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Pattern Analysis for Machine Olfaction: A Review

Ricardo Gutierrez-Osun®ember, IEEE

Abstract—Pattern analysis constitutes a critical building block identifying an unknown sample as one from a set of previously
in the development of gas sensor array instruments capable |earned odorants. Iregressiontasks, the goal is to predict a
of detecting, identifying, and measuring volatile compounds, a set of properties (e.g., concentration, quality) for an analyte,

technology that has been proposed as an artificial substitute oft icall | st Finally. irclustering tasks th
the human olfactory system. The successful design of a pattern ypically a complex mixture. Finally, Irciusteringtasks the

analysis system for machine olfaction requires a careful consid- goal is to learn the structural relationships among different
eration of the various issues involved in processing multivariate odorants. A final step, sometimes overlooked, is the selection

data: signal-preprocessing, feature extraction, feature selection, of models and parameter settings and the estimation of the

classification, regression, clustering, and validation. A consid- true error rates for a trained model by meansvafidation
erable number of methods from statistical pattern recognition, techniques

neural networks, chemometrics, machine learning, and biological
cybernetics has been used to process electronic nose data. The
objective of this review paper is to provide a summary and guide- |l. PREPROCESSINGI ECHNIQUES FORGAS SENSORARRAYS

lines for using the most widely used pattern analysis techniques, . . .
as well as to identify research directions that are at the frontier of 1 h€ main purpose of a preprocessing stage Is to carefully se-
sensor-based machine olfaction. lect a number of parameters that are descriptive of the sensor

Index Terms—Classification, clustering, dimensionality reduc- array response, as this choice can §ignificantly affect th(.a perfor-
tion, electronic nose, multicomponent analysis, pattern analysis, Mance of the subsequent modules in the pattern analysis system
preprocessing, validation. [1]. Although preprocessing is somewhat tied to the underlying
sensor technology, three general steps can be identified [2], [3]:
baseline manipulation, compression, and normalizati@se-
line manipulation procedures transform the sensor response

N electronic nose (e-nose) is an instrument that combinedative to its baseline (e.g., response to a reference analyte) for

gas sensor arrays and pattern analysis techniques tfoe purposes of contrast enhancement and drift compensation,
the detection, identification, or quantification of volatile comthe latter requiring additional processing (Section 1I-A). Three
pounds. The multivariate response of an array of chemical gasseline manipulation methods are commonly employed: dif-
sensors with broad and partially overlapping selectivities cérence, relative, and fractional. THé#ferencemethod directly
be utilized as an “electronic fingerprint” to characterize a widgsubtracts the baseline and can be used to eliminate additive drift
range of odors or volatile compound by pattern-recognitidnom the sensor responsRelativemanipulation, on the other
means. As illustrated in Fig. 1, this process can be split int@nd, divides by the baseline, removing multiplicative drift, and
four sequential stages: signal preprocessing, dimensionatignerating a dimensionless resporgactional manipulation,
reduction, prediction, and validation. The initial block in thdinally, subtracts and divides by the baseline, generating dimen-
figure represents the e-nose hardware, which typically consistenless and normalized responses. Varimrapressionalgo-
of a gas sensor array, an odor delivery subsystem, an electraitltims can be employed to generate descriptive parameters from
instrumentation stage, and a computer for data acquisition. the sensors’ transient response. The standard procedure is to se-

The process of data analysis starts after the sensor signets the steady-stateesponse of the sensor, but a number of
have been acquired and stored into the computer. The ficstmpression algorithms (see Table I) have been proposed to
computational stage, calledignal preprocessing serves extract additional information from thizansient responsee-
various purposes, including compensating for sensor driftllting in improved selectivity, reduced acquisition time, and in-
extracting descriptive parameters from the sensor array oeeased sensor lifetime [4]. Finallyprmalization procedures
sponse and preparing the feature vector for further processipgepare the feature vector for the subsequent pattern analysis
A dimensionality reduction stage projects this initial featuremodules on a local or a global fashion. Local methods operate
vector onto a lower dimensional space in order to avoid proheross the sensor array for each individual “sniff” in order to
lems associated with high-dimensional, sparse datasets. Thepensate for sample-to-sample variations caused by analyte
resulting low-dimensional feature vector is then used to solveeancentration and sensor drift, among others. The most widely
given prediction problem, typically classification, regressionused local method igector normalizationin which the feature
or clustering. Classification tasks address the problem ofvector of each individual “sniff” is divided by its norm and, as

aresult, is forced to lie on a hyper-sphere of unit radius. Global
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Fig. 1. Building blocks of the pattern analysis system for an electronic nose.
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TABLE | [Il. DIMENSIONALITY REDUCTION
REVIEW OF PREPROCESSINGTECHNIQUES i .
IN THE E-NOSE LITERATURE The feature vector that results from the preprocessing stage is

oftentimes not suitable to be processed by a subsequent module

Techniq Sensor type” References  que its high-dimensionality and redundancy. Problems with
Baseline E;g‘:i‘j‘e‘w %g’ MISFET g;; high-dimensional data, known as the “curse of dimension-
manipulation | £, tional MOS, CP 10,11 ality” in statistical pattern recognition, imply that the number
Transient Sub-sampling MOS 5 of training egamples must grow exponentially with the number
compression Parameter extraction MISFET 12 c_)f features in order to learn an accu.rate modt_al. Since only a

Model fitting MOS,CP,QMB | 12,13,14 |imjted number of examples are typically available, there is
Normalization | Sensor, Vector, Autoscale | MOS, CP 1,2,15 an optimal number of feature dimensions beyond which the
*QMB: Quartz Crystal Microbalance, MISFET: Metal Insulator-Semiconductor Field-Effect performance of the pattern ana'VSiS model starts to degrade.
Transistor, MOS: Metal-Oxide Semiconductor, CP: Conducting Polymer The problem ofredundancy, also referred to as collinearity

in chemometrics and statistics, is particularly significant in
in which the mean and standard deviation of each feature @&#®o0se instruments due to the cross-selectivity of chemical gas
set to zero and one, respectively, andg@nsor normalization sensors. When two or more feature dimensions are collinear, the
in which the range of values for each individual feature is seovariance matrix of the entire dataset becomes singular and,
to [0,1]. It must be noted that these global techniques can atherefore, noninvertible, which leads to numerical problems
plify noise since all the sensors (including those that may niot various statistical techniques (e.g., quadratic classifiers and
carry information) are weighted equally. Finallylagarithmic ~ordinary least squares). For these two reasons, a dimensionality
transform can also be used to increase the dynamic rangegesfuction stage is required in most cases, either feature extrac-
the system [5]. Table | provides a few additional references &ian or feature selection, as described in the next subsections.
signal preprocessing from the e-nose literature. .

