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ABSTRACT 

We present a voice morphing strategy that can be used to generate 

a continuum of accent transformations between a foreign speaker 

and a native speaker.  The approach performs a cepstral 

decomposition of speech into spectral slope and spectral detail.  

Accent conversions are then generated by combining the spectral 

slope of the foreign speaker with a morph of the spectral detail of 

the native speaker.  Spectral morphing is achieved by representing 

the spectral detail through pulse density modulation and averaging 

pulses in a pair-wise fashion.  The technique is validated on 

parallel recordings from two ARCTIC speakers using both 

objective and subjective measures of acoustic quality, speaker 

identity and foreign accent.   

 

Index Terms— voice morphing, accent conversion. 

1. INTRODUCTION 

During the last two decades, a few studies have suggested that it 

would be beneficial for second language (L2) students to be able to 

listen to their own voices producing native-accented speech [1] 

The rationale behind this proposal is that removing information 

that is only related to the teacher’s voice quality makes it easier for 

students to perceive differences between their accented utterances 

and their ideal accent-free counterparts. As a step towards this 

goal, we have recently developed techniques that can be used to 

synthesize native-accented utterances from their foreign-accented 

counterpart while preserving the speaker’s voice quality [1-3].   

Here, we propose a morphing technique that generates a 

continuum of accent-conversions between the learner’s 

productions and those of the teacher.  The technique works as 

follows.  First, we decompose speech spectra into two components: 

(i) broad spectral features that capture speaker differences in glottal 

source spectra [4], and (ii) spectral details (i.e. formant positions) 

that capture linguistic content.  Then, we generate accent morphs 

by combining the learner’s broad spectra with a morph of the 

spectral detail of both speakers. Generating the morph requires that 

we establish correspondence between the two detailed spectra. This 

is achieved by encoding both spectra as a pulse density, and then 

averaging the position of corresponding pulses.  

Morphing accent conversions may serve as a behavioral 

shaping strategy in computer assisted pronunciation training. In 

behavioral shaping, the teacher asks the student to compare their 

utterances against their “best” previous efforts rather than against a 

separate standard [5]. Using a normative reference can be 

detrimental early in training, when the student’s utterances are very 

distant from the ideal pronunciation. Instead, by using a “floating” 

reference (i.e., one that adapts to the performance of the learner), 

the teacher can provide carefully graded evaluations of the 

learners’ performance and guide them towards the ultimate goal. 

Likewise, morphing accent conversions during the early stages of 

learning may be used to produce utterances that have less 

ambitious prosodic and segmental goals, slowly improving the 

reference by incorporating the best pronunciation of the learner and 

higher degrees of morphing towards the teacher’s productions.  

2. RELATED WORK 

Morphing has been extensively used for face perception, but is 

challenging when applied on speech.  Whereas facial landmarks 

are well defined (eyes, mouth, jaw lines, etc.), spectral features in 

speech (i.e., formant frequencies) are difficult to measure and ill-

defined in the case of unvoiced phones.  Rather than use formant-

tracking techniques, which are notoriously unreliable, various 

methods have been proposed to generate morphs directly from the 

spectra of two speakers.  Slaney et al. [6] generate separate 

spectrograms for the pitch and broad spectral shape of a sound, and 

interpolate each channel separately using dynamic programming 

and harmonic alignment, respectively. Pfitzinger [7] also uses 

dynamic programming to find a frequency warp between two 

spectra, but in this case the warping is performed on the first-order 

derivative of the two LP spectral envelopes.  Ezzat et al. [8] also 

use the derivative of the two (log magnitude) spectra but instead 

employ an optical-flow technique to find a correspondence 

between the two spectra.  More recently, Shiga [9] has proposed a 

method where spectral envelopes are encoded as a distribution of 

pulses (see Fig 2).  In this case, morphing can be performed by 

pairing individual pulses from the two spectra (according to their 

order) and then computing the weighted average of each pair.  This 

results in significant time savings as compared to previous methods 

based on dynamic programming or optical flow. An added 

advantage of pulse density coding is that, unlike all-pole models 

such as LPC, it can model spectral zeros accurately. Also recently, 

Kawahara et al. [10] have developed an auditory morphing 

algorithm for STRAIGHT [11] that allows temporally-variable 

morphing rates; the method takes user-selected anchor points and 

maps the two spectrograms using a piecewise bilinear transform. 

