminatory and quantitative information. One of the chi sensors was exposed to the headspace of three types of
earliest reports on the use of temperature modulation is aloose-leaf teas while modulating the operating temperature
1975 patent by Le Vine, in which a sensor was operated atwith a triangular waveform (perioe= 240 s, temperature
two temperatures: a low temperature, at which the sensorrange= 250-500°C). Three types of features were extracted
was preferentially selective to CO, and a higher temperature,from the sensor conductance measurements: single temper-
at which the sensor was less selective, and which was usechture measurements (STM), dynamic parameters (dynamic
to purge the sensor of C&’ However, it is the modeling  parameter method, DPM), and total signature differences
work of Clifford and Tumé& and the algorithms of Sears et (TSDs). In the STM, a single measurement was extracted
al.?%® that are often credited for bringing the concept of from the temperature-modulated response, yielding an 8-di-
temperature modulation to the attention of the sensorsmensional feature vector; the results of this method served
community. An excellent account of early work on temper- as a benchmark. In the DPM, eight different “simple”
ature modulation in the 1980s and 1990s was written by Lee measurements were obtained, including the derivative maxima/
and Reedy? Hence, we will focus our review on later work  minima and their occurrence times, resulting in a 64-
(1998-2007), with an emphasis on computational methods dimensional feature vector. In the TSD method, the temper-
for extracting information from temperature-modulated sig- ature-modulated response was oversampled at 26 different
nals. times, yielding a 208-dimensional vector. In addition, a

Temperature-modulation approaches for MOS sensors cargenetic algorithm (GA) was used to select a feature subset
be broadly classified into two categories: (i) thermal from the DPM feature vector using a measure of between-
transients and (i) temperature modulation. In thermal to-within-class scatter as a figure of me#it.Validation on
transients, the sensor is driven by a step or pulse waveformunseen test data using multilayer perceptrons showed that,
in the heater voltage, and the discriminatory information is despite its relatively high dimensionality, the TSD method
contained in the thermochemical transient induced by the provided the best overall performance. DPM features ranked
fast change in temperature. Thermal transients have thesecond, whereas STM features performed worst, as expected.
advantage that one does not need to wait for the sensor to-eature subsets from the GA procedure ranked (on average)
stabilize following power-up, which allows for an immediate between STM and DPM features. These results suggest that
evaluation of the signal. In addition, by intermittently there was more information in the temperature-modulated
powering down the sensor, a significant reduction in power response than could be captured by using the simple DPM
consumption can be achieved. Data analysis for thermalfeatures. Gutierrez-Osuna ef#lhave investigated the effect
transients resembles that of concentration transients, so thaof the modulation frequency on the information content and
the methods described in section 9 will be generally the stability of the sensor patterns. Two metal oxide sensors
applicable here as well (see, e.g., ref 286 for an example ofwere exposed to four analytes at dilution levels close to their
multiexponential methods for thermal transients). isothermal detection threshold. The sensors were heated using

For temperature modulation, however, the sensor is Sinusoidal heater voltage variations of different frequencies
subjected to a continuous, sometimes periodic, heater voltagd125 mHz, 250 mHz, 500 mHz, 1 Hz, 2 Hz, and 4 Hz) and
variation. To help resolve the various peaks in sensitivity then exposed to the four analytes during 10 consecutive days.
that may occur during SUCh a Cyc|e, a SlOWIy Varying Sine The authors ShOW-ed that the ClaS_SIflcatlon perfotmance
wave is often usee?® If the heater waveform is slow enough ~decreased monotonically with increasing frequency, since the
to allow the sensor to settle at the respective temperaturesSensors approached isothermal behavior. Normalization of
the behavior of the sensor at each temperature may be treatetle raw temperature-modulated response patterns in the [0,
as a “pseudo-sensor” by virtue of the relationship between 1] range was shown to minimize drift effects at low
operating temperature and sensor selectivity. It is broadly modulation frequencies, where sufficient discriminatory
accepted that temperature cycling is the most promising information is preserved in the shape of the response, but
approach to temperature modulafidand will, therefore, not at high frequencies, at which information tends to be
be the focus of this section. contained in the dc response of the sensor.

Information from the temperature-modulation response can  Building upon extensive prior work3!*Nakata et ab'®

be captured in a variety of ways, but there are three generalanalyzed the nonlinear properties of a TGS sensor exposed
approaches that parallel those of transient analysis. First, theo various target gases under sinusoidal temperature variation.
sensor response can be oversampled at a number of point$he purpose of this study was to investigate the effect of
during the modulation pattern to form a feature veégeo! the sinusoidal dc offset (TO) and the modulation frequency
Second, a number of “simple” features can be extracted fromon the sensor response. The effect of TO is shown in Figure
the response, such as maxima/minima, and their correspond34, which indicates that the optimum temperature range is
ing occurrence time¥1-3% Finally, transform methods such  dependent on the gas species to be detected. FFT analysis
as the fast Fourier transform (FFT) or the discrete wavelet showed that the concentrations and the kinetics of the
transform (DWT) may be used to convert the temporal different gas species were reflected in the higher-order
response into the frequency or time-frequency domain, harmonics of the signaf8? Thus, the authors argue that the
respectively. Most of the early work on transient analysis nonlinear characteristics of chemical sensors should not be
relied on the FFT; see, e.g., refs 19 and 3888. Recent  viewed as a drawback but rather as a property to be exploited
work, however, indicates that the DWT is a much better for discrimination purposes. In a subsequent study, Nakata
choice for processing temperature-modulated patterns, whichand Ojim&*8 showed that these higher-order harmonics could
are markedly nonlinear and nonstationary. The interestedbe used to estimate the concentration of a target analyte, even
reader is referred to ref 309 for a brief introduction to wavelet in the presence of water vapor. More recently, Nakata et
analysis or to ref 310 for a more thorough presentation.  al.3°32%have proposed a method to increase the discrimina-
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Figure 34. Dynamic response of a semiconductor sensor to (a) methane, (b) ethane, and (c) propane in different temperature ranges with
a modulation frequency df= 0.04 Hz. Reprinted with permission from ref 316. Copyright 1998 Elsevier.

tion capabilities of the nonlinear sensor responses by applying
a second-harmonic perturbation to the temperature-modula-
tion program. For a given heater voltage modulatioi(t)

= va0 1 va1 €COS 2tfot, the authors showed that superimposing
a second heater voltage function of the forgt) = vai/2
cos(4rfet + 6,) can have a unique effect on the nonlinear
sensor response to each target analyte. Thus, by properly conductance is measured here

selecting the phase shift, of the second-harmonic heater Figure 35. Temperature-programmed sensing: (a) temperature
voltage modulatiorv,(t), the sensor response can be opti- pulse amplitude (26450 °C), (b) pulse duration (18300 ms),

mized for different analytes. and (c) delay (5 ms). Notice that the conductance is measured

. . immediately after the sensor returns to room temperature. Reprinted
Other authors have also investigated temperature-modulasith permission from ref 21. Copyright 1998 Elsevier.

tion procedures in recent years. Fort et®atave compared

the performance of chemical transients, temperature tran-involved bulk reactions. The authors also com-
sients, and temperature modulation. In this study, an arraypared several temperature-modulation waveforms, including
of eight metal-oxide sensors was exposed to the headspaceectangular, triangular, sawtooth, sinusoidal, and trapezoidal
of water solutions containing basic constituents of wine. shapes. Each waveform gave rise to a unique sensor-response
Principal-components analysis suggests that the chemicalpattern, which the authors ascribed to characteristic changes
transients can only be used to detect the presence of estersn the actual surface temperatures of the sensor.