A. Feature Extraction
A. Drift Compensation The goal of feature extraction is to find a low-dimensional

The most serious limitation of current e-nose systems is theppingf : = € RY — y € RM(M < N) that pre-

inherent drift of gas sensors, which results in a slow, randogerves most of the information in the original feature vegtor
temporal variation of the sensor response when exposed to T basic criteria can be employed to measure the informa-
same gases under identical conditions, as shown in Fig. 2(leftdn content of the projection: signal classification and signal
As a result of drift, which can affect both sensor baseline (atkpresentation [28]. Signal classification methods associate in-
ditive) and sensitivity (multiplicative) [16], previously learnedormation with discrimination capabilities (e.g., inter-class dis-
sensor patterns become obsolete over time and the system léaese) and are the preferred choice for pattern classification
the ability to identify known odors. The most effective meangroblems, provided that sufficient data is available. With small
of drift compensation iperiodic recalibration with a refer- or high-dimensional datasets, however, these techniques have
ence gas that is chemically stable over time and highly corr@tendency to over-fit the training data, resulting in projections
lated with the target analytes in terms of sensor behavior [1Tat may not generalize well for test examples. Signal represen-
The array response to the calibration gas can then be dire¢tion methods, on the other hand, associate information with
subtracted from the response to the analytes [18], used to irtfe structure of the data (e.g., variance) and should be favored
a temporal drift model for each individual sensor [17] or fowhen the goal is exploratory data analysis. Most feature ex-
the entire array [19]-[21]. As shown in Fig. 2, the multivariatéraction techniques for e-nose applications have been based on
direction of the drift can be obtained from the principal comlinear techniques, mainly principal components analysis (PCA)
ponents (Section IlI-A) of the calibration gadodulation of and Fisher’s linear discriminant analysi (LDACA is a signal-
the sensors’ operating temperature can also be used to genasgieesentation technique that generates projections along the di-
features that are more robust to drift than isothermal featumestions of maximum variance, which are defined by the first
[22], [23]. Finally, a number of computational methods baseslgenvectors ok, the covariance of: [28]. LDA is a signal-
on system identificationand self-organization principles haveclassification technique that directly maximizes class separa-
also been proposed for drift reduction [24]-[27]. bility, generating projections where the examples of each class
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Fig. 2. PCA projections before (left) and after (right) drift compensation for an FET/MOS array under mixturesMifil C;HsOH, and GH,. The center
cluster ) is the calibration gas (reproduced from [20] with permission of John Wiley & Sons).

form compact clusters and the different clusters are far frosearch whose complexity grows exponentially with the number
each other. These projections are, alternatively, defined by tfestates. Among thes&ranch and boundBB) [37] is very
first eigenvectors of the matriﬁ‘;}SB, whereSy andSp are popular as it is guaranteed to find the optimal subset of a
the within-class and between-class covariance matrices, respgeen sizeM if the evaluation function is monotoriic This
tively [29]. LDA and PCA are optimal techniques under uniassumption is, however, violated in practical problems since
modal Gaussian assumptions. For non-Gaussian distributiding addition of features can increase the risk of over-fitting.
additional techniques may be used, including Sammon’s mapsquentialsearch algorithms are greedy strategies that reduce
[30], [31], multilayer perceptrons (MLPs) (Section IV-C), Ko-the number of states to be visited during the search by applying
honen self-organizing maps (Section VI-C), Kernel PCA, prdecal search. The simplest methods a@eguential forward
jection pursuit, and independent components analysis [32]. selection(SFS) andsequential backward selectid85]. SFS

Fig. 3 illustrates the performance of PCA and LDA using astarts from the empty set and sequentially adds features,
dataset collected by the author on an e-nose prototype [33] withereas SBS starts from the full set and sequentially removes
16 MOS sensors. The dataset consisted of five brand-nafeatures. The performance of SFS/SBS may be improved by
cookies (labels 1-5) sampled over a period of two weeks. rAeans osequential floatingnethods with backtracking capa-
64-dimensional feature vector was extracted from the sengilities [38]. Finally, randomized search algorithms attempt
transients using windowed time slicing [34] and finally auto overcome the computational cost of exponential methods
toscaled. Fig. 3 shows the first two PCA and LDA projectiongnd the tendency of sequential methods to become trapped in
As expected, the LDA projections exhibit a high degree of clakscal minima. Among these techniquesmulated annealing
separability, whereas PCA preserves the original structure (8A) [39] andgenetic algorithmgGA) [40] are most widely
the data, which includes odor- and drift-related variance.  used. SA is based on the annealing process of thermal systems

and performs a stochastic search on a single solution. GAs,

B. Feature Subset Selection conversely, are inspired by the process of natural selection and

erform a global random search on a population of solutions.

Fea}ture subset selection (FSS) S a dimensionality rechCt%nl'wo strategies are available to evaluate the different feature
technigue that can be used to configure small sensor arrays fOB s .
upsets: filters and wrappers [41filters compare feature

specific odor-measurement applications. The goal of FSS ISsu sets by their information content (e.g., inter-class distance),

find an “optimal” subset of\/ sensors (or features) that maxi- :
wpereaswrappers evaluate feature subsets on the basis of

mizes information content or predictive accuracy. The simple - . )
. X L eir predictive accuracy on the pattern recognition algorithm,
FSS approach consists of evaluating each feature |nd|V|duanI1y o : L
easured by statistical re-sampling or cross-validation. Each

and selecting thos@/ features with the highest scores. Un-a proach has a number of advantages and disadvantages

fortunately, this approach ignores feature redundancy and i . The wrapper approach usually achieves better predictive
rarely find an optimal subset. One may instead be tempted'to-" PP pp y P

evaluate all possible subsetsidffeatures and select the globaﬁ.Ccuracy since the feature sgpset can pe tuned to thg particular
ias of the pattern recognition algorithm. In addition, the

. . f N .
optimum, but the number of combmatlo@\/[) becomesim- wrapper has a mechanism to avoid over-fitting since the feature
practical even for moderate values/df and V. subsets are evaluated by their performance on test data. Wrap-