Our work is related to the problem of voice conversion [12-

17].  However, voice conversion seeks to transform utterances 

from a speaker so they sound as if another speaker had produced 

them, whereas accent conversion seeks to transform only those 

features of an utterance that contribute to accent while maintaining 

those that carry the identity of the speaker. Only a handful of 

studies have been published on the subject of accent conversion. 

Yan et al. [18] proposed an accent-synthesis method based on 

formant warping. First, the authors developed a formant tracker 

based on HMMs and LPC, and applied it to a corpus containing 

several regional English accents (British, Australian, and 

American). Analysis of the formant trajectories revealed 

systematic differences in the vowel formant space for the three 

regional accents. Second, the authors re-synthesized utterances by 

warping formants from a foreign accent onto the formants of a 



native accent; pitch-scale and time-scale modifications were also 

applied. An ABX test showed that 75% of the re-synthesized 

utterances were perceived as having the native accent. Huckvale 

and Yanagisawa [19] used an English TTS system to simulate 

English-accented Japanese utterances by transcribing Japanese 

phonemes with their closest English counterparts. The authors then 

evaluated the intelligibility of a Japanese TTS against the English 

TTS, and against several prosodic and segmental transformations 

of the English TTS. Their results showed that both segmental and 

prosodic transformations are required to improve significantly the 

intelligibility of English-accented Japanese utterances.  

Our work differs from Yan et al. [18] in two ways. First, we 

use pulse coding to represent speech spectra, which makes our 

method more robust than formant tracking, particularly for 

unvoiced segments. Second, we evaluate not only the accentedness 

of the re-synthesized speech but also the perceived identity of the 

resulting speaker. The latter is critical because accent conversion 

should preserve the identity of the foreign-accented speaker.  In 

contrast with Huckvale and Yanagisawa [19], our study is 

performed on natural speech, and focuses on accentedness and 

identity rather than on intelligibility; as noted by Munro and 

Derwing [20], a strong foreign accent does not necessarily limit the 

speaker’s intelligibility. Finally, unlike these previous methods and 

our own prior work [1-3], the work presented here allows us to 

achieve different degrees of accent conversion by virtue of a 

morphing coefficient, as described next. 

3. METHODS 

3.1. Voice morphing through pulse density modulation 

 

Our approach is based on the pulse density modulation (PDM) 

technique of Shiga [9].  PDM employs a delta-sigma modulator to 

convert a log spectral envelope  ( ), where   denotes frequency, 

into a pulse sequence  ( )     [ ( )] as follows: 

 ( )   ( )      (   ) (1) 

 ( )   ( )   (   ) (2) 

 ( )      ( ( )) (3) 

with initial conditions  ( )   ( )   ( ) and  ( )   ; the term  

   represents the feedback gain of the delta-sigma modulator: 

      ( ).  In turn, the pulse sequence  ( ) can be decoded 

back into a log spectral envelope   ̂( )       [ ( )] through 

the discrete cosine transform (DCT) as: 

 ( )     [ ( )] (4) 

 ( )             (5) 

 ̂( )       [ ( )]     (6) 

which essentially acts as a low-pass filter by truncating the DCT 

expansion with an appropriate cutoff k (      in our 

implementation.)  Thus, given a pair of spectral envelopes   ( ) 
and   ( ), a morphed spectral envelope can be computed by 

averaging the position of corresponding pulses in the two spectra: 

  ( )     
  [(   )   [  ( )]      [  ( )]] (7) 

where the morphing coefficient    (     ) can be used to 

generate a continuum of morphs between the two spectral 

envelopes   ( ) and   ( ). 

 

Fig 1.  (a) Morphing accent conversion strategy.  

