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Abstract

We provide a broad review of approaches for developing chemosensor sys-
tems whose operating parameters can adapt in response to environmental
changes or application needs. Adaptation may take place at the instrumenta-
tion level (e.g., tunable sensors) and at the data-analysis level (e.g., adaptive
classifiers). We discuss several strategies that provide tunability at the device
level: modulation of internal sensing parameters, such as frequencies and
operation voltages; variation of external parameters, such as exposure times
and catalysts; and development of compact microanalysis systems with mul-
tiple tuning options. At the data-analysis level, we consider adaptive filters
for change, interference, and drift rejection; pattern classifiers that can adapt
to changes in the statistical properties of training data; and active-sensing
techniques that can tune sensing parameters in real time. We conclude with a
discussion of future opportunities for adaptive sensing in wireless distributed
sensor systems.
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1. INTRODUCTION

The objective of this article is to review advances in chemical sensing at the device, system, and
data-processing levels that may enable the development of adaptive microsensor systems. A system
is considered to be adaptive if its characteristics or parameters can be adjusted in response to the
environment and the target analytes. A system may exhibit adaptability at multiple levels (e.g.,
device, system, or data analysis) in response to various factors (internal or external) and at different
timescales (e.g., permanent versus reversible). As an example of these various strategies, an adaptive
system may adjust its sensor parameters (device), its mode of operation (system), or its calibration
parameters (data analysis); these adaptations may occur in response to sensor changes or sensor
drift (internal) or upon the occurrence of cross-contaminants (external); and these adaptations may
involve the regeneration of sensing surfaces (permanent) or adjusting sensor tunings (reversible).

We have organized this review according to which aspects of the adaptation take place at the
hardware level (i.e., sensor device or instrument) and at the software level (i.e., data analysis).
This is not to say that adaptation can occur only at one or the other level; adaptation may involve
coordination at both levels (i.e., hardware changes can be triggered by the software in response to
hardware events), and the boundaries between the two levels are becoming increasingly blurred
(i.e., intelligent microsensors integrate sensing and data processing in the same device). Instead,
this division between hardware and software should be viewed as a way to identify individual
components of chemical microanalysis systems that may be targeted for adaptation. On the hard-
ware side, there is also the large field of sensor interface electronics, such as auto-ranging and
auto-zeroing circuits (1–4), which we deem to be outside the scope of this review.

2. HARDWARE APPROACHES

In most current applications of chemical sensors, the output of an individual sensor consists of
a defined parameter, such as a resistance value measured at a fixed potential and temperature,
in response to a chemical stimulus (5–11). This means that, usually, one predefined feature per
sensor is monitored at a time, preferably during an equilibrium-type situation, in which a certain
analyte concentration can be correlated to the resulting sensor response. Use of a single sensor
and a predefined set of sensor-readout parameters, however, provides very limited performance in
practical applications, in particular if the environment is challenging due to cross-interferences,
or if it is rapidly changing.

Therefore, methods to effectively extend the so-called feature space or to provide a tunable
feature space have received great attention. A feature space is an abstract space in which each
sample, for instance a sensor measurement value, is represented as a point in n-dimensional space.
Features are the individual measurable heuristic properties of the phenomena being observed,
such as individual sensor measurements. Methods to extend the feature space and gain additional
information include use of sensor arrays (arrays of identical transducers with different coatings
or arrays of different transducers) and modification of transducer geometries (12–14). A tunable
feature space can be realized by modulating and/or adapting sensor parameters and operation
conditions to a certain sensing scenario. The tuning must be feasible during sensor operation;
in other words, exchanging coating materials or changing the spacing of electrodes, for instance
acoustic transducers (15), cannot be considered here, because they require a major reconstruction
of the sensor. Following Göpel (12) and Weimar & Göpel (13), the parameters that can be varied
during sensor operation may include internal parameters, such as sensor temperature, electrode
bias voltage, or measurement frequencies, and external parameters, such as use of filters or catalysts
to change the gas composition.
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MOX: metal oxide

In this section we provide examples of hardware realizations of such tunable devices and discuss
how tunability has been achieved. The devices are categorized according to internal and external
parameter tuning (Sections 2.1 and 2.2); chemical microanalysis systems are described in Section
2.3.

