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Pattern Analysis for Machine Olfaction: A Review
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Abstract—Pattern analysis constitutes a critical building block
in the development of gas sensor array instruments capable
of detecting, identifying, and measuring volatile compounds, a
technology that has been proposed as an artificial substitute of
the human olfactory system. The successful design of a pattern
analysis system for machine olfaction requires a careful consid-
eration of the various issues involved in processing multivariate
data: signal-preprocessing, feature extraction, feature selection,
classification, regression, clustering, and validation. A consid-
erable number of methods from statistical pattern recognition,
neural networks, chemometrics, machine learning, and biological
cybernetics has been used to process electronic nose data. The
objective of this review paper is to provide a summary and guide-
lines for using the most widely used pattern analysis techniques,
as well as to identify research directions that are at the frontier of
sensor-based machine olfaction.

Index Terms—Classification, clustering, dimensionality reduc-
tion, electronic nose, multicomponent analysis, pattern analysis,
preprocessing, validation.

I. INTRODUCTION

A N electronic nose (e-nose) is an instrument that combines
gas sensor arrays and pattern analysis techniques for

the detection, identification, or quantification of volatile com-
pounds. The multivariate response of an array of chemical gas
sensors with broad and partially overlapping selectivities can
be utilized as an “electronic fingerprint” to characterize a wide
range of odors or volatile compound by pattern-recognition
means. As illustrated in Fig. 1, this process can be split into
four sequential stages: signal preprocessing, dimensionality
reduction, prediction, and validation. The initial block in the
figure represents the e-nose hardware, which typically consists
of a gas sensor array, an odor delivery subsystem, an electronic
instrumentation stage, and a computer for data acquisition.

The process of data analysis starts after the sensor signals
have been acquired and stored into the computer. The first
computational stage, calledsignal preprocessing, serves
various purposes, including compensating for sensor drift,
extracting descriptive parameters from the sensor array re-
sponse and preparing the feature vector for further processing.
A dimensionality reduction stage projects this initial feature
vector onto a lower dimensional space in order to avoid prob-
lems associated with high-dimensional, sparse datasets. The
resulting low-dimensional feature vector is then used to solve a
given prediction problem, typically classification, regression,
or clustering. Classification tasks address the problem of
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identifying an unknown sample as one from a set of previously
learned odorants. Inregressiontasks, the goal is to predict a
set of properties (e.g., concentration, quality) for an analyte,
typically a complex mixture. Finally, inclustering tasks the
goal is to learn the structural relationships among different
odorants. A final step, sometimes overlooked, is the selection
of models and parameter settings and the estimation of the
true error rates for a trained model by means ofvalidation
techniques.

II. PREPROCESSINGTECHNIQUES FORGAS SENSORARRAYS

The main purpose of a preprocessing stage is to carefully se-
lect a number of parameters that are descriptive of the sensor
array response, as this choice can significantly affect the perfor-
mance of the subsequent modules in the pattern analysis system
[1]. Although preprocessing is somewhat tied to the underlying
sensor technology, three general steps can be identified [2], [3]:
baseline manipulation, compression, and normalization.Base-
line manipulation procedures transform the sensor response
relative to its baseline (e.g., response to a reference analyte) for
the purposes of contrast enhancement and drift compensation,
the latter requiring additional processing (Section II-A). Three
baseline manipulation methods are commonly employed: dif-
ference, relative, and fractional. Thedifferencemethod directly
subtracts the baseline and can be used to eliminate additive drift
from the sensor response.Relativemanipulation, on the other
hand, divides by the baseline, removing multiplicative drift, and
generating a dimensionless response.Fractional manipulation,
finally, subtracts and divides by the baseline, generating dimen-
sionless and normalized responses. Variouscompressionalgo-
rithms can be employed to generate descriptive parameters from
the sensors’ transient response. The standard procedure is to se-
lect thesteady-stateresponse of the sensor, but a number of
compression algorithms (see Table I) have been proposed to
extract additional information from thetransient response, re-
sulting in improved selectivity, reduced acquisition time, and in-
creased sensor lifetime [4]. Finally,normalization procedures
prepare the feature vector for the subsequent pattern analysis
modules on a local or a global fashion. Local methods operate
across the sensor array for each individual “sniff” in order to
compensate for sample-to-sample variations caused by analyte
concentration and sensor drift, among others. The most widely
used local method isvector normalization, in which the feature
vector of each individual “sniff” is divided by its norm and, as
a result, is forced to lie on a hyper-sphere of unit radius. Global
methods, on the other hand, are typically used to ensure that
sensor magnitudes are comparable, preventing subsequent pat-
tern-recognition procedures from being overwhelmed by sen-
sors with arbitrarily large values. Two global procedures are
commonly employed in e-nose systems: (i)sensor autoscaling,
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Fig. 1. Building blocks of the pattern analysis system for an electronic nose.

TABLE I
REVIEW OF PREPROCESSINGTECHNIQUES

IN THE E-NOSELITERATURE

in which the mean and standard deviation of each feature are
set to zero and one, respectively, and (ii)sensor normalization,
in which the range of values for each individual feature is set
to [0,1]. It must be noted that these global techniques can am-
plify noise since all the sensors (including those that may not
carry information) are weighted equally. Finally, alogarithmic
transform can also be used to increase the dynamic range of
the system [5]. Table I provides a few additional references on
signal preprocessing from the e-nose literature.