(DTW/DFW: dynamic time/frequency warping).  (b) Spectral 

slope   ( ) as a function of liftering cutoff   
{                      }.  Individual spectra have 

been shifted vertically for visualization purposes. 

3.2. Accent conversion through voice morphing 

 

Given parallel recordings from the learner   ( ) and the teacher 

  ( ), eq. (7) produces a morph of both the identity and the accent 

of the two speakers.  In accent conversion, however, we seek to 

morph only the accent while preserving the learner’s identity.   For 

this purpose, prior to the PDM encoding in eq. (1-3), each spectra 

  ( ) is separated into two components,   
 ( ) carrying the broad 

spectral features (i.e. shape of the glottal source spectra [4]), and 

  
 ( ) carrying the spectral detail (i.e. formant positions).  This, 

again, is performed by liftering in the DCT domain as: 

  
 ( )       [   ( ( ))   ( )] (8) 

  
 ( )       [   ( ( ))  (   ( ))] (9) 

where  ( ) are the liftering coefficients, defined by:  

 ( )  {
        
    

 (10) 

An accent morph   ( ) is then produced by combining the 

learner’s broad spectra   
 ( ) with a morph of the spectral detail of 

both speakers   
 ( ): 

  ( )    
 ( )    

 ( )  
 

(11) 

  
 ( )       [    [  

 ( )]

 (   )   [  
 ( )]] 

 

 

(12) 

Larger values of the liftering coefficient   in (10) ensure that 

increasing spectral detail is preserved in the learner’s broad 

envelope   
 ( ) and that, likewise, equivalent spectral detail is 

discarded from the teacher’s spectral detail   
 ( ).  The overall 

accent-conversion process and liftering results for different values 

of   are illustrated in Fig 1. 
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Fig 2.  (a) Decomposition of the spectral envelope  ( ) into 

global shape   ( ) and spectral detail   ( ).  (b) Encoding 

of spectral detail   ( ) through pulse density modulation. 

4. EXPERIMENTAL VALIDATION 

The proposed method was evaluated on two speakers from the 

ARCTIC corpus [21]: ksp_indianmale, who was treated as the 

foreign-accented learner, and rms_usmale2, who was treated as the 

native-accented teacher. The STRAIGHT vocoder [11] was used to 

generate smooth spectrograms and resynthesize the resulting voice 

morphs.   Prior to performing the morphing accent conversions, 

learner utterances were time-aligned at the frame level (80ms 

windows, 1ms shift; default frame shift in STRAIGHT) to those of 

the teacher using dynamic time warping (DTW) and a conventional 

39-dimensional feature vector (13 MFCCs, delta and delta-delta 

features) computed from the STRAIGHT spectrum.  To account 

for differences in vocal tract length, teacher utterances were then 

frequency warped to those of the target; a global warping function 

was obtained by applying DTW in the frequency domain [22] to 

100 sentences in ARCTIC’s “B” set. Finally, utterances were 

resynthesized using the teacher’s pitch contour shifted to the 

baseline of the learner. As a result of these steps, all subsequent 

morphs conformed to the timing and pitch dynamics of the teacher, 

but had the global frequency warp and pitch range of the learner.   

Morphing accent conversions were generated for parameter 

values    {                            } and   
{           }.  One hundred sentences from ARCTIC’s “A” set 

were synthesized for each of these 1121 combinations, and 

analyzed in terms of their acoustic quality, speaker identity and 

foreign accentedness.  Three objective measures shown in our 

earlier work [2] to correlate with listening tests were used for this 

purpose.  Namely, acoustic quality was estimated through the ITU-

T recommendation P.563, speaker identity was estimated from a 

linear discriminant analysis (LDA) of natural utterances from the 

learner and the teacher, and foreign accent was assessed by the 

forced-alignment score (log-likelihood) of acoustic models trained 

on North American speakers using HTK; see [2]. These objective 

ratings were also verified through subjective listening tests on a 

subset of the 1121 combinations.  