In contrast, a PCA of the first, third, and fourth harmonics  For well over a decade, Semancik and co-workers at the
of the temperature-modulated response shows a clear disNational Institute of Standards and Technology have used
crimination of the different solutions. These results suggest temperature programming for microhotplate-based gas
that temperature modulation provides maximum discrimina- sensorgl51.323328 While a review of this technology will
tory power3?! Schitze et aB used a single semiconductor be available in an article by Benkstein and Semancik in this
gas sensor to discriminate six model substances (benzendssue'?it is noteworthy that this research group uses a unique
diethyl ether, isopentane, methyl butyl ether, methyl alcohol, approach to measuring the conductivity of the sensors. As
and propylene oxide). The sensor was operated using twoillustrated in Figure 35, conductance is always measured at
different temperature programs (each consisting of severalroom temperature, so that thermally controlled chemical
steps in temperature during a period of 20 s). Then, a numbereffects can be separated from temperature-dependent changes
of “simple” features was extracted, such as signal levels atin the sensing material; this is possible because of the very
different temperatures and response slopes after a temperatur®w thermal time constant of the microhotplates, which has
change. The resulting feature vector was processed in abeen estimated to be on the order of a few milliseconds.
hierarchical fashion, so that different types of features were A great deal of work on temperature modulation has been
used to discriminate subgroups of target gases. Most interestperformed by Llobet and co-workers during the past few
ingly, the authors showed that a division of the temperature- yearg®®32%-334 (see also section 11.3). In ref 335, the authors
modulated conductance-value pattern by its average valuecompared the DWT and the FFT for the purpose of extracting
almost entirely eliminated the effects of relative humidity information from the response of a tin-oxide microhotplate
in the sample and also improved the repeatability of the sensor exposed to mixtures of CO andNThe temperature
responses over a period of several months. Huang®t al. of the sensor was modulated between 243 and @by
investigated the effects of temperature modulation, frequency,means of a 50 mHz sinusoidal waveform. Four temperature-
and waveform on the response patterns of thick-film tin- modulation cycles were used to compute the FFT, from
oxide sensors exposed to various gases (butanone, acetonghich the amplitudes of the first six harmonics were used
ethanol, methanol, formaldehyde, and cyclohexanone). Theas features. In contrast, a single temperature-modulation cycle
authors compared the sensor responses to temperature pulsgas used to compute the DWT. Experimental results show
trains in five different temperature ranges {280, 106- that the DWT leads to improved separability as compared
150, 156-200, 206-250, and 256-300 °C). In the low- to the FFT. In addition, the DWT coefficients can be obtained
temperature ranges, the sensor response were shown to bigom a single modulation cycle, whereas the FFT require a
monotonic (first-order response) and did not carry much larger number of cycles to accurately estimate the spectral
information, since most reactions occur at the surface level. content of the signal (a more in-depth analysis of these results
At high temperatures, response patterns became complex andhay also be found in ref 330). Later studies have also
characteristic of the target gases, as they increasinglysuggested (through simulation) that DWT features are more
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Figure 36. (a) Transient or temperature-modulated response of a sensor array naturally leads to (b) a 2D matrix per sample, and a 3D
matrix for all the samples in the dataset. (c) Unfolding the data leads to the traditional 2D data structure, where each row represents a
sample and each column represents a feature.

robust than FFT features to additive noise and additive in Figure 36b. While it is possible to unfold this data set
drift.®34 Ding et al®*¢ have also compared the DWT and FFT into a 2D structure, where each row represents a sample and
for the purpose of extracting information from temperature- each column represents a variable (see Figure 36c¢), this
modulated signals. Two commercial metal-oxide sensors “unfolding” adds extra degrees of freedom to the model,
were exposed to CO,Hand CH at concentrations ranging  because it treats the response of each sensor at a given time,
from 50 to 1000 ppm under a 20 mHz sinusoidal tempera- [xi(t), xo(t), ..., xn(t)]7, as an independent variable, where in
ture-modulation signal. Sensor signals were first normalized reality these measurement data were collected at the same
to the [0, 1] range and then processed with the DWT and time or at the same temperature. Preserving the multiway
FFT. The results showed that the DWT features are gas-structure of the data in Figure 36b can lead to a more
dependent and fairly stable across various concentrations;parsimonious, i.e., simpler, solution, which is likely to be
more importantly, these features were shown to be repeatablamore robust and easier to interpret. It may also provide the
across sensor responses recorded 4 months apart. In contrassecond-order” advantage discussed in section 1 so that target
FFT harmonics were shown to be noisier and had a moreanalytes can be quantified even in the presence of unknown

pronounced concentration dependence. interferents’39:340 Despite these potential advantages, how-
ever, multiwvay methods have only recently received attention
10. Multivariate Calibration in the “electronic nose” literatur’-1%

A number of decomposition methods have been developed

Once dynamic features have been applied using the techto analyze multiway data, with the most common being
niques reviewed in section 9, the experimenter will usually parallel factor analysis (PARAFAG}342Tucker333 and
build a calibration model to obtain the dependent variables, unfold-PCA. As illustrated in Figure 37b, PARAFAC
such as class labels or concentrations, from those featuresdecomposes a 3-way data matkx(a tensor) in a trilinear
A number of pattern-recognition techniques are available at fashion,
this point, which include various statistical methods (nearest-
neighbor or quadratic classifiers), multilinear regression F
methods (partial least-squares (PLS) or principal-components Xk = Zaifbjfckf + e (14)
regression), and neural networks (multilayer perceptrons, =
radial basis functions, or support vector machines), to
mention but a few. These models have been extensively
reviewed in a number of recent articles and book chap-
ters195199.217.337.33fr this reason, we will focus our attention
on calibration techniques that are particularly well-suited to
handle the raw time-dependent response of the sensor
without the need of a preceding feature-extraction stage.

whereF is the number of factors in the decomposition. Figure
37b shows the case foF = 2. The solution to this
decomposition, i.e., the loading matrics B, andC, is
commonly found by a method known as alternating least-
squares (ALS), which works as follows: first, two of the
loading matrices (sa andC) are initially set to a good
starting value®® and the third matrix 4, in this case) is

; ; estimated by least-squares regression fKgrB, andC. This
10.1. Muitiway Analysis process is subsequently repeated for ma#riand thenC,