A. Drift Compensation

The most serious limitation of current e-nose systems is the
inherent drift of gas sensors, which results in a slow, random
temporal variation of the sensor response when exposed to the
same gases under identical conditions, as shown in Fig. 2(left).
As a result of drift, which can affect both sensor baseline (ad-
ditive) and sensitivity (multiplicative) [16], previously learned
sensor patterns become obsolete over time and the system loses
the ability to identify known odors. The most effective means
of drift compensation isperiodic recalibration with a refer-
ence gas that is chemically stable over time and highly corre-
lated with the target analytes in terms of sensor behavior [17].
The array response to the calibration gas can then be directly
subtracted from the response to the analytes [18], used to infer
a temporal drift model for each individual sensor [17] or for
the entire array [19]–[21]. As shown in Fig. 2, the multivariate
direction of the drift can be obtained from the principal com-
ponents (Section III-A) of the calibration gas.Modulation of
the sensors’ operating temperature can also be used to generate
features that are more robust to drift than isothermal features
[22], [23]. Finally, a number of computational methods based
on system identificationand self-organization principles have
also been proposed for drift reduction [24]–[27].

III. D IMENSIONALITY REDUCTION

The feature vector that results from the preprocessing stage is
oftentimes not suitable to be processed by a subsequent module
due its high-dimensionality and redundancy. Problems with
high-dimensional data, known as the “curse of dimension-
ality” in statistical pattern recognition, imply that the number
of training examples must grow exponentially with the number
of features in order to learn an accurate model. Since only a
limited number of examples are typically available, there is
an optimal number of feature dimensions beyond which the
performance of the pattern analysis model starts to degrade.
The problem ofredundancy, also referred to as collinearity
in chemometrics and statistics, is particularly significant in
e-nose instruments due to the cross-selectivity of chemical gas
sensors. When two or more feature dimensions are collinear, the
covariance matrix of the entire dataset becomes singular and,
therefore, noninvertible, which leads to numerical problems
in various statistical techniques (e.g., quadratic classifiers and
ordinary least squares). For these two reasons, a dimensionality
reduction stage is required in most cases, either feature extrac-
tion or feature selection, as described in the next subsections.

A. Feature Extraction

The goal of feature extraction is to find a low-dimensional
mapping that pre-
serves most of the information in the original feature vector.
Two basic criteria can be employed to measure the informa-
tion content of the projection: signal classification and signal
representation [28]. Signal classification methods associate in-
formation with discrimination capabilities (e.g., inter-class dis-
tance) and are the preferred choice for pattern classification
problems, provided that sufficient data is available. With small
or high-dimensional datasets, however, these techniques have
a tendency to over-fit the training data, resulting in projections
that may not generalize well for test examples. Signal represen-
tation methods, on the other hand, associate information with
the structure of the data (e.g., variance) and should be favored
when the goal is exploratory data analysis. Most feature ex-
traction techniques for e-nose applications have been based on
linear techniques, mainly principal components analysis (PCA)
and Fisher’s linear discriminant analysi (LDA).PCA is a signal-
representation technique that generates projections along the di-
rections of maximum variance, which are defined by the first
eigenvectors of , the covariance of [28]. LDA is a signal-
classification technique that directly maximizes class separa-
bility, generating projections where the examples of each class
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Fig. 2. PCA projections before (left) and after (right) drift compensation for an FET/MOS array under mixtures of H, NH , C H OH, and CH . The center
cluster (+) is the calibration gas (reproduced from [20] with permission of John Wiley & Sons).

form compact clusters and the different clusters are far from
each other. These projections are, alternatively, defined by the
first eigenvectors of the matrix , where and are
the within-class and between-class covariance matrices, respec-
tively [29]. LDA and PCA are optimal techniques under uni-
modal Gaussian assumptions. For non-Gaussian distributions
additional techniques may be used, including Sammon’s maps
[30], [31], multilayer perceptrons (MLPs) (Section IV-C), Ko-
honen self-organizing maps (Section VI-C), Kernel PCA, pro-
jection pursuit, and independent components analysis [32].

Fig. 3 illustrates the performance of PCA and LDA using a
dataset collected by the author on an e-nose prototype [33] with
16 MOS sensors. The dataset consisted of five brand-name
cookies (labels 1–5) sampled over a period of two weeks. A
64-dimensional feature vector was extracted from the sensor
transients using windowed time slicing [34] and finally au-
toscaled. Fig. 3 shows the first two PCA and LDA projections.
As expected, the LDA projections exhibit a high degree of class
separability, whereas PCA preserves the original structure of
the data, which includes odor- and drift-related variance.

B. Feature Subset Selection

Feature subset selection (FSS) is a dimensionality reduction
technique that can be used to configure small sensor arrays for
specific odor-measurement applications. The goal of FSS is to
find an “optimal” subset of sensors (or features) that maxi-
mizes information content or predictive accuracy. The simplest
FSS approach consists of evaluating each feature individually
and selecting those features with the highest scores. Un-
fortunately, this approach ignores feature redundancy and will
rarely find an optimal subset. One may instead be tempted to
evaluate all possible subsets of features and select the global

optimum, but the number of combinations becomes im-

practical even for moderate values of and .
To avoid the exponential explosion of an exhaustive search,

several methods have been devised that explore the feature
space in a more efficient fashion [35], [36]. These search
strategies can be grouped into three categories: exponential,
sequential, and randomized.Exponential techniques perform a