5. RESULTS 

5.1. Objective measures 

 

Fig 3 shows the average performance of the morphing accent 

conversion in terms of the three objective measures.  Acoustic 

quality improves for higher values of the liftering cutoff    and low 

values of the morphing parameter  .  This result can be explained 

as follows. As the value of   increases, additional spectral structure 

is retained for the learner’s broad envelope   
 ( ).  As a result, the 

spectral detail   
 ( ) becomes flatter for large  , which improves 

the PDM encoding (i.e., for a spectrum with a significant spectral 

slope most of the pulses will be placed at the lower frequencies).  

Overall, however, the result in Fig 3(a) shows that the acoustic 

quality of the morphed accent conversions remains at an estimated 

mean-opinion-score (MOS) above 4.7, which in our earlier study 

[2] corresponds to a perceived MOS of 4.1. 

Results from the speaker identity scores are shown in Fig 3(b) 

in terms of the ratio: 

   
∑ ∑ [ (       )   ⁄   (       )   ⁄ ]  

 (     ) (     )  ⁄
  

 

(13) 

where  ( ) is the Euclidean metric,      is the projection of 

acoustic frame i in utterance u onto the LDA solution for the two 

speakers,   ,    are the average LDA projection for learner and 

teacher utterances, respectively, and   ,    are their standard 

deviations.  Thus, ID values greater than 0 indicate that the morph 

is closer to the learner than to the teacher, and vice versa.  As 

shown in Fig 3(b), the morphed accent conversions remain closer 

to the learner except for a small number of parameter combinations 

(large   and small  ); the dashed line indicates the maximum-

likelihood decision boundary between both speakers.  These results 

are to be expected since for large   the morph is dominated by the 

target speaker (the teacher) and for small   only the overall 

spectral slope of the source speaker (the learner) is preserved.   

Results from the accented measure are shown in Fig 3(c) in 

terms of the HTK forced-alignment score: 

    
∑ ∑ (           )  

    
  

 

(14) 

where      is the score (log-likelihood) of phone p on utterance u, 

   is the number of test utterances and    is the size of the phone 

set (                 ).  Subtraction of the silence score 

       compensates for misalignment errors. As may be expected, 

large values of the morphing parameter   reduce the foreign 

accentedness.  In addition, the more information about the learner 

that is preserved in the spectral slope (i.e., by increasing the 

liftering cutoff  ), the larger the morphing value will have to be in 

order to achieve a given accent score.  Comparison of Fig 3(b) and 

Fig 3(c) shows that the accent measure improves (i.e., morphs 

become more native) faster than the identity measure degrades 

(i.e., morphs become more like the teacher), which suggests that 

there is a “sweet spot” where foreign accent reduction can be 

achieved while preserving the identity of the learner.    

 

5.2. Subjective measures 

 

To verify these objective measures, we ran additional subjective 

studies on the five selected (   ) pairs shown in Table 1 and Fig 

3, which represent intermediate degrees of morphing: V1 and V5 

being nearest to the learner and the teacher, respectively. For each 

condition, we transformed the same 10 sentences. Participants 

performed the following tests through Amazon’s Mechanical Turk: 

 Accent – 10 subjects rated the degree of accent for 50 

utterances (5 conditions, 10 sentences) using a 7-point scale 

(0=not at all accented; 2=slightly; 4=quite a bit; 6=extremely).  

Subjects had to qualify for this test by passing an American 

-4

-2

0

2

4
lo

g
 p

o
w

e
r 

(d
B

)

 

 

x(n) x
L
(n) x

H
(n)

1000 2000 3000 4000 5000 6000 7000 8000
0

1

frequency (Hz)

p
u
ls

e

(a) 

(b) 



dialect identification test, which only native speakers of 

American English are likely to complete. 

 Quality – 10 subjects rated the quality of the same 50 

utterances using a 5-point MOS (1=bad, 2=poor, 3=fair, 

4=good, 5=excellent). 

 Identity – 10 subjects participated in a forced choice test. 

They listened to two pairs of utterances; each pair consisted of 

V1 or V5, a separating beep, and one of the intermediate 

voices (V2-V4).  Subjects were asked to select the pair whose 

voices were more different from each other. The order of 

presentation was random, and utterances were time-reversed 

so subjects focused on the physiological components of the 

voices [2]. Identity scores were calculated as the fraction of 

times that a given voice was perceived to be closer to V1. 