The transient (or temperature-modulated) response of aand the cycle (reestimate thenB, thenC) is repeated until
chemosensor array is naturally represented as a two-dimenconvergence occurs. It can be shé#nthat ALS will
sional matrix, where each row corresponds to the responsemprove the solution with every iteration. The algorithm can
of a sensor over time (or operating temperature), and eachbe computationally intensive, but several acceleration strate-
column represents the response of the array at a particulamgies have been devisé¥.More importantly, PARAFAC is
time or temperature. When the time-dependent response ofalso known to produce a unique solution under certain rank
the array is recorded for multiple samples, then the data setconstraints (e.g., the sum of linearly independent columns
is naturally represented as a 3D matrix, a tensor, as shownin matricesA, B, andC must be larger than or equal o+
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b2 fewer degrees of freedom to fit the data. An example by
Bro®*? will help one to understand this hierarchy of models.
2 Consider an experiment in which 10 samples have been
Gl S collected from 20 sensors, with each sample measurement
+ E extending over 100 s. These data can be represented by a
a2 B 10 x 100 x 20 matrix. Assume that we seek to decompose
o these data into five factors. For unfold-PCA, this will produce
a model with 10 500 parameters (!), whereas Tucker3 will
require 775 parameters and PARAFAC will require only 650
parameters. Clearly, unfold-PCA will provide the best fit to
the data in terms of mean-square-error (in fact, PCA does
provide optimal reconstruction in the mean-square $é)se
whereas Tucker3 and PARAFAC will produce larger errors.
But, as has been pointed out in section 9.1, curve-fitting
accuracy does not necessarily lead to good analytical
performance. If PARAFAC returns results that are reason-
+| E able, then it is very likely that the extra degrees of freedom
in Tucker3 and unfold-PCA will be used to model noise in
Figure 37. (a) Bilinear decomposition with unfold-PCA. The three- the dat&?®® Thus, all things being equal in terms of curve-fit

way data matrix is first unfolded into a two-way matrix (see Figure (and sometimes things not being equal), the simpler model
36 for an example) and then modeled as a sum of terms, with eachghgyld always be preferred.
term being the outer product of two vectors. The tefnis the )
residual error. (b) Trilinear decomposition with PARAFAC. Inthis N the context of chemical sensor arrays, however,
case, the three-way data matrix is modeled with three factors, onePARAFAC may be too restrictive, since it is unable to model
per dimension. The terf is also a residual error. (c) PARAFAC  shifted profiles or different shapes; this may occur, for
illustrated in compact form. (d) PARAFAC2 is an extension of instance, if the sensors are placed at different locations along
FAR.AFAQ which allows each sens, to have its own time o manifold or have intrinsically different dynamics. In these
oadings,By. (e) Tucker 3 is an extension of PARAFAC, which e -
introduces a core matri to allow different interactions among ~ ¢2S€s, the additional flexibility of Tucker3 may be helpftil.
loadings. Adapted from ref 347. However, this comes at a price: unlike PARAFAC, Tucker3
is sensitive to rotational ambiguities, i.e., a unique solution
2). Unlike PCA, where the loadings (eigenvectors) and scoresdoes not exist. Alternatively, an extension of PARAFAC
(principal components) can be rotated without increasing the known as PARAFAC®® may be used in some cases. As
reconstruction error, there is only one rotation of the illustrated in Figure 37c, PARAFAC2 allows each sensor to
PARAFAC loadings that provides a minimum error: using have a unique set of time loadings so that PARAFAC2 can
PCA, one can replace the top eigenvectors with linearly deal with non-trilinear data (as Tucker3 does), while a unique
independent combinations of these (which constitutes asolution is ensuredprovided that some constraints on the
rotation) and will still capture the same percentage of the By matrices are méef’
total variance in the data. Unlike two-way data, however,  ghaffer et aP*-3! provided one of the first studies of

centering and scaling (see section 7) must be done carefullyyytiway analysis methods for sensor-based instruments. In
to preserve the trilinearity of the data. The reader is referred this work, the authors developed a second-order instrument
to Gurden et at**for a discussion of preprocessing strategies that consisted of an array of five surface-acoustic-wave
for multivay data. sensors and a preconcentrator unit. Samples of four nerve
Tucker3 (named after Ledyard R. Tucker, who proposed ggents (ethyIN,N-dimethylphosphoramidocyanidate, GA:
the model in 1968°) provides a more flexible decomposition O-ethyl-S-(2 isopropylaminoethyl)methyl phosphonothiolate,
of the data matrixX, where the main difference with  y/x: ninacolylmethyiphosphofluoridate, GD; isopropylmeth-
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PARAFAC is the addition of a “core” matrXG, which ylphosphonofluoridate, GB) and one nontoxic simulant
defines how the individual loadings in the different modes (dimethylmethylphosphonate, DMMP) were absorbed in a

(A, B, andC) interact: preconcentrator unit in the presence of several interferents
b EF (water, bleach, ammonia, sulfur dioxide, isopropanol, dichlo-

_ b c + (15) roethane, diesel exhaust, and jet fuel) and then subsequently

Xije ;e;;aid jeCdaer ™ Cik rapidly desorbed by heating the sorbent column, a process

that additionally provided some chromatographic separation
Finally, unfold-PCA first converts the tensdf into a 20 ©f the mixture components. The response of the instrument
matrix (see parts b and c of Figure 36) and then performs al© & mixture of water, gasoline, and one nerve agent (GA)
bilinear decomposition: is shown in Figure 38a. To analyze these responses, the
authors compared three types of score plots: (1) PCA
F performed on the peak signal amplitude of each sensor
X = ,Zlaﬁbjf +g (16) response, (2) PCA of the peak signal amplitude and the peak
= location, and (3) unfold-PCA on the entire sensor transient.
As shown in Figure 38 (parts —d), combining peak
The decompositions performed by each of the three amplitude and peak location provides better discrimination
methods are graphically summarized in Figure 37 (patisa  performance than using peak amplitudes alone; unfold-PCA
and e). It can be shotfthat PARAFAC is a “constrained”  further decreases the spread of the nerve agent VX and the
version of Tucker3, which, in turn, is a constrained version dimethylmethylphosphonate DMMP clusters, but it also
of unfold-PCA. Here, “constrained” means that there are seems to impair the discrimination of the GA samples. A
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Figure 38. (a) Response of an array of SAW sensors to the thermal desorption of a preconcentrated ternary mixture of one nerve agent
(GA) and two interferents (water and gasoline). Score plots of (b) PCA of the peak amplitudes, (c) PCA of the peak amplitudes and their
locations, and (d) unfold-PCA on the entire sensor transient. Training and test data are depicted as solid squares and open circles, respectively,
whereas mixtures of GA with interferents are depicted as crosses. GA,Ntihyimethylphosphoramidocyanidate; VX-ethyl-S-(2-
isopropylaminoethyl)methylphosphonothiolate; DMMP, dimethylmethylphosphonate; GD, pinacolylmethylphosphofluoridate; GB, isopro-
pylmethylphosphonofluoridate. Reprinted with permission from ref 351. Copyright 1998 Wiley, New York.