search whose complexity grows exponentially with the number
of states. Among these,branch and bound(BB) [37] is very
popular as it is guaranteed to find the optimal subset of a
given size if the evaluation function is monotonic1 . This
assumption is, however, violated in practical problems since
the addition of features can increase the risk of over-fitting.
Sequentialsearch algorithms are greedy strategies that reduce
the number of states to be visited during the search by applying
local search. The simplest methods aresequential forward
selection(SFS) andsequential backward selection[35]. SFS
starts from the empty set and sequentially adds features,
whereas SBS starts from the full set and sequentially removes
features. The performance of SFS/SBS may be improved by
means ofsequential floatingmethods with backtracking capa-
bilities [38]. Finally, randomized search algorithms attempt
to overcome the computational cost of exponential methods
and the tendency of sequential methods to become trapped in
local minima. Among these techniques,simulated annealing
(SA) [39] andgenetic algorithms(GA) [40] are most widely
used. SA is based on the annealing process of thermal systems
and performs a stochastic search on a single solution. GAs,
conversely, are inspired by the process of natural selection and
perform a global random search on a population of solutions.

Two strategies are available to evaluate the different feature
subsets: filters and wrappers [41].Filters compare feature
subsets by their information content (e.g., inter-class distance),
whereaswrappers evaluate feature subsets on the basis of
their predictive accuracy on the pattern recognition algorithm,
measured by statistical re-sampling or cross-validation. Each
approach has a number of advantages and disadvantages
[42]. The wrapper approach usually achieves better predictive
accuracy since the feature subset can be tuned to the particular
bias of the pattern recognition algorithm. In addition, the
wrapper has a mechanism to avoid over-fitting since the feature
subsets are evaluated by their performance on test data. Wrap-
pers are, however, computationally intensive since they must
continuously re-train the pattern recognition algorithm. Filters,
on the other hand, tend to find a more general feature subset

1Monotonicity implies that the addition of a new feature always improves the
information content of the subset.
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(a)

(b)

Fig. 3. (a) PCA versus (b) LDA for visualization and classification purposes.

that works well on a larger spectrum of pattern recognition
techniques and are computationally more attractive.

1) Review: Eklöv et al. [43] used a wrapper approach
combined with SFS to select features for a multilayer-percep-
tron (MLP) regression problem. Since an MLP wrapper was
computationally impractical, the predictive accuracy of each
feature subset was approximated with ordinary least squares
regression. Experimental results showed that their feature
selection procedure could find small (5–10) feature subsets
with similar or better predictive accuracy than the complete
set of 49–85 features. Gutierrez-Osuna [33] compared the

performance of eight search strategies on odor classification
problems. The wrapper consisted of LDA combined with K
nearest neighbors (Section IV-B) and predictive accuracy was
estimated through five-fold cross validation (Section VII). This
study indicated that all the search techniques perform similarly,
yielding 25–30% increase in predictive accuracy while reducing
the size of the feature set by 50%. Corcoran [44] have used a
genetic algorithm and a filter based on Fisher’s discriminant
ratio [45] to select features from a temperature-modulated
sensor array. Their procedure was able to reduce the feature
set by 1/10 while maintaining classification rates on a rather
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oversized MLP. In a second article [46], the authors report on
the difficulties associated with finding a filter that correlates
well with predictive accuracy. This observation is consistent
with arguments in favor of wrappers.

IV. CLASSIFICATION

The goal of a pattern classifier is to generate a class label pre-
diction for an unknown feature vector from a
discrete set of previously learned labels . It
can be shown that to minimize classification errors2 one should
assign example to the class with the largest posterior prob-
ability [29]. This is known as the Maximuma poste-
riori (MAP) rule and is the best any classifier can do. The com-
putation of can be performed by applying Bayes The-
orem, yielding

(1)

where is the likelihood or class-conditional density,
is the prior probability, and serves as a normal-

ization constant that can be ignored for classification purposes
3 . In the absence of prior knowledge, can be approxi-
mated by the relative frequency of examples in the dataset. Di-
rect estimation of from high-dimensional training data
is, however, extremely difficult [47] unless strong simplifying
assumptions about the underlying distributions are made (e.g.,
Gaussian). From this perspective, most pattern classifiers can be
interpreted as attempts to estimate from data.

A. Quadratic Classifiers

The simplest possible way to estimate is to assume
that the likelihood function of each class is a unimodal (this is,
containing a single mean) Gaussian density

(2)
where and are the sample mean and sample covariance,
respectively, estimated from training data. Merging (2) into the
MAP rule (1) and taking natural logarithms yields the following
decision rule:

(3)

2Misclassification costs (Bayes Risk) could also be incorporated into the clas-
sifier. Please refer to the article by Pardo and Sberveglieri in this special issue
for additional details.

3The functionargmax() returns the class label that maximizes the posterior
(the argument), not the probability value itself. Therefore the equality holds after
removingP (y) since this does not depend on the class indexi. However,P (y)
would be necessary if not only the best class assignment but also a confidence
level in that assignment was required.