2.1. Internal Sensor Tuning

One of the most prominent examples of an internally tunable sensor requires modifying the oper-
ation temperature of metal-oxide (MOX) gas sensors (16–19) to specifically detect target analytes
in complex mixtures or in a background of interferants. The gas reactions at the MOX surfaces
and, hence, the sensor selectivity or sensitivity patterns are highly dependent on the operation
temperature (5, 20–23). Carbon monoxide (CO) is usually best detected at lower operation tem-
peratures (e.g., 250◦C) through use of, for instance, a tin dioxide–based sensitive layer, whereas
higher temperatures (e.g., 350◦C) are used for monitoring, for example, hydrocarbons such as
methane. Therefore, one can vary the operation temperature of a single sensor or a small set of
sensors to effectively tailor the sensor/array selectivity, and a carefully designed temperature pro-
gram for a certain target analyte can be applied after a coarse qualitative detection of its presence.
Fast temperature variations can also generate a large set of virtual sensors to analyze complex
mixtures. A rather sophisticated temperature program that was used to examine a target matrix
with five high-priority chemical hazards (ammonia, hydrogen cyanide, chlorine, ethylene oxide,
and cyanogen chloride) is shown in Figure 1b (19). Ammonia and ethylene oxide are common
toxic industrial chemicals that are also employed as precursors in the manufacture of explosives,
narcotics, and polymers. Beyond their industrial uses, hydrogen cyanide and cyanogen chloride
are blood agents, and chlorine is a pulmonary agent.

The temperature program used to operate the sensing elements toggles the temperature
between (a) 32 ramp values that sample most of the temperature range of the device and
(b) four different baseline temperature values to allow relaxation toward some initial state prior
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Figure 1
(a) Temperature program used for the detection of high-priority chemical hazards. Reprinted with permission from Reference 19.
(b) Micrograph of a stand-alone micro–hot plate system. The digital circuitry (including three temperature controllers and converters)
is on the left; it includes a control unit and the serial interface. The analog circuitry for biasing and analog-to-digital conversion is in
the center, and the three micro–hot plates are on the right. Reprinted from Reference 32 with permission.
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Micro–hot plate:
a micromachined,
thermally isolated
stage, such as a
membrane, bridge, or
cantilever, with
dimensions on the
order of several tens of
micrometers and
featuring low thermal
mass; allows
millisecond-scale
temperature variations

CMOS:
complementary
metal-oxide
semiconductor

Voltammetry:
a category of
electroanalytical
methods used in
analytical chemistry
and various industrial
processes in which
information about an
analyte is obtained by
measuring the redox
currents at the
electrodes as the
potential is varied.
The measured current
is usually linearly
proportional to the
analyte concentration

to each ramp temperature. Moreover, different baselines allow different film-analyte interactions
(adsorption/desorption, decomposition, and reaction) at the sensing surface prior to the ramp
measurements.

The development of temperature programs for MOX sensors has been fueled by the appear-
ance of micro–hot plates with low thermal mass (24), which allow for millisecond-scale temper-
ature variations so that the temperature variations are faster or on the same time scale as the
chemical processes occurring during gas/MOX interaction. There is an almost infinite number
of target analyte–specific temperature-variation profiles (sinusoidal, ramp, rectangular, etc.) fea-
turing arbitrarily selectable temperature intervals within which the variations can be realized.
A variety of hot plate structures, including membranes (24–28), spider-like structures (18, 20,
29, 30), and bridge-like structures (31), have been developed. The most advanced developments
in temperature-variable micro–hot plates include stand-alone complementary metal-oxide semi-
conductor (CMOS)-based microsystems featuring temperature-control loops, transistor heaters,
digital circuitry, and standard interfaces (Figure 1b), which allow for the application of any arbi-
trary temperature profile to three differently coated hot plates via standard software and a universal
serial bus interface (32, 33). Moreover, algorithms have also been developed to optimize the op-
erating temperature in real time, as we discuss in Section 3.3.