visual comparison of PCA scatter plots, however, can be orice (good, bad, and fabricated bad). The authors applied
misleading; a more objective measure of performance is thevarious types of baseline compression and scaling, and
predictive accuracy on test data. To this end, the authorscompared the performance of three decomposition meth-
compared the performance of two classifiers (nearest-ods: PCA on the steady-state signals of the sensors,
neighbors and linear discriminants) on three feature vec- PARAFAC, and PARAFAC2. For each of the PARAFAC
tors: (1) the peak amplitudes, (2) the peak amplitudes andmodels, a two-factor decomposition was performed. Figure
their locations, and (3) the entire sensor transient. Using the39a shows the loadings of the PARAFAC decomposition,
entire sensor transient provided the highest performancewhereas parts b and ¢ of Figure 39 shows the loadings of
(96—100% correct classification), closely followed by peak PARAFAC2 (two loadings per sensor). While the loadings
amplitudes and locations (998%), and then peak ampli- of PARAFAC are easier to interpret, those of PARAFAC2
tudes (8183%). A second comparison of four models was indicate that the starting time of the transient responses of
performed: unfold-PCA, multiway-PCA (PARAFAC), unfold- some sensors may be shifted, which renders the PARAFAC
PLS, and multiway-PLS. This comparison, however, failed model too inflexible (interestingly, the “electronic nose” used
to show any advantage of PARAFAC and multiway-PLS in this study contained two sensor chambers, which might
over their unfolded counterparts. Interestingly, the location explain why some sensor transients appear to be shifted in
of the peaks in Figure 38a is sensor-dependent, and thetime). This interpretation can be confirmed by analyzing the
authors report a shift of those peak locations with increasing scores in parts d and e of Figure 39, which show that
analyte concentration; both results suggest that the PARAFACPARAFAC?2 provides much better separability of the three
model may have been too restrictive for these data. Further-types of licorice. Figure 39f shows the scores when only
more, none of these four models performed better than athe steady-state signal of each sensor is used as a feature.
direct classification using the raw data. It is quite possible, While PARAFAC2 seems to return more compact clusters,
though, that the lack of improvement may have been a resultit also appears that the steady-state signals already contain
of ceiling effects, since the raw data could already be sufficient information to solve the discrimination problem.
classified with 96-100% success. Padilla et at% have also used PARAFAC to analyze the
Skov and Br&” analyzed the transient response of an array transient responses of gas sensors. In this study, an array of
of 12 metal-oxide sensors exposed to three kinds of lic- 13 metal-oxide sensors was exposed to the headspace of
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Figure 39. (a) Loadings 1 and 2 of a two-factor PARAFAC decomposition. These loadings define matrikigure 37c. (b) Loading 1

(one per sensor, as illustrated in Figure 37d) in a two-factor PARAFAC2 decomposition. (c) Loading 2 of the same two-factor PARAFAC2
decomposition. Loadings 1 and 2 in (b and c) represent the mBjrin Figure 37d. Scores of the samples with (d) PARAFAC, (e)
PARAFAC?2, and (f) PCA; the PCA decomposition used only the maximum response of each sensor. Separability in (d) is rather poor,
which indicates that the PARAFAC model is too restrictive to explain the data. In contrast, PARAFAC2 provides significantly better
separability. Note that PARAFAC2 is only marginally better than PCA; this result suggests that the peak response of the sensors already
contains most of the discriminatory information. Reprinted with permission from ref 197. Copyright 2005 Elsevier.

potato chips with different amounts of flavor agents. To system from the sensor responses, in particular for rapid
check for trilinearity, the 3-dimensional data set (samples variations of the input concentrations. This inverse problem
x sensorsx time) was unfolded onto each one of the three is known to be ill-posed because of the collinearity across
dimensions, and the number of factors was computed for sensors, nonlinearities in the steady-state and the response
each unfolded matrix by means of singular value decomposi- dynamics of the sensors, and long-term drift, and the fact
tion. Each of the three matrices appeared to have the sameéhat the sensors and the flow manifold act as low-pass filters.
number of factors, which suggested that the data were An array of four thickness-shear-mode resonators with GC
trilinear®’ The dataset was preprocessed by means of stationary-phase coatings was exposed to mixtures of toluene
differential baseline correction and standard normal variate and octane, which were delivered as odor pulses of Gaussian-
normalization methods (see section 7); these techniques werelistributed concentrations. It has to be noted here again that,
found to preserve the trilinearity of the data, an important due to the very short response time of polymer-coated
safety check before applying PARAFAC. Using a core- thickness-shear-mode resonators, there is the risk of recording
consistency diagnosis proposed by Bro and Kigtghe the dynamic gas manifold characteristics rather than those
authors determined that the dataset was best described usingf the sensors. Several models were explored, which included
a three-factor model. The corresponding scores (mdrix  static models, linear autoregressive models, EIman networks,
in Figure 37c) were then used to predict the concentration Wiener series expansions, radial-basis function (RBF) net-
of the flavor additives by means of an inverse-least-squaresworks, and multilayer perceptrons (MLP). In the static
regression model. A correlation coefficient of 0.902 between models, the concentration inputs were predicted directly from
true concentrations and predictions on calibration data wasthe sensor outputs on a sample-by-sample basis, whereas in
found using the PARAFAC-ILS model; predictions on a test the linear autoregressive models, concentration inputs were

data set were comparably accurate. predicted from a short history of the sensor outputs. Elman
networks$®3 are recurrent neural networks whose hidden units
10.2. Dynamical Models have feedback connections, which serve as a short-term

] . memory to enable the model to “remember” preceding inputs.

Dynamical models may also be used to process informa-viener series expansions are a parametric model with finite
tion directly from the sensor tranSient, i.e., without the use memory that approximates a nonlinear System by a series
of a feature extraction stage. Various types of recurrent neuralgf functionals, with the advantage of this model being that
netWOka, as well as hidden Markov mOdeIS, have been Useqhe parameters can be estimated through |east_squares
for this purpose, as will be reviewed in this section. method$39240 Finally, radial-basis-function networks and

Pardo et af*! investigated various approaches to model multilayer perceptrons are feedforward neural networks,
the nonlinear inverse dynamics of a gas sensor array. Thewhich act as nonlinear regression mod@fsshort-term
overarching goal of this study was to build a model that could memory in these models was implemented by means of
predict the inputs (concentration pulses) to a gas sensortapped-delay inputs. Results of this study are summarized
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Figure 40. (a) Average prediction capability of various inverse dynamical models. (b) True concentration of toluene (dotted line) vs
predictions of the Wiener series expansions (solid line); residual errors are shown as dashed lines. Reprinted with permission from ref 241.
Copyright 1998 IEEE. (c) Structure of the time-delay neural network as used in the study of Zhafj Beglinted with permission from

ref 357. Copyright 2003 Elsevier.

in parts a and b of Figure 40. The best results were obtainedshowed the poorest performance, since it does not account
by the Wiener series, closely followed by the RBF network. for the dynamics of the system.