This is known as aquadraticclassifier since the decision bound-
aries between classes are quadratic hyper-surfaces. The term

is known as theMahalanobis distance,
which can be thought of as a stretching factor of feature space
along the directions of maximum variance. When the covariance

is the identity matrix, the Mahalanobis distance becomes the
familiar Euclidean distance, and the quadratic classifier reduces
to the simple nearest-mean classifier (assuming equiprobable
priors). Quadratic classifiers are, therefore, Bayes optimal if the
classes are unimodal Gaussian. They are computationally attrac-
tive, with only one caveat: estimation of the covariance matrix
can be difficult as a result of collinearity. When the number of
independent examples per class is lower than the dimension-
ality, the sample covariance becomes singular and, therefore,
noninvertible. In this case, it is common practice to assume that
all the classes have the same structure and a single covariance
matrix is estimated from the entire dataset, regardless of class.
This is known as alinear classifier because the decision bound-
aries in feature space become hyper-planes. Intermediate solu-
tions between the quadratic and the linear classifier by shrinkage
methods have also been proposed in the statistics literature [48].

B. Nearest Neighbor Classifiers

The nearest neighbors (kNN) rule is a powerful technique
that can be used to generate highly nonlinear classifications with
limited data. To classify example, kNN finds the closest ex-
amples in the dataset and selects the predominant class among
those neighbors. Although this formulation appears rather
heuristic, kNN is formally a nonparametric4 approximation of
the MAP criterion (1). kNN can generate highly local decision
regions by choosing an appropriate value forand presents very
attractive asymptotic properties: as the number of examples ap-
proaches infinite the probability of error for the ( ) NN
classifier will not be worse than twice the Bayes error, the best
any classifier can achieve [29]. The main limitations of kNN
are (i) storage requirements, since the entire dataset needs to be
available during recall and (ii) computational cost, since for each
unlabeled example, the distance to all training examples needs
to be computed (and sorted). These limitations, however, can be
overcome by editing the training set and generating a subset of
prototypes [49]. Special attention must be paid to the scaling of
each feature dimension, to which kNN is extremely sensitive.

C. Multilayer Perceptron Classifiers

MLPs, the most popular type of artificial neural networks, are
feed-forward networks of simple processing elements or neu-
rons whose connectivity resembles that of biological neuronal
circuitry. Each neuron in an MLP performs a weighted sum
of its inputs and transforms it through a nonlinear activation
function, typically a squashing sigmoidal. An MLP is able to
learn arbitrarily complex nonlinear regressions by adjusting the
weights in the network by a gradient descent technique known
as back-propagation of errors [50]. At each stage in the training
process, the MLP processes all of its inputs in a feed-forward

4Parametric methods assume that the underlying distribution can be repre-
sented with a parameterized model (e.g., a Gaussian density, with mean and
standard deviation as parameters). Non-parametric models do not make such
assumptions (e.g., a histogram).
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fashion, compares the resulting outputs with the desired ones
and back-propagates these errors to adjust each weight in the
network according to its contribution to the overall error. A
number of heuristics are available to improve the operation of
back-prop [29], [51], [52].

To avoid over-fitting, the complexity of the MLP can be con-
trolled bylimiting the network size. With the number of inputs
and outputs being determined by the application, network size
is strictly a function of the number of hidden layers and hidden
neurons per layer. It can be shown [53] that one-hidden-layer
MLPs can approximate any classification boundaries with ar-
bitrary accuracy, provided that the number of hidden units is
large enough. Nonetheless, the addition of extra hidden layers
may allow the MLP to perform a more efficient approximation
with fewer weights [54]. Despite a number of “rules of thumb”
published in the literature,a priori determination of an appro-
priate number of hidden units is still an unsolved problem. The
“optimal” number of hidden neurons depends on multiple fac-
tors, including complexity of the classification problem, number
of inputs and outputs, activation functions, training algorithm,
number of examples, and level of noise in the data. In practice,
several MLPs are trained and evaluated in order to determine an
appropriate number of hidden units. Constructive approaches,
which start with a small MLP and incrementally add hidden neu-
rons [55] and pruning approaches, which start with a relatively
large MLP and sequentially remove weights [56], [57], can also
be employed.

Network complexity can also be controlled byconstraining
the weight values. Regularization approaches such asweight
decayare very effective at generating smooth mappings [29].
Early stoppingmay also be applied to prevent the MLP from
over-fitting the training set [58]. The stopping point may be de-
termined by monitoring the sum-squared-error of the MLP on a
validation set during training. Finally,training with noise, also
known as jitter, can be used to prevent the MLP from approx-
imating the training set too closely and has been shown to im-
prove generalization [59]. For additional details on complexity
control, please refer to the tutorial article by Pardo and Sberveg-
lieri in this special issue.

Finally, it is important to mention some remarkable similari-
ties between MLPs and the statistical concepts covered in pre-
vious sections. It has been shown [60] that, using linear output
neurons with one-from-C binary output encoding, minimization
of the mean-square error at the output of an MLP is equivalent
to maximizing a nonlinear version of the objective function em-
ployed in Fisher’s LDA, allowing the hidden neurons to func-
tion as discriminatory feature extractors. In addition, when the
MLP is trained to minimize the cross-entropy cost function [61]
with one-from-C encoding and the output layer has softmax ac-
tivation functions, the outputs of the MLP will approximate the
posterior .

D. Radial Basis Function Classifiers

Radial basis functions (RBFs) are feed-forward connectionist
architectures consisting of a hidden layer of radial kernels and
an output layer or linear neurons [54]. Although the structure
of RBF networks resembles that of MLPs, their input-output
mappings and training algorithms are fundamentally different.

Each hidden neuron in an RBF is tuned to respond to a rather
local region of feature space by means of a radially symmetric
function such as the Gaussian . The output units, on
the other hand, form linear combinations of the hidden units to
predict the output variable in a similar fashion to MLPs.