Another important parameter that can be tuned is the sensor’s operating voltage. The sensors
for which voltage tuning is most common are voltammetric sensors in the liquid phase (5, 11).
Voltammetry is a method wherein the current at a working electrode is measured while the po-
tential between the working electrode and a reference electrode is swept in time (34–36). This
sweeping can be linear, stepwise, or cyclic (Figure 2a); that is, the voltage can be ramped up
and down (or vice versa) in a triangular pattern within a certain voltage interval (34–36). The
reduction or oxidation of the target species is registered as a peak or trough in the current signal
at the potential at which the species begins to be oxidized or reduced, according to its position in
the electrochemical series (Figure 2a). The charges transferred at the liquid-electrode interface,
or the Faradaic component of the overall current, are the important measurand, and for the case
of diffusion-limited conditions, they are linearly proportional to the target-analyte concentra-
tion. The measured current at any given potential difference depends on the material properties,
the composition and geometry of the electrodes, the concentration of the electroactive species
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Figure 2
(a) Schematic representation of a cyclovoltammogram featuring two sequential, reversible one-electron transfer reactions at two
different redox potentials. The applied voltage ramp is shown in the inset. (b) Schematic of a tunable Fabry-Pérot interferometer. The
wavelength-defining gap width can be changed by applying direct current to the control electrodes. Aluminum has been used as optical
coating material. Adapted from Reference 47 with permission.
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Fabry-Pérot
interferometer (FPI):
an optical wavelength
selector consisting of
two partially
reflecting, low-loss,
parallel mirrors
separated by a gap; its
optical transmission
characteristics consist
of a series of sharp
resonant transmission
peaks that appear
when the gap is equal
to multiples of half a
wavelength of the
incident light

(presumably the target analyte), and the mass-transport mechanisms in the analyte phase (9, 11,
34–36). Amperometry, a special case of voltammetry wherein the potential is kept constant as a
function of time, is even more frequently applied in chemical sensors (11, 34, 35, 37) and also
provides a linear current–analyte concentration relationship. The constant potential is then pre-
defined by the nature or the redox potential of the target analyte (9, 11, 34).

Applications of voltammetric and amperometric sensors include chemical analysis in the gas
or liquid phase. If the target analyte is not an electroactive species [e.g., glucose, oxygen, or
carbon dioxide (CO2)], then enzymes (glucose oxidase) producing analyte-related ionic species
may be used as components of the sensitive electrode coatings. Target analytes in the gas phase
are nitrogen oxides or hydrogen sulfide using polymer electrolytes (38), as well as oxygen (37)
using liquid electrolytes. Target analytes in the liquid phase comprise dissolved oxygen (39–41),
glucose (42), hydrogen peroxide (43, 44), and chlorine in drinking water (45). One of the best-
known voltammetric cells is the Clark cell (40), which is based on a two-step reduction of oxygen
via hydrogen peroxide to hydroxyl ions in aqueous solution. The Clark cell is used to measure
dissolved oxygen in blood and tissue (40, 41). The reference electrodes in the liquid phase are, in
most cases, silver/silver-chloride elements.

The last internal parameter we describe herein is wavelength or frequency. One of the most
commonly used devices to tune wavelength is the Fabry-Pérot interferometer (FPI), an opti-
cal element consisting of two partially reflecting, low-loss, parallel mirrors separated by a gap
(Figure 2b). The characteristics of the optical transmission through the mirrors consist of a series
of sharp resonant transmission peaks, which occur when the gap is equal to multiples of half a
wavelength of the incident light. These transmission peaks are caused by multiple reflections of
the light in the cavity. Through the use of highly reflective mirrors, small changes in the gap (e.g.,
width and absorptivity) can produce large changes in the transmission response. Even though two
reflective mirrors are used, transmission through the element at the peak wavelengths approaches
unity.

The transmission is a function of both gap spacing and radiation wavelength. Usually, the gap
width is tuned to achieve the desired wavelength and operate the device as a wavelength selector
or monochromator. Tunable devices with a gap width that is variable by electrostatic actuation
via electrodes on movable micromachined parts (Figure 2b) have been reported by several groups
(46–50). Such devices operate preferably in the near-infrared region at wavelengths longer than
1 μm, where silicon substrates become transparent. Typical applications include gas sensors and
remote gas sensing in plumes (48–53). Characteristic absorption wavelengths are 4.7 μm for CO,
4.2 μm for CO2, and 3.3 μm for methane or hydrocarbons (infrared region, molecular vibrations).
CO2 sensors based on tunable FPIs (dual-wavelength measurements) are commercially available
from, for instance, Vaisala (Helsinki, Finland). The radiation source in most cases is a lightbulb or
light-emitting diode. Single-chip CMOS optical microspectrometers based on FPI and operating
in the ultraviolet/visible region, including operation in the liquid phase, have also been reported
(54–56). These instruments, however, contain arrays of different Fabry-Pérot etalons with fixed
resonant-cavity length, realized as a plasma-enhanced chemical vapor deposition silicon-oxide
layer sandwiched between two metal layers (55–57).