To avoid the exponential explosion of an exhaustive seard@§rs are, however, computationally intensive since they must
several methods have been devised that explore the feaft@BtinUOUSly re-train the pattern recognition algorithm. Filters,
space in a more efficient fashion [35], [36]. These searé) the other hand, tend to find a more general feature subset

strategies can be grouped into three categories: exponentialyonotonicity implies that the addition of a new feature always improves the
sequential, and randomizegixponential techniques perform a information content of the subset.
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Fig. 3. (a) PCA versus (b) LDA for visualization and classification purposes.

that works well on a larger spectrum of pattern recognitigmerformance of eight search strategies on odor classification
techniques and are computationally more attractive. problems. The wrapper consisted of LDA combined with K
1) Review: EkI6v et al. [43] used a wrapper approachnearest neighbors (Section 1V-B) and predictive accuracy was
combined with SFS to select features for a multilayer-percegstimated through five-fold cross validation (Section VII). This
tron (MLP) regression problem. Since an MLP wrapper wasudy indicated that all the search techniques perform similarly,
computationally impractical, the predictive accuracy of eaghelding 25-30% increase in predictive accuracy while reducing
feature subset was approximated with ordinary least squaties size of the feature set by 50%. Corcoran [44] have used a
regression. Experimental results showed that their featgenetic algorithm and a filter based on Fisher’s discriminant
selection procedure could find small (5-10) feature subsetdio [45] to select features from a temperature-modulated
with similar or better predictive accuracy than the completensor array. Their procedure was able to reduce the feature
set of 49-85 features. Gutierrez-Osuna [33] compared tbet by 1/10 while maintaining classification rates on a rather
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oversized MLP. In a second article [46], the authors report drhis is known as guadraticclassifier since the decision bound-
the difficulties associated with finding a filter that correlatearies between classes are quadratic hyper-surfaces. The term
well with predictive accuracy. This observation is consistefiyy — ui)T E;l (y — u;) is known as thMahalanobis distance

with arguments in favor of wrappers. which can be thought of as a stretching factor of feature space
along the directions of maximum variance. When the covariance
I\V. CLASSIFICATION 3}; is the identity matrix, the Mahalanobis distance becomes the

familiar Euclidean distance, and the quadratic classifier reduces
Pi§ the simple nearest-mean classifier (assuming equiprobable
priors). Quadratic classifiers are, therefore, Bayes optimal if the
classes are unimodal Gaussian. They are computationally attrac-
. ) . tive, with only one caveat: estimation of the covariance matrix
assign examplg to the class; with the largest posterior prob- can be difficult as a result of collinearity. When the number of

ability P(w;|y) [29]. This is known as the Maximura poste- independent examples per class is lower than the dimension-

”0[' (tMApzc j;ule and is tf;)e bes]E any cJ:i)ssmerlcgn dg ) Theﬁ? rT&hty, the sample covariance becomes singular and, therefore,
putation of P(w;|y) can be performed by applying Bayes ®honinvertible. In this case, itis common practice to assume that

orem, yielding all the classes have the same structure and a single covariance
matrix is estimated from the entire dataset, regardless of class.

The goal of a pattern classifier is to generate a class label
dictionwprep for an unknown feature vectgre R from a
discrete set of” previously learned labelSv;, wo, . .. ,wc}. It
can be shown that to minimize classification ertorse should

wyap =arg max [P (w;|y)]

ic(L,C) This is known as éinear classifier because the decision bound-
P (ylw;) P (w;) e_lries in feature space becpme hype_r-planes. In'_[ermedia'Fe solu-
=arg 7&11{13)5} [ P(y) } tions between the quadratic and the linear classifier by shrinkage
’ methods have also been proposed in the statistics literature [48].
=arg max, [P (ylwi) P (wi)] @

B. K Nearest Neighbor Classifiers

where P(y|w;) is the likelihood or class-conditional density, The K nearest neighbors (kNN) rule is a powerful technique
P(w;) is the prior probability, and>(y) serves as a normal- that can be used to generate highly nonlinear classifications with
ization constant that can be ignored for classification purposgsited data. To classify exampig kNN finds the closest ex-

*. In the absence of prior knowledg®(w;) can be approxi- amples in the dataset and selects the predominant class among
mated by the relative frequency of examples in the dataset. nse ; neighbors. Although this formulation appears rather
rect estimation of>(y|w;) from high-dimensional training data heyristic, kNN is formally a nonparametti@approximation of

is, however, extremely difficult [47] unless strong simplifyingne MAP criterion (1). kNN can generate highly local decision
assumptions about the underlying distributions are made (er@gions by choosing an appropriate valueifand presents very
Gaussian). From this perspective, most pattern classifiers carglags ctive asymptotic properties: as the number of examples ap-

interpreted as attempts to estimatéy|w;) from data. proaches infinite the probability of error for the & 1) NN
_ B classifier will not be worse than twice the Bayes error, the best
A. Quadratic Classifiers any classifier can achieve [29]. The main limitations of kNN

The simplest possible way to estima®éy|w;) is to assume are (i) storage requirements, since the entire dataset needs to be
that the likelihood function of each class is a unimodal (this igvailable during recall and (ii) computational cost, since for each
containing a single mean) Gaussian density unlabeled example, the distance to all training examples needs
to be computed (and sorted). These limitations, however, can be
overcome by editing the training set and generating a subset of
prototypes [49]. Special attention must be paid to the scaling of

(2) each feature dimension, to which kNN is extremely sensitive.
where; and; are the sample mean and sample covariance,
respectively, estimated from training data. Merging (2) into tHe- Multilayer Perceptron Classifiers

MAP rule (1) and taking natural logarithms yields the following MLPs, the most popular type of artificial neural networks, are

1 1
P(y|w; z—eXp{——y—ui TSy —
(ylw:) ARSI 5 ) ( )

decision rule: feed-forward networks of simple processing elements or neu-
1 rons whose connectivity resembles that of biological neuronal

WwouAp = arg max {_5 (y — )" Yy — ) circuitry. Each neuron in an MLP performs a weighted sum
ie{1e} of its inputs and transforms it through a nonlinear activation

1 B . . - . -
~Zlog [T +log P(w)|. () funct|on,_typ|pally a squashlr_lg S|gm0|daI.IAn MLP is aple to
2 learn arbitrarily complex nonlinear regressions by adjusting the