RBFs are typically trained using a hybrid algorithm that em-
ploys unsupervised learning for the hidden layer followed by
supervised learning of the output layer. The first step consists of
selecting the radial basis centersusing C-means clustering
(Section VI-B). Then, the spreads are determined from the
average distance between neighboring cluster centers [62] or the
sample covariance of each cluster [63]. Alternatively, one may
use the expectation maximization algorithm [54] to estimate
both and simultaneously. Finally, training the output layer
is a straightforward supervised problem, in which the radial
basis activations are used as regressors to predict the target out-
puts. This can be efficiently solved using ordinary least squares
(Section V-A) since the output neurons have linear activation
functions.

Although very efficient, this hybrid training procedure is very
sensitive to noisy dimensions with high variance, which may
prevent the unsupervised stage from extracting clusters that are
predictive of the output variables. To overcome this limitation,
Chenet al. [64] introducedorthogonal least squares, a super-
vised technique that performs forward stepwise selection of ra-
dial basis functions from the training examples. At each step, the
algorithm chooses the basis function that provides the greatest
increment in explained variance in the output variables. This
algorithm is able to generate not only the radial basis centers
but also the hidden-to-output weight matrix and an appropriate
number of radial basis. For a thorough survey of RBFs, the
reader is referred to [52], [54].

E. Comparison Between Quadratic, kNN, MLP, and RBF
Classifiers

MLPs and radial basis functions are the two most popular
types of neural network architectures employed in the e-nose
community. Although both models can function as “universal
approximators,” it is important to highlight some of their dif-
ferences [45], [52], [54]. (i) MLPs perform a global and dis-
tributed approximation of the target function, whereas RBFs
perform a local approximation. (ii ) The distributed represen-
tation of MLPs causes the error surface to have multiple local
minima and nearly flat regions with very slow convergence. As
a result, training times for MLPs are usually larger than those
for RBFs. (iii ) MLP partition feature space with hyper-planes;
RBF decision boundaries are hyper-ellipsoids. (iv) MLPs ex-
hibit better generalization properties than RBFs in regions of
feature space outside of the local neighborhoods defined by the
training set. On the other hand, extrapolation far from training
data is dangerous. (v) MLPs typically require fewer parame-
ters than RBFs to approximate a nonlinear function with the
same accuracy. (vi) MLPs may have multiple layers with com-
plex connectivity, whereas RBFs typically have only one hidden
layer and full connectivity.

The various decision regions/boundaries that can be gener-
ated by the algorithms described in this section are illustrated in
Fig. 4. The quadratic classifier models each likelihood function
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(a)

(b)

(c)

(d)

Fig. 4. Class separation for (a) quadratic, (b) RBF, (c) kNN, and (d) MLP
(adapted from [54]).

with a unimodal Gaussian density. The resulting
decision boundaries, which are defined by the intersection of
the equiprobable likelihood contours, are quadratic surfaces.
The RBF classifier models the distribution of examples as a
Gaussian mixture, which is more accurate than the Qquadratic
approach for multimodal data. The kNN classifier creates a

TABLE II
REPRESENTATIVEPUBLICATIONS IN CLASSIFICATION AND REGRESSION

fine-grained partition of feature space, with polygonal decision
boundaries around each training example, known as a Voronoi
tessellation [65]. The MLP decision boundaries, at last, consist
of hyper-planes in feature space. Fig. 4(d) illustrates the case
of a reasonably sized MLP but, given enough hidden units,
MLPs can generate arbitrarily complex decision boundaries,
such as the one obtained for the kNN classifier. Finally, Table II
provides a few representative publications of these pattern
classification methods in e-nose applications. Additional
references can be found in [66], [67].

V. REGRESSION

Regression problems constitute a more challenging domain
for e-nose instruments. The goal of regression is to establish a
predictive model from a set of independent variables (e.g., gas
sensor responses) to another set of continuous dependent vari-
ables. Pattern classification could, therefore, be treated as a re-
gression problem where the dependent variable is categorical.
For this reason, most regression techniques can be (and have
been) applied for classification purposes. Three basic regression
problems have been addressed with e-nose instruments: multi-
component analysis, process monitoring, and sensory analysis.
In multicomponent analysis, the dependent variable is the con-
centration of an isolated analyte or the relative concentration of

known components in a mixture. Multicomponent analysis
is limited, in practice, to a few components (2–4) due to sensor
cross-selectivity and the exponential growth in the number of
calibration points with increasing values of. In process moni-
toring , the dependent variable is a process variable (e.g., quality
level) associated with an analyte that may be embedded in a ma-
trix of unknown compounds. The broad selectivity of chemical
gas sensors is an important shortcoming of e-noses for this type
of regression problems. Finally, insensory analysis, the depen-
dent variable is the score of a human sensory panel (e.g., inten-
sity, hedonic tone, organoleptic descriptors). Needless to say,
mimicking the perception of odors by humans is the ultimate
challenge for machine olfaction and an extremely complex re-
gression problem. The following subsections review a number
of linear regression techniques rooted in statistics and chemo-
metrics that can be used to obtain a first-order regression model.
For clarity, the following derivations will use a multicomponent
analysis formulation in which is a vector of concentrations for
the components in a mixture.