Surprisingly, the Elman network did not perform better than ~ Roppel et af>* used an EIman network to classify analytes
the simple linear model. As expected, the static model using the transient responses of an array of 15 metal-oxide



604 Chemical Reviews, 2008, Vol. 108, No. 2 Hierlemann et al.

sensors. Sensor transients were converted into a binarysensors, each capable of operatingvirdistinct modes, to
pattern by means of an adaptive-threshold method and therdevelop a theoretical estimate of the minimum number of
passed on to an Elman network. A network with 15 input parametersP (=S sensorsx M modes) that would be
units (one per sensor), 15 hidden units, and 9 outputs (onerequired to discriminate mixtures of up Aoanalytes from a
per analyte class) was trained on a set of 27 samples (3pool of n different analytes. Assuming the sensors to be
samples of each analyte). For validation purposes, the 27noiseless and binary (i.e., response/no response), this estimate
training samples were presented in a different (random) order.was shown to be
Since the network is time-dependent, this validation proce-
dure can give some indication of the degree to which the b A ql
network is able to generalize. However, no results were 27 —-1= Z— (17)
reported on the generalization performance of the network =1(n — i)l
with respect to previously unseen transient signals. More ) o ) .
recently, Tan and Wilsf® have used hidden Markov A rule of thumb is proposed in this study, according to which
models (HMMsJ*¢for outlier detection. HMMs are the “gold ~ S€nsors and operating modes should be selected so that each
standard” in automatic speech-processing applications be-Of the P parameters does not respond to more tRéh
cause of their ability to model nonstationary time series. The individual compounds. While the assumption of noiseless
goal of the study by Tan and Wilson was to determine @nd binary sensor responses is clearly simplistic, the rule of
whether or not HMMs could be used to discriminate thumb is qualitatively similar to the simulation results of
“normal” transient responses of a sensor from “unhealthy” Alkasab et al'*® which have been discussed in section 6.3.
ones. Training data consisted of the transient responses ofNiebling and Miler*®® proposed an “inverse” feature space
10 polymer-coated sensors to a concentration step of 5t0 design sensor arrays. In this inverse feature space, each
different analytes. Ten HMMs (1 per sensor) were trained Of thenanalytes is represented as a separate dimension, and
on multiple transient responses to each of the 5 analytes.ach of thes sensors is represented as a point in this
For validation purposes, each HMM was then tested on N-dimensional space. The authors show that this visual
transient responses of a different sensor to each of theféPresentation enables the experimenter to detect potential
analytes. HMMs were shown to be able to distinguish discrimination problems and to design new sensors to address
“normal” responses (transients of the specific training sensor) these problems. Gardner and Bartiéfiroposed a compu-
from “unhealthy” ones (transients of any other sensor).  tational model for cross-selective sensors that also considers

Zhang et afS” used a time-delay neural network (TDNN) the effects of noise and errors. An upper I|m|t_0f the number

' of analytes that can be discriminated by a given array was

to classify four different types of spices using the transient = ° X
responses of an array of 12 conductive-polymer sensors. Asestlmated by the ratio between the total volume of the sensor

shown in Figure 40c, a TDNN is a feed-forward network space and the volume made up by the Sensor errors. A
that has local memory in the form of a tapped-delay line (a Measure of performance was proposed, which was essentially
first-in-first-out buffer that stores previous values, a very Eg?"gﬂ?}”&to thg'Ctlsrﬁilacatloﬁshtirscrlzglo ("g". th(e:zeratll\calooz
simple form of (short-term) memory) at the inputs and the rec:’ntl -Peatalsrsc’:e alﬁ § Sanche Wl\;log';éﬁésas ev.mr'arg eé‘ the r
hidden units. In this study, the tapped delay was replaced Y, z V€ Improv

by a gamma memon#which can be thought of as a cascade model of Gardner and Bart_lett by incorporating thg concept
of low-pass filters (see insert in Figure 40c). The TDNN gf fhypgrvolut?e Ofl accessible sensor spa\frgl),gwmc{\ IS "
was compared to a conventional MLP and a linear-discrimi- enlner f‘rs re vonum(ta In s?n?orn slpaceA ahcevm?rllnlfi re
nant-function (LDF) method, both trained on the steady-state SENSOr-array response to a set of analytes. As shown in Figure
responses of each sensor. The TDNN was able to Correctly41a for a three-odor, two-sensor problem, collinearity limits
classify 100% of the samples in a separate test set, Whereaghe number of possible sensor responses. Therefore, the
the MLP and LDF provided 63% and 59% correct clas- maximum number of analyte mixtures that can be discrimi-

sification. While these results cannot be extrapolated to other{‘/ateigebg th:r zzrlra%és dlcla?'qufgg é’y tLh(aear?élor;c:etv(\;?fﬁeaggnsor
data sets, the large improvement in the classification rate ‘% resyF(J)nsVe Lés " st:ated % Flotre Zlb y
suggests that the TDNN-gamma model is well-suited to 27"8Y '€SPONSE, as 1lu In Figu '

o ; - Assuming that errors/noise do not exhibit any correlation
exploit differences in the transient responses of gas sensorswith the analyte stimulus, the authors show that the geometric

L interpretation in Figure 41 can be expressed by means of
11. Array Optimization the Fisher information matrix (FIM), defined as

As described in the previous sections, a wide variety of 3 9
sensors and feature extraction methods are available to the J;(¢) = f p(i|E)(— In p(3<’|?:))(— In p(3(’|?:)) dx (18)
experimenter when approaching a new sensing problem. 9C; 3G
Which of the sensors or features should be selected? How ] o ]
should the experimenter proceed to find the “optimal’ Where tis a vector containing the concentration of the
combination? Both of these questions are intimately related analytes, s the response of the sensor array to the stimulus
and have been extensively covered in the literature underC, andp(X[C) is the conditional probability of observing the
the notion of “array optimization” and “feature subset Sensor responsé wpon a given stimulus.cThe FIM is

selection”. important because it provides a lower bound (i.e., best-case
case) on the accuracy with which the stimultiscan be
11.1. Sensor Selection predicted from the sensor responseTRis lower limit has

, i ) been determined as
A number of theoretical studies have addressed the issue

of array optimization with nonspecific sensors. One of the S
earliest investigations was performed by Zaromb and Stetter var(¢|c) = Z(J_l(f:'))ii (19)
over 20 years ag®® The authors assumed an array ®f i=
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Figure 41. (a) Visualization of a three-odor-to-two-sensor transformation. (b) The maximum number of feature vectors that can be

discriminated is the ratio between the hypervolume of the accessible sensor ggaaad the accuracy of the sensor array response.
Reprinted with permission from ref 175. Copyright 2003 Wiley-VCH, Weinheim.