2Misclassification costs (Bayes Risk) could also be incorporated into the cla\lg—elghts in the net'WO"k by a gradient descent technlque known
sifier. Please refer to the article by Pardo and Sberveglieri in this special isé@& back-propagation of errors [50]. At each stage in the training

for additional details. process, the MLP processes all of its inputs in a feed-forward
SThe functionarg max() returns the class label that maximizes the posterior

(the argument), not the probability value itself. Therefore the equality holds after*Parametric methods assume that the underlying distribution can be repre-

removingP(y) since this does not depend on the class indélowever,P(y)  sented with a parameterized model (e.g., a Gaussian density, with mean and

would be necessary if not only the best class assignment but also a confidesteadard deviation as parameters). Non-parametric models do not make such

level in that assignment was required. assumptions (e.g., a histogram).
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fashion, compares the resulting outputs with the desired orieach hidden neuron in an RBF is tuned to respond to a rather
and back-propagates these errors to adjust each weight inlteal region of feature space by means of a radially symmetric
network according to its contribution to the overall error. Aunction such as the Gaussi&f:;, o;). The output units, on
number of heuristics are available to improve the operation thfe other hand, form linear combinations of the hidden units to
back-prop [29], [51], [52]. predict the output variable in a similar fashion to MLPs.

To avoid over-fitting, the complexity of the MLP can be con- RBFs are typically trained using a hybrid algorithm that em-
trolled bylimiting the network size. With the number of inputs ploys unsupervised learning for the hidden layer followed by
and outputs being determined by the application, network sigepervised learning of the output layer. The first step consists of
is strictly a function of the number of hidden layers and hiddeselecting the radial basis centgrsusing C-means clustering
neurons per layer. It can be shown [53] that one-hidden-lay@ection VI-B). Then, the spreads are determined from the
MLPs can approximate any classification boundaries with aaverage distance between neighboring cluster centers [62] or the
bitrary accuracy, provided that the number of hidden units sample covariance of each cluster [63]. Alternatively, one may
large enough. Nonetheless, the addition of extra hidden layese the expectation maximization algorithm [54] to estimate
may allow the MLP to perform a more efficient approximatiofoth; ande,; simultaneously. Finally, training the output layer
with fewer weights [54]. Despite a number of “rules of thumbfs a straightforward supervised problem, in which the radial
published in the literaturey priori determination of an appro- basis activations are used as regressors to predict the target out-
priate number of hidden units is still an unsolved problem. Thruts. This can be efficiently solved using ordinary least squares
“optimal” number of hidden neurons depends on multiple fagSection V-A) since the output neurons have linear activation
tors, including complexity of the classification problem, numbeunctions.
of inputs and outputs, activation functions, training algorithm, Although very efficient, this hybrid training procedure is very
number of examples, and level of noise in the data. In practicensitive to noisy dimensions with high variance, which may
several MLPs are trained and evaluated in order to determinegaavent the unsupervised stage from extracting clusters that are
appropriate number of hidden units. Constructive approachpsedictive of the output variables. To overcome this limitation,
which start with a small MLP and incrementally add hidden ne@henet al. [64] introducedorthogonal least squares super-
rons [55] and pruning approaches, which start with a relativelysed technique that performs forward stepwise selection of ra-
large MLP and sequentially remove weights [56], [57], can alstial basis functions from the training examples. At each step, the
be employed. algorithm chooses the basis function that provides the greatest

Network complexity can also be controlled bgnstraining increment in explained variance in the output variables. This
the weight values Regularization approaches suchvesight algorithm is able to generate not only the radial basis centers
decayare very effective at generating smooth mappings [29jut also the hidden-to-output weight matrix and an appropriate
Early stoppingmay also be applied to prevent the MLP froomumber of radial basis. For a thorough survey of RBFs, the
over-fitting the training set [58]. The stopping point may be deeader is referred to [52], [54].
termined by monitoring the sum-squared-error of the MLP on a
validation set during training. Finallytaining with noise also E. Comparison Between Quadratic, kNN, MLP, and RBF
known as jitter, can be used to prevent the MLP from appro$%lassifiers

imating the training set too closely and has been shown to im-MLPs and radial basis functions are the two most popular
prove generalization [59]. For additional details on complexitypes of neural network architectures employed in the e-nose
control, please refer to the tutorial article by Pardo and Sberve@mmunity. Although both models can function as “universal
lieri in this special issue. approximators,” it is important to highlight some of their dif-
Finally, it is important to mention some remarkable similariferences [45], [52], [54].if MLPs perform a global and dis-
ties between MLPs and the statistical concepts covered in pfighuted approximation of the target function, whereas RBFs
vious sections. It has been shown [60] that, using linear outgdérform a local approximationiif The distributed represen-
neurons with one-from-C binary output encoding, minimizatiogtion of MLPs causes the error surface to have multiple local
of the mean-square error at the output of an MLP is equivalefinima and nearly flat regions with very slow convergence. As
to maximizing a nonlinear version of the objective function emy result, training times for MLPs are usually larger than those
ployed in Fisher’'s LDA, allowing the hidden neurons to funcfor RBFs. (i) MLP partition feature space with hyper-planes;
tion as discriminatory feature extractors. In addition, when th@BF decision boundaries are hyper-ellipsoids) MLPs ex-
MLP is trained to minimize the cross-entropy cost function [6Hibit better generalization properties than RBFs in regions of
with one-from-C encoding and the output layer has softmax &eature space outside of the local neighborhoods defined by the
tivation functions, the outputs of the MLP will approximate theraining set. On the other hand, extrapolation far from training
posteriorP(w;|y). data is dangerousv) MLPs typically require fewer parame-
ters than RBFs to approximate a nonlinear function with the
same accuracyvi) MLPs may have multiple layers with com-
Radial basis functions (RBFs) are feed-forward connectionjgiex connectivity, whereas RBFs typically have only one hidden
architectures consisting of a hidden layer of radial kernels alayer and full connectivity.
an output layer or linear neurons [54]. Although the structure The various decision regions/boundaries that can be gener-
of RBF networks resembles that of MLPs, their input-outputed by the algorithms described in this section are illustrated in
mappings and training algorithms are fundamentally differerig. 4. The quadratic classifier models each likelihood function

D. Radial Basis Function Classifiers
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TABLE I
REPRESENTATIVEPUBLICATIONS IN CLASSIFICATION AND REGRESSION
Classification Regression
Technique Reference Techniq Reference

QUAD 74,75 OLS,PCR | 80

kNN 2,74,76 RR 69

MLP 74,75,76,77,78 PLS 6,7, 80, 81, 82
RBF 78,79 MLP 6,7,83

fine-grained partition of feature space, with polygonal decision

boundaries around each training example, known as a Voronoi
tessellation [65]. The MLP decision boundaries, at last, consist
of hyper-planes in feature space. Fig. 4(d) illustrates the case
of a reasonably sized MLP but, given enough hidden units,

MLPs can generate arbitrarily complex decision boundaries,
such as the one obtained for the kNN classifier. Finally, Table Il

provides a few representative publications of these pattern
classification methods in e-nose applications. Additional

references can be found in [66], [67].