A. Ordinary Least Squares

A simple approach to regression is to assume that the depen-
dent variables can be predicted from a linear combina-
tion of the sensor responses , where we have
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adopted the chemometrics row-vector notation. Without loss of
generality, we also assume that the dependent and independent
variables are mean-centered. Alternatively, a constant dimen-
sion could be added to the feature vector to absorb the intercept.
Given a matrix of calibration mixtures and their cor-
responding sensor responses (one example per row), the
prediction matrix may be computed as .
Unfortunately, this exact solution is only possible whenis
nonsingular. In practice, is rectangular with more rows (ex-
amples) than columns (sensors) or vice versa and, therefore,
the inverse does not exist. For this reason, it is common
to seek the solution that minimizes the sum-squared prediction
error over the entire calibration set. This is known as the ordi-
nary least-squares (OLS) solution and is given by [29], [54]

The matrix is known as the pseudo-in-
verse of , since . Application of the OLS solution to
e-nose calibration may result in numerical problems since the
covariance matrix can become singular or near-singular
as a result of collinearity. These problems can be reduced by
using shrinkage methods [68], which are briefly reviewed in the
next subsections.

B. Ridge Regression

Ridge regression (RR) is a regularization method that stabi-
lizes the OLS solution by adding a multiple of the identity ma-
trix5 to the estimation of the covariance matrix [48], [69]

where is a regularization parameter that controls
the amount of shrinkage toward the identity matrix. For ,
RR is equivalent to OLS, whereas for , the solution be-
comes a constant model that always predicts the mean concen-
tration of the training data. Selection of an appropriate value for

is typically performed through cross-validation (Section VII).

C. Principal Components Regression

An alternative solution to the OLS collinearity problem is to
perform PCA and retain only a few of the principal components
as regressors or “latent variables,” hence the name principal
components regression (PCR). As a result, the regressors are ef-
fectively decorrelated and, more importantly, the smaller eigen-
values of , which become infinite when computing the
pseudo-inverse, are eliminated. The number of principal compo-
nents to keep for the regression can also be determined through
cross-validation. However, PCR presents similar problems to
PCA since the directions of maximum variance inmay not
necessarily be correlated with the dependent variables.

5This expression assumes that the sensors have the same variance. Otherwise,
the regularization termtr(Y Y )I=M must be replaced by a diagonal matrix
of the sensor variances [70].

D. Partial Least Squares

Partial least squares (PLS) is the “gold standard” in chemo-
metrics due to its ability to handle collinear data and reduce
the number of required calibration samples [71], [72]. As op-
posed to PCR, which extracts the “latent variables” from the
directions of maximum variance in the sensor matrix(the
eigenvectors of ), PLS finds the directions of maximum
correlation between and in a sequential fashion. The
first PLS latent variable ( ) is obtained by projecting

along the eigenvector corresponding to the largest eigen-
value of [73]. To find the second and subsequent
latent variables, is deflated by its OLS prediction from the
current PLS latent variable and the eigen-analysis is repeated.
A stopping point for the sequential expansion is determined
through cross-validation.

Table II provides references for published work on multicom-
ponent analysis using gas sensor arrays. Additional references
may be found in [66]. Non-linear extensions of these methods
and connectionist approaches such as MLPs or RBFs may be
employed if the relationships are found to be highly nonlinear.
This may the case, for instance, in multicomponent analysis
since the concentration-response dependence of most gas sen-
sors is nonlinear.

VI. CLUSTERING

Clustering is an unsupervised learning process that seeks to
find spatial relationships or similarities among data samples,
which may be hard to discern in high-dimensional feature space.
The process of clustering involves three basic steps: (i) defining a
dissimilaritymeasurebetweenexamples, typically theEuclidean
distance, (ii) defining a clustering criterion to be optimized,
typically based on within- and between-cluster structure (e.g.,
elongated, compact or topologically-ordered clusters), and (iii)
defining a search algorithm to find a “good” assignment of
examplestoclusters,sinceexhaustiveenumerationofallpossible
clusterings is clearly unfeasible. In most cases, a final validation
bydomainexperts isrequiredsince,unlikesupervisedprocedures
whose results can be objectively measured (e.g., mean-squared-
error), clustering resultscanbe rathersubjective. In the following
subsections we review the basic clustering techniques that have
been applied to process e-nose data.

A. Hierarchical Clustering

These algorithms are capable of generating a multi-level
clustering or taxonomy of examples using a tree structure known
as a dendrogram [see Fig. 5(a) and (b)]. These dendrograms can
be built in a bottom-up or top-down fashion, giving rise to two
types of algorithms: agglomerative and divisive, respectively.
Agglomerativealgorithms construct the dendrogram starting at
the leaves, where each example forms a unique cluster and pro-
ceed toward the root by sequentially merging the two “nearest”
clusters. A measure of cluster similarity is used to determine
which two clusters should be merged each time, typically min-
imum distance or maximum distance between examples from
each cluster. Minimum-distance (single-linkage) favors elon-
gated clusters, whereas maximum-distance (complete-linkage)
generates compact clusters [29].Divisive clustering algorithms
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proceed in the opposite direction, constructing the dendrogram
from the root, where all examples belong to one cluster and
sequentially splitting the “worst” cluster until each cluster con-
tains exactly one example. To determine the “worst” cluster
at a given iteration, the algorithm must tentatively split all
clusters and select the one whose two children have highest
dissimilarity. This is a computationally intensive task and, for
this reason, divisive clustering has received much less attention.
Divisive clustering, however, is more likely to produce mean-
ingful results than agglomerative methods for small number
of clusters [70].