Subjective ratings were consistent with the corresponding 

objective measures. Accent ratings decrease monotonically through 

the sequence (V1-V5) and the perceived accent drops suddenly at 

V3 near a similar drop-off in Fig 3. Quality tended to decrease with 

 , as predicted by the objective measure.  Due to the design of the 

test, no identity score is available for V1 or V5. The intermediate 

voices were considered closer to the learner than to the teacher, 

and the order of similarity agrees with the objective measures. 

Original and morphed utterances for ARTIC sentence “We have 

plenty of capital ourselves, and yet we want more” (a0364) for the 

five conditions in the listening tests are available at   

http://research.cs.tamu.edu/prism/publications/interspeech2013.zip.   

6. DISCUSSION 

We have presented a method for foreign accent conversion that 

combines a cepstral decomposition of the spectral envelope and a 

voice morphing technique through pulse density modulation.  

Given parallel recordings from a native speaker and a foreign 

speaker, we decompose the spectral envelope into its overall shape, 

which captures speaker-dependent cues (i.e. spectral slope), and its 

spectral detail, which captures linguistic content.  The critical step 

in the morphing process is matching peaks across two spectra. We 

address this issue by representing the spectral detail as a 

distribution of a large number of pulses. In this manner, morphing 

two spectra is equivalent to averaging the position of their pulses in 

a pair-wise fashion.  The overall procedure contains two 

parameters: a liftering cutoff   that determines the amount of 

information to be preserved in the foreign speaker’s spectral slope, 

and a morphing coefficient   that determines the degree of 

morphing between the spectral detail of both speakers.  

The procedure was evaluated on two speakers in the ARCTIC 

corpus using objective and subjective measures of acoustic quality, 

speaker identity and foreign accent. The results indicate that there 

is a trade-off between quality, identity and accent.  Higher quality 

and identity scores are obtained by retaining as much of the 

learner’s spectral information as possible (large   and small  ) at 

the expense of reducing accent scores. However, our results also 

show a region in parameter space where significant reductions in 

accent are obtained while preserving cues to the learner’s identity.  

Our approach preserves the pitch range and overall vocal tract 

length of the learner, and assumes that speaker-dependent and 

linguistic cues in the spectral envelope can be separated through 

cepstral decomposition (i.e., spectral slope vs. spectral detail, 

respectively). While F0, vocal tract length and spectral slope are 

known to be good discriminator among speakers [23], additional 

acoustic cues from the learner’s voice could be captured and 

preserved before the morphing stage.  As an example, jitter and 

shimmer (cycle-to-cycle variations in    and amplitude, 

respectively) have been used to characterize various voice qualities 

[24],  as well as fine structure in the speech signal [25].  Other 

features from the speaker recognition literature (see [26] for a 

recent review) may also be investigated while considering that our 

goal is synthesis rather than recognition.  Future work may also 

investigate filtering techniques (i.e., head-related transfer 

functions) to reduce differences between speakers’ perception of 

self-produced speech and their speech recordings [27], which may 

become important in computer assisted pronunciation training. 
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Fig 3.  (a) Quality, (b) identity, and (c) accentedness of the 

morphing accent conversions as a function of the liftering cutoff   

and morphing coefficient  . Lighter color denotes desirable effects 

(e.g., high quality, learner identity, and native accent). Dashed line 

in (b) represents the maximum-likelihood boundary between both 

speakers, as measured in the LDA subspace. Circles in (a) indicate 

the five conditions used in the listening tests. 

Table 1. Subjective ratings of accent, quality and identity. 

(   ) Accent Quality 
Learner’s  

ID score 

V1 (0,50) 2.94 3.38 n/a 

V2 (0.3,30) 2.61 3.41 74% 

V3 (0.7,7) 0.40 3.26 69% 

V4 (0.8,3) 0.26 3.07 64% 

V5 (1,1) 0.14 2.56 n/a 
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