Fealve 7

V. REGRESSION

Feature 1 Regression problems constitute a more challenging domain
(b) for e-nose instruments. The goal of regression is to establish a
predictive model from a set of independent variables (e.g., gas
sensor responses) to another set of continuous dependent vari-
ables. Pattern classification could, therefore, be treated as a re-
gression problem where the dependent variable is categorical.
For this reason, most regression techniques can be (and have
been) applied for classification purposes. Three basic regression
problems have been addressed with e-nose instruments: multi-
component analysis, process monitoring, and sensory analysis.
In multicomponent analysis the dependent variable is the con-
centration of an isolated analyte or the relative concentration of
P known components in a mixture. Multicomponent analysis
is limited, in practice, to a few components (2—4) due to sensor
© cross-selectivity and the exponential growth in the number of
calibration points with increasing values8f In process moni-
toring, the dependent variable is a process variable (e.g., quality
level) associated with an analyte that may be embedded in a ma-
trix of unknown compounds. The broad selectivity of chemical
gas sensors is an important shortcoming of e-noses for this type
of regression problems. Finally, g&nsory analysisthe depen-
dent variable is the score of a human sensory panel (e.g., inten-
sity, hedonic tone, organoleptic descriptors). Needless to say,
mimicking the perception of odors by humans is the ultimate
challenge for machine olfaction and an extremely complex re-

Fastuna 1 gression problem. The following subsections review a number
(d) of linear regression techniques rooted in statistics and chemo-

etrics that can be used to obtain a first-order regression model.

E]or clarity, the following derivations will use a multicomponent
analysis formulation in which is a vector of concentrations for
HleP components in a mixture.

Fegture

Feafve 1

Foahwe 2

Fig. 4. Class separation for (a) quadratic, (b) RBF, (c) kNN, and (d) ML
(adapted from [54]).

P(y|w;) with a unimodal Gaussian density. The resultin
decision boundaries, which are defined by the intersection of ]

the equiprobable likelihood contours, are quadratic surfacés. Ordinary Least Squares

The RBF classifier models the distribution of examples as aA simple approach to regression is to assume that the depen-
Gaussian mixture, which is more accurate than the Qquadratent variables:;; « » can be predicted from a linear combina-
approach for multimodal data. The kNN classifier createstsn of the sensor responsgsx »; : ¢ = yW, where we have
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adopted the chemometrics row-vector notation. Without loss Bf Partial Least Squares
generality, we also assume that the dependent and independept, 5| jeast squares (PLS) is the “gold standard” in chemo-

variables are mean-centered. Alternatively, a constant dimgRatrics due to its ability to handle collinear data and reduce
sion could be added to the feature vector to absorb the intercept. number of required calibration samples [71], [72]. As op-
Given a_matnxCQXp of @ calibration mixtures and their cor- posed to PCR, which extracts the “latent variables” from the
responding sensor responses. s (one example per roﬂ)’ the girections of maximum variance in the sensor malfixthe
prediction matrixWy;p may be computed a8” = Y "C.  gjganvectors ot 7Y), PLS finds the directions of maximum
Unfortunately, this exact solution is only possible WhENS o rejation betweert” and €' in a sequential fashion. The
nonsingular. In practice;” is rectangular with more rows (€X-first PLS |atent variablet(= Yw) is obtained by projecting

amples) than columns (sensors) or vice versa and, therefgrey ong the eigenvectar corresponding to the largest eigen-
the inverseY ! does not exist. For this reason, it is COMMON, e of YZCOTY [73]. To find the second and subsequent
to seek the soluti(_)n that_ min_imizes the_su_m-squared predicti%rgem variablesY is deflated by its OLS prediction from the
error over the entire calibration set. This is known as the orqiyrent pLS Jatent variable and the eigen-analysis is repeated.
nary least-squares (OLS) solution and is given by [29], [54] A stopping point for the sequential expansion is determined
1 through cross-validation.
W= (YTY) yic=vle. Table Il provides references for published work on multicom-
ponent analysis using gas sensor arrays. Additional references
The matrixYT = (¥Y7Y)~'¥7 is known as the pseudo-in- may be found in [66]. Non-linear extensions of these methods
verse ofY’, sinceYy = 1. Application of the OLS solution to and connectionist approaches such as MLPs or RBFs may be
e-nose calibration may result in numerical problems since theployed if the relationships are found to be highly nonlinear.
covariance matrix’?'Y" can become singular or near-singulairhis may the case, for instance, in multicomponent analysis
as a result of collinearity. These problems can be reduced $igice the concentration-response dependence of most gas sen-
using shrinkage methods [68], which are briefly reviewed in thsors is nonlinear.
next subsections.
VI. CLUSTERING

B. Ridge Regression Clustering is an unsupervised learning process that seeks to

Ridge regression (RR) is a regularization method that stafind spatial relationships or similarities among data samples,
lizes the OLS solution by adding a multiple of the identity mawhich may be hard to discern in high-dimensional feature space.
trixs to the estimation of the covariance matkiX'Y [48], [69] The process of clustering involves three basic steps: (i) defining a

. dissimilarity measure between examples, typically the Euclidean
tr (YTY) T distance, (ii) defining a clustering criterion to be optimized,
TI Yoo typically based on within- and between-cluster structure (e.qg.,

elongated, compact or topologically-ordered clusters), and (iii)

wherey(0 < ~ < 1) is a regularization parameter that control§€fining a search algorithm to find a "good” assignment of
the amount of shrinkage toward the identity matrix. Fos 0 examplesto clusters, since exhaustive enumeration of all possible

RR is equivalent to OLS, whereas for= 1, the solution be- clusterings is clearly unfeasible. In most cases, a final validation

comes a constant model that always predicts the mean conddffomainexpertsisrequiredsince, unlike supervised procedures
tration of the training data. Selection of an appropriate value fof10S€ results can be objectively measured (e.g., mean-squared-

~ is typically performed through cross-validation (Section V”)t_'-:rror), cl_ustermg res_ults canbe _rathersupjectlve. Ip the following
subsections we review the basic clustering techniques that have

been applied to process e-nose data.