B. C-Means

C-means is a clustering algorithm that generates a single-level
partitionof thedataset, this is,anassignmentof trainingexamples
into disjoint clusters. Starting from an initial clustering (e.g., a
random assignment of examples to clusters), C-means iteratively
re-computes the sample mean of each cluster and reassigns each
example to the cluster with the closest mean. This procedure
is repeated until the assignment of examples to clusters no
longer changes between iterations. Although the basic C-means
algorithm requires a pre-specified number of clusters, heuristic
procedures [84] can be employed to automatically determine
an appropriate number of clusters.

C. Self-Organizing Maps

Self-organizing maps (SOMs) are connectionist techniques
capable of generating topology-preserving clusterings [85].
An SOM is a network of clusters (or neurons) arranged in a
lattice structure, typically two-dimensional. The behavior of
SOMs results from the synergy of three processes: competition,
cooperation, and adaptation [52]. First, all neurons in the
lattice enter acompetitionfor each incoming example. The
closest neuron in feature space is selected as a winner and
becomes activated. Neurons in the topological neighborhood
of the winner also become activated in order to promote a
topological ordering in feature space. Finally, all active neurons
adapt their coordinates in feature space to become closer
to the input pattern. SOMs have very interesting properties
for data visualization but mapping onto the SOM manifold
can be tricky if the structure of the data is inherently high
dimensional.

D. Review

Clustering techniques have been widely used to explore
and visualize e-nose data. Gardner [10] has used hierarchical
clustering to analyze the response of 12 MOS sensors to different
alcohols. As shown in Fig. 5(a) and (b), the dendrograms
reveal good separation of the alcohols, particularly after sensor
normalization. Zupanet al.[86] have employed Kohonen SOMs
to analyze 572 Italian olive oils from nine different regions on
the basis of the contents of eight fatty-acids, determined through
analytical chemistry. Their SOM is able to separate northern
and southern oils, with a clear gap of inactive neurons between
both groups. Additional applications of clustering techniques
for the processing of e-nose data may be found in [87], [88]
for hierarchical clustering and in [89]–[91] for SOMs.

VII. V ALIDATION

The previous sections have reviewed a number of pattern
recognition techniques that can be utilized to process e-nose
data. This final section addresses the issues of model selection
and performance estimation. When facing a new application,
the data analyst must determine not only an appropriate model
among such a wide variety of processing algorithms but also
the parameter settings of the model to achieve “optimal” per-
formance. Any reasonable measure of performance must be as-
sociated with the ability of the model to predict new data or
unveil the fundamental structure rather than the accidental cor-
relations in the training data. The latter occurs when the model
is allowed to over-fit the data, typically as a result of an unrea-
sonably large number of model parameters or excessive training
iterations (Section IV-C).

To avoid over-fitting it is customary to split the available data
into training and validation sets. The training set is used to learn
several models with different structures or learning meta-pa-
rameters. The trained model that performs best on the valida-
tion data is then selected as the final model. This simple vali-
dation technique is known as theholdout method and is illus-
trated in Fig. 6(a). Although the holdout works well in many
situations, it has two drawbacks. First, in problems with limited
data one may not be able to afford the luxury of setting aside
a portion of the dataset for validation. Second, being a single
train-and-validate experiment, the holdout estimate of perfor-
mance can be misleading if we happen to get an unfortunate split
[70]. The shortcomings of the holdout method can be overcome,
at the expense of additional computation, by performing mul-
tiple partitions of the dataset and averaging the performance of
the model across partitions.K-fold cross-validation, shown in
Fig. 6(b), performs data partitions in a way that each example
is eventually used for both training and validation. At each of
the splits examples are used for validation and the re-
maining are used for training, where is the total
number of examples. When the number of folds is set equal to
the number of examples ( ), the method is known as
leave-one-out(LOO) cross-validation.

When employing multiple partitions, the final model is then
selected based on the average performance over thedata par-
titions. The behavior of this average estimate will clearly depend
on . With large , the bias of the estimate will be small, but
its variance across partitions will be large. With small, on the
other hand, the variance of the estimate will be small, but its
bias will be large and conservative (pessimistic) since the effec-
tive number of training examples is reduced. The choice of the
number of splits depends largely on the amount of data. For large
datasets, a small value of will be sufficient. For very
sparse datasets, on the other hand, one may have to use LOO in
order to train on as many examples as possible. Constraints in
computational resources may also be taken into consideration
since execution times will definitely increase with.

Better performance estimates, including their bias and vari-
ance, can be obtained with computer-intensive techniques such
as thebootstrap[92], [93], a statistical technique that generates
multiple training-test partitions by resampling the orig-
inal dataset with replacement, as illustrated in Fig. 6(c). Ex-
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(a) (b)

(c)

Fig. 5. Hierarchical clustering of five alcohols with (a) raw and (b) normalized sensor data (reproduced from [10] with permission of Elsevier Science). (c) Self
Organizing Map on olive oils from nine different geographical locations in Italy (reproduced from [86] with permission of Elsevier Science).

amples that are not selected for training become the validation
set. The underlying principle behind the Bootstrap is that we can
learn about the effect that sampling the entire population had on
our dataset by studying the effect that re-samplinghas on
the bootstrap partitions . In addition, the bootstrap can be
used to improve performance by training multiple instances of
a learning algorithm on different data partitions and combining

their results with a voting or weighting scheme [94], [95]. These
ensemble learning methods are covered in the tutorial article by
Pardo and Sberveglieri.