where ¢ is the prediction of'drom X through a calibration  is a measure of the information content provided by a given
model. To use these theoretical constructs in practice, onecombination of features, where “information” can be associ-
would (1) assume a parametric densigx|C) for each ated with variance (e.g., assessed through the PCA eigen-
individual sensor, (2) estimate the parameters from experi- values), interclass discrimination (Fisher discrimination, e.g.,
mental data (i.e., by measuring the sensor array responseseasured with the LDA eigenvalues), or correlation (e.g.,
to a number of analyte mixtures), (3) compute the FIM using petween the feature vectors and the dependent variables), to
eq 18, and (4) compute the expected accuracy of the arrayname but a few. The advantage of this method is that the
from eq 19. This accuracy estimate would then be used as afigure of merit” is independent of the type of calibration
“figure of merit” to select an optimal array configuration model used to process these features. In contrast, wrappers
from a pool of cross—selectlve. sensors. Once this “optlm_al” evaluate each combination of features by the predictive
array has been found, further improvements can be obtained,ccyracy of the calibration model trained on that particular
by replicating the array a number of times; see Di Natale et fg41re subset, measured by statistical resampling or cross-
al** and Wilsor®* for an authoritative discussion of \gjidation of a dataset. Each approach has a number of
redundancy in sensor arrays. advantages and disadvantag®sThe wrapper approach

. usually achieves better predictive accuracy since the feature
11.2. Feature Selection subset can be tuned with respect to the particular bias of the

In most cases, however, array optimization is approachedcalibration model. In addition, the wrapper has a mechanism
empirically by defining alternative figures of merit that can to avoid overfitting, since the feature subsets are evaluated
be computed more conveniently. This approach is typically according to their performance on test data. Wrappers are,
referred to adeature subset selectidn the pattern-recog-  however, computationally intensive, since the calibration
nition and machine-learning literature. A number of empirical model must be continuously retrained. Filters usually find a
figures of merit can be used for this purpose, which can be more general feature subset that works well on a wider range
grouped into two categories: filters and wrapp&?f filter of calibration models, and they are computationally attractive,
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but it is difficult to design filters that correlate well with the the ever-increasing computational capabilities of personal
final predictive accuracy of the calibration model. Owing to computers, the tendency in recent years has been to move

their respective pros and cons, both wrapfref§ 264365367 toward genetic algorithm method.301,366,368,378384
and filter$°**"2have been used in different applications in |f the number of potential features is large, the selection
the field of “electronic noses”. procedure can be computationally intensive. Therefore, it

Once a measure of performance or “figure of merit” has may be advantageous to initially “weed out” poor features
been designed, an “optimal” subset of features must be found.with a filter and then use a wrapper-based selection on a
One may be tempted to exhaustively evaluate all possiblereduced set of features. It must be noted, however, that the
combinations of features and to then select the global prescreening step may remove features that provide limited
optimum. However, due to combinatorial explosion, exhaus- but complementary information. Gualdron ef&lproposed
tive search is unfeasible for all but very small problems (see, a two-stage selection algorithm, where individual features
e.g., ref 118 for an exhaustive evaluation). Thus, several are first evaluated by their ratio of between-class to within-
methods have been devised that explore the space of allclass variance. A threshold is set, and only those features
possible feature combinations in a more efficient fash- whose ratio is higher than the threshold are retained for
ion.180373 These search strategies can be assigned to thredurther selection. The results showed that the performance
categories?* (i) exponential, (ii) sequential, and (i) random  of this two-step method is comparable to that of a one-step
strategies. Exponential techniques perform a search whoseselection procedure, in which all features undergo full subset
complexity grows exponentially with the number of states. selection, but it requires only 25% of the computation time.
Among these, branch and boudfftis guaranteed to find the ~ On the basis of this work, Llobet et #° developed an
optimal feature subset of a given size if the evaluation improved feature selection procedure for mass-spectrometry-
function is monotonic. Monotonicity assumes that the based “electronic nose” instruments. Their method evolves
addition of a new featuralwaysimproves the information  in three stages. During the first stage, every possible pair of
content of the subset. This assumption is, however, violatedfeatures (each being a mass-to-charge ratio) is evaluated
in practical problems, since the addition of features does according to their Fisher’s discriminant ratio (between-class
increase the risk of overfitting. Sequential-search algorithms to within-class scattering), and only the top 30% features
are strategies that reduce the number of states to be visitedire selected. Evaluating features in pairs prevents features
during the search by applying local search. The most popularwith low but complementary information from being thrown
methods include sequential forward selection (SFS) andaway. During the second stage, the Pearson’s correlation
sequential backward selection (SBS). SFS starts from thebetween every pair of features is computed, and a collinearity
empty set and sequentially adds features, whereas SBS startireshold is set so that only the top 20% of the features (the
from the full set and sequentially removes features. Thesemost uncorrelated) are preserved. During the third stage,
two algorithms, however, have a tendency to become trappedstochastic methods (simulated annealing and genetic algo-
in local minima since they cannot backtrack from there (i.e., rithms) are used to perform a suitable subset selection. The
SFS cannot remove a feature once it is added, and SBoverall method was validated on an experimental database
cannot add a feature once it is removed). More recently, of various kinds of Iberian ham. The three-stage algorithm
sequential-floating methods with backtracking capabilities selected 14 out of 11z ratios as features and yielded 95%
have become popular since they do not require monotonicity classification performance on test data, which compared
and often lead to optimal or near-optimal solutions in a favorably to the 88% achieved by a classifier trained on the
fraction of the computation time required by branch and entire feature set.
bound. Random search algorithms are an attempt to over- |n addition to these techniques, a high-level view of the
come the computational costs of exponential methods andinformation provided by the different sensors/features may
to avoid the tendency of sequential methods to becomebe obtained from a loadings plot of, e.g., PCA, LDA, or PLS.
trapped in local minima. Among these technigques, simulated In a loadings plot, each feature is displayed as a point,
annealing’®and genetic algorithni& are most widely used.  typically in a 2D or 3D representation. The farther a feature
Simulated annealing (SA) is based on the annealing processs located from the origin, the more information the feature
of thermal systems. Starting from an initial solution, SA provides for the analysis (e.g., variance in PCA, discrimina-
updates the current solution in a local fashion (e.g., adding tion in LDA, correlation with the dependent variable in PLS).
or removing a feature). If the new solution is better, it is Boilot et al3”® performed a sensor fusion from four “elec-
accepted; if it is worse, it can still be chosen with a tronic nose” instruments, an electronic olfactometer based
probability, P, which depends on a global temperature on a temperature-modulated metal-oxide sensor (INRA), an
parameteil. The temperature is initially set to a high value, array of 7 thickness-shear-mode resonators (ROMA), a
which allows SA to perform a global search, butis second array of 8 thickness-shear-mode resonators (UPM),
gradually decreased, which allows the algorithm to convergeand an array of 32 conductive-polymer sensors (WAR-
to a final solution. Genetic algorithms (GAs), on the other WICK). The four instruments were used to measure the
hand, are inspired by the process of natural selection. Startingneadspace of various analyte samples (apple, pear, and peach
from a random population of solutions, a GA will generate juices), and a total of 72 features was extracted from the
a new population of solutions by means of mutation instruments. Figure 42a shows the PCA loadings plot of these
operations (adding or removing features) and crossoverfeatures. The analysis of this plot can provide insights on
operations (combining features from two parent solutions). how analyte information is detected by the instruments. First,
Members for the new population are selected probabilistically sensors of the same instrument tend to cluster together, which
based on their fitness; better solutions have a higher suggests that they provide correlated information. Second,
probability of making it to the new population, but “less- sensors from the UPM and ROMA instruments also tend to
fit” solutions are also allowed in order to promote diversity. cluster together, a reasonable result since both instruments
Because of their ability to perform global optimization and are based on the same sensor technology. Third, the spread
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Figure 42. (a) PCA loadings plot of 72 features extracted from four different “electronic-nose” instruments. Reprinted with permission
from ref 379. Copyright 2003 Elsevier. (b) PCA loadings plot of the “simple” transient parameters in the study beEME Shadowed
areas mark groups of features that provide redundant information. Reprinted with permission from ref 72. Copyright 1997 Elsevier.