W = <(1—7)YTY+’V

C. Principal Components Regression

An alternative solution to the OLS collinearity problem is tqy  Hjerarchical Clustering

f PCA i lyaf f the principal . . .
perform PCA and retain only a few of the principal components These algorithms are capable of generating a multi-level

as regressors or “latent variables,” hence the name princi%?

[ .
components regression (PCR). As aresult, the regressors ar€ gfgterlng ortaxonomy of examples using a tree structure known

fectively decorrelated and, more importantly, the smaller eige@§ adendrogram [see Fig. 5(a) and (b)]. These dendrograms can

values of Y7V, which become infinite when computing the e built in a bottom-up or top-down fashion, giving rise to two

pseudo-inverse, are eliminated. The number of principal compt pes of algorithms: agglomerative and divisive, respectively.
' ’ lomerative algorithms construct the dendrogram starting at

nents to keep for the regression can also be determined thro .
L o € leaves, where each example forms a unique cluster and pro-
cross-validation. However, PCR presents similar problems 10

PCA since the directions of maximum variancedinmay not ceed toward the root by sequentially merging the two “nearest

: . . clusters. A measure of cluster similarity is used to determine
necessarily be correlated with the dependent variables. . YISt : .

which two clusters should be merged each time, typically min-

imum distance or maximum distance between examples from

. . _ each cluster. Minimum-distance (single-linkage) favors elon-

5This expression assumes that the sensors have the same variance. Other\let%d lust h . dist lete-link

the regularization termw (Y 7'Y")I /M must be replaced by a diagonal matrix9& clusters, whereas maximum-distance (complete-linkage)

of the sensor variances [70]. generates compact clusters [2B]visive clustering algorithms
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proceed in the opposite direction, constructing the dendrogram VII. V ALIDATION
from the root, where all examples belong to one cluster and . . .
. . B ; . The previous sections have reviewed a number of pattern
sequentially splitting the “worst” cluster until each cluster con- e : o
. . i ., recognition techniques that can be utilized to process e-nose
tains exactly one example. To determine the “worst” cluster o ) . )
. " ; : . . ata. This final section addresses the issues of model selection
at a given iteration, the algorithm must tentatively split al oo ; o
i . ~and performance estimation. When facing a new application,
clusters and select the one whose two children have highgs . )
e data analyst must determine not only an appropriate model

dissimilarity. This is a computationally intensive task and, forrnon such a wide variety of processing algorithms but also
this reason, divisive clustering has received much less attentign. 9 y orp g &g

Divisive clustering, however, is more likely to produce mear)- € parameter settings of the model to achieve “optimal” per-

ingful results than agglomerative methods for small numb grmance. Any reaso.n-able measure of performance must be as-
of clusters [70]. sociated with the ability of the model to predict new data or

unveil the fundamental structure rather than the accidental cor-
B. C-M relations in the training data. The latter occurs when the model
. C-Means . ) .
is allowed to over-fit the data, typically as a result of an unrea-
C-meansis a clustering algorithm that generates a single-leyghably large number of model parameters or excessive training
partition of the dataset, thisis, an assignmentof training exampjgs ations (Section IV-C).
intoC disjointclusters. Starting from an initial cIustering.(e.g._, a To avoid over-fitting it is customary to split the available data
random assignment of examples to clusters), C-means iterativigh, training and validation sets. The training setis used to learn
re-computes the sample mean of each cluster and reassigns §ggBral models with different structures or learning meta-pa-
example to the cluster with the closest mean. This procedyigneters. The trained model that performs best on the valida-
is repeated until the assignment of examples to clusters i, gata is then selected as the final model. This simple vali-
longer changes between iterations. Although the basic C-megagion technique is known as theldout method and is illus-
algorithm requires a pre-specified number of clysters, heurigggted in Fig. 6(a). Although the holdout works well in many
procedures [84] can be employed to automatically determiggations, it has two drawbacks. First, in problems with limited
an appropriate number of clusters. data one may not be able to afford the luxury of setting aside
. a portion of the dataset for validation. Second, being a single
C. Self-Organizing Maps train-and-validate experiment, the holdout estimate of perfor-
Self-organizing maps (SOMSs) are connectionist techniguesance can be misleading if we happen to get an unfortunate split
capable of generating topology-preserving clusterings [85%F.0]. The shortcomings of the holdout method can be overcome,
An SOM is a network of clusters (or neurons) arranged inat the expense of additional computation, by performing mul-
lattice structure, typically two-dimensional. The behavior afple partitions of the dataset and averaging the performance of
SOMs results from the synergy of three processes: competititiie model across partitioni-fold cross-validation, shown in
cooperation, and adaptation [52]. First, all neurons in tigg. 6(b), performs< data partitions in a way that each example
lattice enter acompetitionfor each incoming example. Theis eventually used for both training and validation. At each of
closest neuron in feature space is selected as a winner @ik splits N/ K examples are used for validation and the re-
becomes activated. Neurons in the topological neighborhogfhiningN(K —1)/K are used for training, wher¥ is the total
of the winner also become activated in order to promotermber of examples. When the number of folds is set equal to
topological ordering in feature space. Finally, all active neurofise number of exampleg{ = N), the method is known as
adapt their coordinates in feature space to become C|08|@hve-one-ou1(LOO) cross-validation.
to the input pattern. SOMs have very interesting propertieswhen employing multiple partitions, the final model is then
for data visualization but mapplng onto the SOM manifO'ge|ected based on the average performance ové¥ tthata par-
can be tricky if the structure of the data is inherently hightions. The behavior of this average estimate will clearly depend

dimensional. on K. With large K, the bias of the estimate will be small, but
_ its variance across partitions will be large. With snigdllon the
D. Review other hand, the variance of the estimate will be small, but its