A. Three-Way Data Partitions

Once model and parameter settings have been selected, it is
still necessary to obtain an estimate of how well the final model
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TABLE III
GUIDELINES FORPATTERN ANALYSIS IN MACHINE OLFACTION

(a)

(b)

(c)

Fig. 6. Validation techniques: (a) the holdout, (b) K-fold cross-validation, and
(c) the bootstrap.

will perform on new data. One may be tempted to use the perfor-
mance estimate for the validation set(s) since it is readily avail-

able. This will be, however, an exceedingly optimistic estimate
since the final model was chosen to minimize error rate on that
particular validation data. To obtain an independent measure
of performance it is necessary to use a third subset containing
data that was not previously used at all, either for training or
selecting the model. This argument gives rise to a data-parti-
tioning scheme with three subsets: training, validation, and test
sets [70]. Thetraining set is used for learning the parameters of
a model. In the case of an MLP, the training set would be used to
find the “optimal” weights with the back-propagation rule. The
validation set is used to tune the meta-parameters of the model.
In an MLP, the validation set would be used to find the “optimal”
number of hidden units or to determine a stopping point for the
back-propagation algorithm. Finally, thetest setis used only to
assess the performance of a fully trained model. In an MLP, the
test would be used to estimate the error rate after the final model
(MLP structure and weights) has been determined.

VIII. C ONCLUSIONS ANDOUTLOOK

This paper has presented an overview of the most relevant
statistical,chemometrics,connectionistandmachinelearningap-
proachesfore-nosedataanalysis,includingsignalpre-processing,
dimensionality reduction, classification, regression, clustering,
and validation. Although the most appropriate approach clearly
depends on the specific sensor type(s) and application domain,
a few general guidelines can be drawn to help the reader select a
reasonable starting point, as summarized in Table III.

A few additional approaches, not covered in this review
due to space constraints, hold a promising future for the
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processing of electronic nose data, particularly fuzzy, adaptive,
and biological cybernetics paradigms.Fuzzy logic provides a
useful framework for representing uncertainty in sensor data,
model parameters, and outputs. The fuzzy paradigm may be
particularly relevant for mimicking the organoleptic perception
of odors by humans, arguably the ultimate goal of machine
olfaction. The use of fuzzy sets [98] has been reported in
the e-nose literature [99]–[102], including hybrid approaches
such as fuzzy C-means/RBFs [103], [104], fuzzy MLPs [105],
[106], and fuzzy learning vector quantization [107].Adaptive
techniques have also been explored for on-line learning in non-
stationary environments [25], [26]. Adaptive resonance theory
(ART) [108], in particular, provides a mechanism that solves
the “stability-plasticity dilemma,” which refers to the inability
of most learning systems to adapt to changing environments
without compromising previously acquired knowledge. For
this reason, the family of ART algorithms has been proposed
as a processing mechanism for e-nose data [109]–[111]. ART
is a plausible model of human information processing but,
unfortunately, has a tendency to over-fit, which result in a
proliferation of categories in the presence of noisy data [70].
Finally, the study of signal-processing mechanisms in the
biological olfactory system constitutes a promising direction
for future work [67], [112]. The wealth ofcomputational
models of the olfactory pathway developed in biological
cybernetics and computational neuroscience [113]–[116] can
serve as a starting point to mimic biological olfactory processes
including (i) receptor-glomerular convergence for improved
sensitivity and fault tolerance in large sensor arrays, (ii ) bulbar
excitatory-inhibitory dynamics for odor contrast enhancement
and normalization, (iii ) cortical associative memory functions
for pattern completion, and (iv) centrifugal modulation of the
olfactory bulb for chemosensory adaptation. A few recent
publications have begun to explore the use of these mechanisms
on chemical sensor arrays [117]–[120].

We conclude this review with a summary of the topics that,
in our opinion, are at the frontiers of pattern analysis for elec-
tronic nose instruments. A few of these are of critical importance
in order for the technology to receive widespread acceptance
as a viable approach for the measurement of odors and volatile
compounds. (i) Drift compensationalgorithms, in combination
with appropriate sampling and recalibration procedures, are the
most immediate need for industrial applications. (ii ) Calibra-
tion transfer algorithms also need to be developed in order to
avoid a complete retraining of the pattern-analysis system for
each individual instrument. (iii ) For these reasons, the devel-
opment of odor, sampling, and calibrationstandards is of ut-
most importance. (iv) The use oftransient, dynamic, and mul-
timodal sensor information is a promising area for improving
the selectivity of existing sensor technologies. (v) Processing
of mixtures and detection of volatiles in complex matrices are
challenging problems that will require the combination of pat-
tern-recognition and analytical sample pre-conditioning proce-
dures. (vi) As reviewed in this article, a wide range of algorithms
has been utilized for processing e-nose data. In order to estab-
lish the relative merits of these algorithms and, more impor-
tantly, the contribution of future approaches, it will be neces-
sary to developdataset repositoriessimilar to those that have

been promoted in machine learning (UC Irvine) and speech pro-
cessing (TIMIT), to mention a few. (vii) To conclude, we believe
that the development ofbiologically plausible computational
modelsof human olfactory perception and processing consti-
tutes a grand challenge for the machine olfaction of the future.
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