of the sensors within each instrument is an indication of the First, a dynamical model of the sensor is developed from
degree of collinearity of the sensors; e.g., the conductive- experimental data; the model predicts the next conductance
polymer sensors seem to provide very similar information, value of the sensory{ ;) from the previous values of the
possibly due to their large inherent cross-sensitivity to the conductance{yi} L;?y*l, as well as from the next and

humidity present in the samples. Figure 42b shows the previous values of the temperature set pofntg | ™2,
loadings plot of the “simple” parameters in the study of &klo

et al./?which was reviewed in section 9.1.4. From this plot, L =F(V Ve Uor U oo U 20

it is possible to identify a number of highly correlated Yirr = FOb Yicar o Yoo U Uy oo Ui 2) - (20)
arameters, such as max/on derivative and short-on integral .

g-exp-OnTime constant and TO-60%, off integral and 385_ Wheren, andn, represent the model order. A suitable model

off response. These features describe the same properties df¢) 1S %’"t from experimental data using a Wavelet
the response curve, and only one of them is thus needed. network38’ This model can be used to simulate the sensor

response to different temperature programs. In the second
7 ati ot : stage, an optimization routine is used to find the “optimal”
11.3. Optimization of Excitation Profiles g P ut : P
program{ui},_, that maximizes the distance between the

Much less attention has been paid to the optimization of (simulated) temperature-modulated sensor responses to two
temperature-modulation profiles for metal-oxide sensors. target gases:

While a number of articles report on empirical studies with
various temperature waveforms (e.g., rectangular, sine, ut T = arg maxd(vees oae 21
sawtooth, and triangular) and stimulus frequengigg’+322 {u} i ul,%’z ur Y (1)
only a handful of studies have approached the problem in a

systematic fashion. Kunt et &ll.developed an optimization  This procedure is subject to a continuity constrajot.¢ —
method for microhotplate devices that works in two stages. uj| < 40 °C) to avoid drastic changes between consecutive
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Figure 43. (a) Normalized conductance response to methanol (solid) and ethanol (dashed) upon applying a linear temperature ramp as
shown in (b). (c) Normalized conductance response to methanol (solid) and ethanol (dashed) upon application of the “optimal” temperature
program shown in (d); predictions from the model in eq 20 are shown as circles (methanol) and crosses (ethanol). Note the dramatic
improvement in discrimination between (a) and (c). Reprinted with permission from ref 21. Copyright 1998 Elsevier.

System under study individual target compound, the impulse respomgg is
—M computed as the cross-correlation between the excitation
signal (PRBS) and the sensor response, and the spectral
components are computed from the FFh(j. Second, each
individual frequency is ranked on the basis of its information

ML ) Wi : content (between-class to within-class scatter ratio), and a
e~ SENSOr ol e A Analysis . A . N
generator [sensor ] Circular | i) i subset of the most informative frequencies is selected. The
FE e - i p - "ml’que'rrr' authors show that this procedure can be used to discriminate
daoman

and quantify various gases and their mixtures using one
sensor and three modulating frequencies. This method was
Figure 44. Optimization of the temperature-modulation frequency extended in ref 388 to multilevel pseudo-random sequences
#‘rf,'%grﬁfs%%%‘,"&”ﬁy?{ghﬁ'Z%rgffé‘ég'ces' Reprinted with PEMISSIOML-PRS), which are better suited than binary sequences to
estimate the linear dynamics of a system with nonlinearities.
In a subsequent investigation, Vergara e&lused the
temperatures. Further improvements in smoothness aredynamic moments of the sensor’s phase i®tyhich we
achieved by means of a wavelet-based distance that uses onlyeviewed in section 9.1.2, to extract information from ML-
the lower scales of the decomposition (lower scales capturepRS responses. Their results show that similar or better
the general shape of the sensor response, whereas highegsults than those in ref 388 can be obtained with the dynamic
scales capture its details). When applied to the discrimination moments, while using only a small fraction of the ML-PRS
of methanol and ethanol, the optimization routine of Kunt response. Collectively, these studies have demonstrated that
et al. returned the temperature program shown in parts ¢ andemperature profiles with very short time scales can be found
d of Figure 43. Whereas the sensor responses to ethanol an¢hat provide a maximum discrimination for a given set of
methanol upon applying a simple linear ramp are highly analytes.
overlapping-see parts a and b of Figure 4the response
patterns upon applying the optimal temperature program are;o conclusion and Outlook
nearly orthogonal. '

Vergara et af®® have proposed a system-identification It can be concluded from the contents of this artiedad
method for determining suitable temperature-modulation many references heretrthat the use of various transducer
programs for specific target gases. Their method is basedtypes or inhomogeneous transducer arrays is, indeed, ben-
on pseudo-random binary sequences (PRBS) and maximuneficial with regard to the performance of such sensor arrays.
length sequences (MLSs). PRBS-MLSs are square-waveln many cases, the data analysis of sensor-array or “electronic
signals with several interesting properties: (1) they are nose” instruments has been limited to an empirical qualitative
repeatable, which ensures that the respective results aranalysis or the drawing of PCA plots. While useful for rapid
reproducible, (2) they have a flat power spectrum over a large visualization purposes, PCA plots are not very representative
frequency range, which renders them very suitable for systemfor higher-dimensional measurement/feature spaces, simply
identification, and (3) they have a maximum length, so that because (i) the data are projected onto a two-dimensional
the impulse response of the system can be estimated fronplane irrespective of the original or intrinsic dimensionality
the cross-correlation. This method is illustrated in Figure 44 and (ii) PCA only captures directions of maximum variance,
and works as follows. First, a PRBS-MLS is used to drive which do not necessarily contain analytical information. A
the sensor heater, while the sensors are exposed to variouguantitative indicator of the array performance, such as
target compounds (NI NO,, and mixtures). For each predictive accuracy (e.g., classification rate or mean-square-
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error) on unseen test data, should be used as a figure of merit. (10) Massart, D. L.; Vandeginste, B. G. M.; Deming, S. N.; Michotte,
A careful selection of sensor arrays, feature subsets, and Y. Kaufman, L.Chemometrics: A Textbopklsevier: Amsterdam,

L - . .2 . The Netherlands, 1988.
excitation profiles for a given application can further improve (11) Hierlemann, A.; Schweizer-Berberich, M.; Weimar, U.; Kraus, G.;
the sensor-array performance.