Clustering techniques have been widely used to expldpéas will be large and conservative (pessimistic) since the effec-
and visualize e-nose data. Gardner [10] has used hierarchidég number of training examples is reduced. The choice of the
clustering to analyze the response of 12 MOS sensors to differgrimber of splits depends largely on the amount of data. For large
alcohols. As shown in Fig. 5(a) and (b), the dendrogranigtasets, a small value &f(= 3) will be sufficient. For very
reveal good separation of the alcohols, particularly after sensgarse datasets, on the other hand, one may have to use LOO in
normalization. Zupagt al.[86] have employed Kohonen SOMsorder to train on as many examples as possible. Constraints in
to analyze 572 Italian olive oils from nine different regions ogomputational resources may also be taken into consideration
the basis of the contents of eight fatty-acids, determined througjhce execution times will definitely increase with
analytical chemistry. Their SOM is able to separate northernBetter performance estimates, including their bias and vari-
and southern oils, with a clear gap of inactive neurons betwegnce, can be obtained with computer-intensive techniques such
both groups. Additional applications of clustering techniquess thebootstrap[92], [93], a statistical technique that generates
for the processing of e-nose data may be found in [87], [8&]ultiple training-test partitiond *() by resampling the orig-
for hierarchical clustering and in [89]-[91] for SOMs. inal datasel” with replacementas illustrated in Fig. 6(c). Ex-
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Fig. 5. Hierarchical clustering of five alcohols with (a) raw and (b) normalized sensor data (reproduced from [10] with permission of Elsevigr &iSetf
Organizing Map on olive oils from nine different geographical locations in Italy (reproduced from [86] with permission of Elsevier Science).

&3

amples that are not selected for training become the validatitheir results with a voting or weighting scheme [94], [95]. These
set. The underlying principle behind the Bootstrap is that we cansemble learning methods are covered in the tutorial article by
learn about the effect that sampling the entire population had Bardo and Sberveglieri.

our dataset” by studying the effect that re-samplinghas on N

the bootstrap partition¥™*®). In addition, the bootstrap can be- Three-Way Data Partitions

used to improve performance by training multiple instances of Once model and parameter settings have been selected, it is
a learning algorithm on different data partitions and combinirgfill necessary to obtain an estimate of how well the final model
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TABLE Il
GUIDELINES FOR PATTERN ANALYSIS IN MACHINE OLFACTION

Baseline manipulation: The fractional change in conductance is a suitable measure for chemoresistors, which helps
linearize the concentration-response curve (MOS and CP) and compensate for temperature fluctuations (MOS)
[96, 97].

Compression: Transient response analysis can improve the selectivity of e-nose systems, but it also increases the
dimensionality of the feature vector, which requires an exponentially increasing number of training examples to
accurately train the pattern-recognition model.

Normalization: Vector normalization should only be used when discrimination is to be performed on the basis of
odor quality (the direction of the feature vector) rather than odor intensity (its magnitude). Therefore, it is not
appropriate for most regression problems, where analyte concentration is a variable of interest.

Drift compensation: Commonly associated to sensor drift (a random process) are artifacts caused by improper
instrument pre-heating, recovery times or sample preparation/conditioning. These problems are best treated at
their source rather than through signal processing.

Dimensionality reduction: Despite its shortcomings, PCA is an invaluable tool to visualize the structure of the data.
For classification problems with unimodal likelihoods, however, Fisher’s LDA is the “gold standard.” In terms of
feature subset selection, sequential floating search combined with a fast wrapper (e.g., linear regression [43]) will
generally provide a good solution.

Classification and regression: MLPs and RBFs are “universal approximators” capable of solving any classification
or regression problem, but they are not always necessary. If non-linearities in the sensor array response can be
compensated for through preprocessing (e.g., a logarithmic transform), a simpler model (e.g., linear, parametric) is
generally preferred. For linear or near-linear problems, the performance of PLS is hard to match.

Clustering: Dendrograms can effectively unfold the hierarchical relationship among different analytes, but they are
not best suited for visualizing large numbers of samples. In this case, PCA scatter plots can be utilized to identify
data clusters visually or through c-means.

Validation: Pattern recognition performance should be measured following an experimental design that reproduces
field operation and reduces systematic errors (e.g., temporal correlations in the samples). Since drift and cross-
sensitivities cannot be fully accounted for, it is wise to use a conservative measure such as the bootstrap’s EO
estimate (see [29}], pp. 474-475; {931, pp. 373-377).

Total number of examples able. This will be, however, an exceedingly optimistic estimate
> since the final model was chosen to minimize error rate on that
particular validation data. To obtain an independent measure
Training Set | Valid. Set of performance it is necessary to use a third subset containing
data that was not previously used at all, either for training or

@ selecting the model. This argument gives rise to a data-parti-
. tioning scheme with three subsets: training, validation, and test
Split 1 sets [70]. Theraining set is used for learning the parameters of
Split 2 amodel. In the case of an MLP, the training set wquld be usedto
find the “optimal” weights with the back-propagation rule. The
Split 3 validation setis used to tune the meta-parameters of the model.
In an MLP, the validation set would be used to find the “optimal”
Split 4 number of hidden units or to determine a stopping point for the
: back-propagation algorithm. Finally, thest setis used only to
(b) assess the performance of a fully trained model. In an MLP, the
- . testwould be used to estimate the error rate after the final model
Original datasetY (3 (%) () ) &) (MLP structure and weights) has been determined.
Bootstrap sample Y'") @ @ @ @ @ @
Bootstrap sample Y'® @ @ @ @ VIII. CONCLUSIONS AND OUTLOOK
: This paper has presented an overview of the most relevant
Bootstrap sample Y® (3) 1) G @ & & ® @ statistical, chemometrics, connectionistand machinelearning ap-
\ Training sets Validaton sets J proachesfore-nosedataanalysis,includingsignalpre-processing,

dimensionality reduction, classification, regression, clustering,
(© and validation. Although the most appropriate approach clearly
depends on the specific sensor type(s) and application domain,
" few general guidelines can be drawn to help the reader select a
reasonable starting point, as summarized in Table ll.

will perform on new data. One may be tempted to use the perfor-A few additional approaches, not covered in this review
mance estimate for the validation set(s) since it is readily availue to space constraints, hold a promising future for the

Fig. 6. Validation techniques: (a) the holdout, (b) K-fold cross-validation, ai
(c) the bootstrap.
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processing of electronic nose data, particularly fuzzy, adaptileen promoted in machine learning (UC Irvine) and speech pro-
and biological cybernetics paradigntauzzy logic provides a cessing (TIMIT), to mention a fewv{i) To conclude, we believe
useful framework for representing uncertainty in sensor dathat the development difiologically plausible computational
model parameters, and outputs. The fuzzy paradigm may medelsof human olfactory perception and processing consti-
particularly relevant for mimicking the organoleptic perceptiotutes a grand challenge for the machine olfaction of the future.
of odors by humans, arguably the ultimate goal of machine
olfaction. The use of fuzzy sets [98] has been reported in
the e-nose literature [99]-[102], including hybrid approaches
such as fuzzy C-means/RBFs [103], [104], fuzzy MLPs [105], Constructive comments from the anonymous reviewers were
[106], and fuzzy learning vector quantization [LOAHaptive  very helpful in improving the final version of this manuscript.
techniques have also been explored for on-line learning in non-
stationary environments [25], [26]. Adaptive resonance theory
(ART) [108], in particular, provides a mechanism that solves

the “stability-plasticity dilemma,” which refers to the inability [l J. W. Gardner, M. Craven, C. Dow, and E. L. Hines, “The prediction
of bacteria type and culture growth phase by an electronic nose with

Of. most leaming ?’)/_Stems to_ adapt to changing environments a multi-layer perceptron networkMeas. Sci. Technglvol. 9, pp.
without compromising previously acquired knowledge. For 120-127, 1998.

this reason, the family of ART algorithms has been proposed[zl R. Gutierrez-Osuna and H. T. Nagle, “A method for evaluating data-pre-
processing techniques for odor classification with an array of gas sen-

?-S a proce.ssing mechanism for g—nose d‘tita [109]_[1;1]' ART sors,” |[EEE Trans. Syst. Man Cybern, Bol. 29, pp. 626-632, May
is a plausible model of human information processing but,  1999.

unfortunately, has a tendency to over-fit, which result in a [3] R. Gutierrez-Osuna, H. T. Nagle, B. Kermani, and S. S. Schiffman,
“Signal conditioning and pre-processing, itandbook of Machine OI-

pm”feration of Cateqories in the presence of nOiSy data [70]' faction: Electronic Nose Technology. C. Pearce, S. S. Schiffman, H.
Finally, the study of signal-processing mechanisms in the T Nagle, and J. W. Gardner, Eds. Weinheim, Germany: Wiley-VCH,
biological olfactory system constitutes a promising direction _ 2002.

R 4] E. Llobet, J. Brezmes, X. Vilanova, X. Correig, and J. Sueiras, “Qual-
for future work [67], [112]. The wealth ofomputational itative and quantitative analysis of volatile organic compounds using

models of the olfactory pathway developed in biological transient and steady-state responses of a thick-film tin oxide gas sensor

cybernetics and computational neuroscience [113]-[116] can__ 2aray,”Sens. Actuators Bol. 41, no. 1-3, pp. 13-21,1997.
tarti int t imic biological olfact [5] T.C. Pearce, J. W. Gardner, and W. Gopel, “Strategies for mimicking
Serve as a starting point to mimic piological offactory proCe€sses” * itaction: The next generation of electronic noseSghs. Updatevol.

including () receptor-glomerular convergence for improved 3, no. 1, pp. 61-130, 1998.

SeﬂSItIVIty and fault tolerance In Iarge sensor arraly;b(jlbar [6] A."Hierlemann, U. Weimar, G. Kraus, M. SChWei'Zer-BerberiCh, andW
Gopel, “Polymer-based sensor arrays and multicomponent analysis for

excitatory-inhibitory dynamics for odor contrast enhancement .o detection of hazardous organic vapors in the environmeetys.
and normalization,iif) cortical associative memory functions Actuators Bvol. 26, no. 1-3, pp. 126-134, 1995.

for pattern completion, andv() centrifugal modulation of the [7] H. Sundgren, F. Winquist, I. Lukkari, and I. Lundstrom, “Artificial
neural networks and gas sensor arrays: Quantification of individual

olfactory bulb for chemosensory adaptation. A few recent  omoonents in a gas mixtureMeas. Sci. Technolvol. 2, no. 5, pp.
publications have begun to explore the use of these mechanisms 464-469, 1991.
on chemical sensor arrays [117]_[120]' [8] K.lIkohuraand J. Watsohe Stannic Oxide Gas SensoiBoca Raton,

. . ; . FL: CRC, 1994.
) We Cor_]CJUde this review W't.h a summary of the tppICS that, [9] G. Horner and C. Hierold, “Gas analysis by partial model building,”
in our opinion, are at the frontiers of pattern analysis for elec-  Sens. Actuators Bol. 2, pp. 173184, 1990.

tronic nose instruments. A few of these are of critical importancél0] J. W- Gardner, “Detection of vapors and odours from a multisensor array
using pattern recognition. Part 1. Principal components and cluster anal-

in order for the technology to receive widespread acceptance s> sens. Actuators Bol. 4, pp. 109-115, 1991
as a viable approach for the measurement of odors and volatilel] K.C.Persaud, S. M. Khaffaf, J. S. Payne, A. M. Pisanelli, D.-H. Lee, and

compounds.if Drift compensation algorithms, in combination H.-G. Byun, "Sensor array techniques for mimicking the mammalian ol-
factory system,Sens. Actuators,®ol. 36, no. 1-3, pp. 267-273, 1996.

with a'pproprllate sampling ?‘nd re(':a|lbratl.0n prqpedurgs, are tr\?Z] T. Eklov, P. Martensson, and |. Lundstrom, “Enhanced selectivity of
most immediate need for industrial applicatiorig) Calibra- MOSFET gas sensors by systematical analysis of transient parameters,”

tion transfer algorithms also need to be developed in order to__ Anal. Chim. Actavol. 353, pp. 201-300,1997.
id lete retraining of the pattern-analvsis svstem fO[ELS] R. Gutierrez-Osuna, H. T. Nagle, and S. Schiffman, “Transient response
avoid a comple g p y Y analysis of an electronic nose using multi-exponential mod&eris.

each individual instrumentii{) For these reasons, the devel- Actuators Bvol. 61, no. 1-3, pp. 170-182, 1999.

opment of odor, sampling, and calibratistandardsis of ut- [14] T. Nakampto, A. lguchi, and T. Moriizumi,_“Vapor supply method in
odor sensing system and analysis of transient sensor resposses,’
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