Pfau, A.; Gpel, W. InSensors UpdajeéBaltes, H., Gpel, W., Hesse,
Another shortcomin f multisensor-arr. r “electroni J., Eds.; VCH: Wellnhelm, Germany, 1996_; ‘V0|_. 2, p 119. _
,(,)t ers O t,{%ot go ft%tset 30 6;] ayg eectfo ¢ d(12) Brereton, R. GMultivariate Pattern Recognition in Chemomettics
nose: papers is tha ma}ny orthe studies have been per Orr_n_e Elsevier: Amsterdam, The Netherlands, 1992.
on food samples or their headspaces, the analyte composition (13) weimar, U.; Gpel, W. Sens. Actuators, B998 52, 143.
of which has been rather complex, hardly known, and highly 2143 Lorber, A.; KOWJaIski, B. RJ. Chemlonéﬁ%a %’9276 )
1 itati 15) Lemmo, A. V.; Jogenson, J. WAnal. Chem1 5, 1576.
\t;arlable_. M%Feol‘lf er, thle_quglltatlveb sensor rgsbults hﬁve _no;c (16) Takatera, K.; Watanabe, Anal. Chem1993 65, 759.
een scientitically explained or SL! _Stant'ate . yac gmlca (17) Lin, Z. H.; Booksh, K. S.; Burgess, L. W.; Kowalski, B. Rnal.
gas-phase or headspace composition analysis. Thus, itisnot  ~ Chem.1994 66, 2552.
always clear which compounds or chemical effects lead to (18) Fort, A; Gregorkiewitz, M., Machetti, N.; Rocchi, S.; Serrano, B.;
a discrimination of the different samples. Moreover, sample- lﬁpn‘l"z'abg'z’l"ér"z'\'" Vignoli, V.; Faglia, G.; Comini, EThin Solid
_to-sample variability, sample de_terloranon, ar!d the strong (19) Heilig, A.; Barsan, N.; Weimar, U.; Schweizer-Berberich, M.;
influence of the sample preparation and sampling procedure Gardner, J. W.; Gpel, W. Sens. Actuators, B997, 43, 45.
on the sensor results, in particular for natural products, are (gg) f(an?t"%f JZFF’CM '§5520$3J9_1b 864. N RESS ‘s
often underestimated, and the corresponding information is (%) Kunt T. A; McAvoy, T. J.; Cavicchi, R. E.; Semancik, Sens.

L . Actuators, B199§ 53, 24.
missing In many papers. (22) Lee, A. P.; Reedy, B. Bens. Actuators, 8999 60, 35.

On the technological side, the progress in micro- and (23) Booksh, K. S.; Kowalski, B. RAnal. Chem1994 66, 782A.
nanotechnology, microelectronics, and in data-processing (¢4) Smilde, A. K.; Tauler, R.; Saurina, J.; Bro, Raal. Chim. Actal999

S : X 398 237.
speed and capability will dramatically influence the develop- 25y Gipel, w. Sens. Actuators, 8998 52, 125.

ment of chemical sensors and sensor systems in the near(26) Elwenspoek, M.; Jansen, H. Silicon micromachiningCambridge

future: rather complex and versatile microsensor and mi- University Press: Cambridge, U.K., 1998.

croanalysis systems operable directly through standard @7 go%dz'e""'ak’ MThe MEMS handboolCRC Press: Boca Raton, FL,

interfaces from a Iaptop or palmtop by means of Standard_ (28) Kovacs, G. T. AMicromachined transducers sourcebpakCB:
software are emerging, as has been demonstrated in this New York, 1998.

article. The end-user is interested in reliable, user-friendly, (29) Madou, M.Fundamentals of microfabricatiorCRC Press: Boca
. . . aton, y .
and affordable sensor systems irrespective of the internal (30) Sze, S. MSemiconductor Sensoiiley & Sons: New York, 1994.

system complexity, which, in most cases, will not be evident  (31) Hierlemann, A.; Brand, O.; Hagleitner, C.; Baltes, Pfoc. IEEE
to the user anyway. Therefore, we think that a concept of 2003 91, 839.
versatileadaptive (micro)sensor systenugn be most suc- ~ (32) Brand, OProc. IEEE2006 94, 1160.

. - - (33) Hagleitner, C.; Hierlemann, A.; Baltes, H. 8ensors Update, Vol.
cessful Adaptive sensor systenmsay be devices that include

> - 12; Baltes, H., Korvink, J., Fedder, G., Eds.; Wiley VCH: Weinheim,
various transducer types, auxiliary sensors, eventually sepa- New York, 2003; pp 5+120.

ration and preconcentration units, which can respond or adapt (34) Hagleitner, C.; Hierlemann, A.; Brand, O.; Baltes, H.Sensors

; ; ; e ; Update, Vol. 11 Baltes, H., Korvink, J., Fedder, G., Eds.: Wiley
their operation to occurring anaIyS|s situations or events. In VCH: Weinheim, New York, 2002; pp 104155.

the event that, e.g., a certain target analyte or a major (3s) Lemmerhirt, D. F.; Wise, K. DProc. IEEE2006 94, 1138.
interferent is detected, the sensor selection, sensor operation(36) Gardner, J. W.; Bartlett, P. M&ens. Actuators, B994 18, 211.
mode, feature extraction, and data treatment would be (37) Gardner, J. W.; Bartlett, P. Nsens. Actuators, B996 33, 60.

e o ; (38) Rk, F.; Barsan, N; Weimar, UWChem. Re. in press (cr068121q).
adapted to this situation, and the protocols would be executed 39) Weimar. U. Gpel, W. Sens. Actuators, B98 52, 143,

in a way that the best-possible target analyte detection is (40) Lee, A. P.; Reedy, B. Sens. Actuators, B999 60, 35.
achieved or that the interferent can be recognized and its (41) Demame, V.; Grisel, ASens. Actuatoré988 13, 301.
influence on the sensor system output can be minimized or (42) Benkstein, K. D.; Semancik, &hem. Re. in press.
suppressed. In dealing with interferents, cross-sensitivities, (#3) Nakamoto, T.; Ishida, HChem. Re. in press (cr068117e).

. . ! ' (44) Demarne, V.; Balkanova, S.; Grisel, A.; Rosenfeld, D.; Levyéns.
or low signal levels, it may be very effective to purposefully Actuators, B1993 B14 497,

select or deselect sensors or to use signal ratios or differential (45) Graf, M.; Barrettino, D.; Taschini, S.; Hagleitner, C.; Hierlemann,

values instead of merely increasing the array size or the A Baltes, H.Anal. Chem2004 76, 4437. :

transducer diversity (46) Graf, M.; Jurischka, R.; Barrettino, D.; Hierlemann JAMicromech.

: Microeng.2005 15, 190.

(47) Heilig, A.; Barsan, N.; Weimar, U.; Schweizer-Berberich, M;
Gardner, J. W.; Gpel, W. Sens. Actuators, B997, 43, 45.

(48) Cavicchi, R. E.; Suehle, J. S.; Kreider, K. G.; Gaitan, M.; Chaparala,
P. IEEE Electron Deice Lett.1995 16, 286.
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