More recently, quantum cascade lasers (58, 59) with wide tuning ranges in the infrared region
between 3 μm and 24 μm have been developed and used for trace gas analysis of a variety of envi-
ronmentally relevant gases (e.g., CO, CO2, methane, and formaldehyde) and medically relevant
gases (e.g., nitrogen monoxide, CO, CO2, ethane, and CS2), which are also important in space-
craft air quality and planetary atmospheric science (59–64). The wide tunability of the quantum
cascade lasers is enabled through the use of so-called external cavities: Additional gratings are
used as an end mirror of the laser cavity. When the diffraction grating is rotated, the wavelength
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can be tuned across the entire bandwidth of the quantum cascade laser chip. The detection limits
for the different gases in mixtures are in the low parts-per-billion or even parts-per-trillion range
(59, 62–64). Instruments are commercially available from, for instance, Daylight Solutions, Inc.
(Poway, California) (63, 64).

Frequency variations are also applied to electrochemical sensors. Alternating current
impedance measurements are, however, not generally used for analytical sensor applications.
Impedance measurements are of special interest for membrane, electrode, and electrolyte char-
acterizations that aim to find an equivalent electronic circuit model and to correlate that model
with electrochemical or sensor-response phenomena (9, 11, 35).

2.2. Variation of External Parameters

An early example of external parameter variation includes the use of a catalyst located upstream
from the sensor array in the analyte gas inlet (65–67). The noble-metal catalyst is heated to
different temperatures, then decomposes (oxidizes) the incoming analyte molecules or promotes
chemical reactions thereof. The resulting reaction products are then detected by an array of,
for instance, electrochemical sensors (65–67). Through variation of the catalyst temperature, the
sensor responses can be modified, and the operation regimes can be optimized for the detection of
specific target compounds. Catalysts include, for example, rhodium or platinum filaments (65–67).
The odor pattern of a spoiling fish sample, obtained with eight different electrochemical sensors
(four CO sensors, two hydrogen sulfide sensors, one sulfur dioxide sensor, and one nitrogen
monoxide sensor) and seven different catalyst temperature steps, is shown in Figure 3a (65). The
sensor-response patterns vary according to temperature and sensor type upon exposure to the fish
odor. Again, the use of the catalyst generates so-called virtual sensors and efficiently extends the
feature space.

Another example of external modulation through variation of the sensor gas-exposure duration
is shown in Figure 3b: The exposure interval of the sensors to the analytes can be varied by
actuating valves and by switching between analyte-loaded and pure carrier gas. The resulting
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Figure 3
(a) Sensor signals of an array consisting of eight electrochemical sensors detecting the analyte gas-reaction products at seven different
catalyst temperatures (30, 100, 200, 500, 600, 750, and 900◦C) of an upstream platinum filament. The analyte included the odor of a
spoiling trout sample. Reprinted from Reference 65 with permission. (b) Sensor signals for a series of concentration steps of decreasing
lengths from 160 s down to 1 s. The capacitor was coated with a 4-μm-thick layer of poly(epichlorohydrin). The envelope of the
response profile, highlighted in gray, is analyte specific and depends on the analyte absorption and desorption times in the polymer
matrix. Reprinted from Reference 68 with permission.
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Preconcentrator:
a sampling device in
which analytes are
initially trapped and
enriched in a sorptive
matrix, then rapidly
released using a
heating pulse; in this
manner, considerably
higher analyte
concentrations
(depending on the
enrichment time)
reach the sensor or
detection unit

transients of varying length can then be used to distinguish, for example, methanol from ethanol
(68). For the experiments shown in Figure 3, a polymer-coated capacitive sensor was used, and
the sensor signals are given in hertz, given that on-chip electronics convert the minute capacitive
signals into the frequency domain in such experiments (69). Methanol and ethanol exposure steps
of varying duration were applied to the sensor. For long exposure intervals, all analytes reach
absorption equilibrium and maximum signal amplitude, whereas for short intervals this holds true
only for fast-diffusing analytes. The sensor responses to methanol (Figure 3b) reach saturation
and sorption equilibria, even for relatively short exposure durations, whereas those to the larger
and slower-diffusing ethanol do not. As a result, the signal amplitude of the ethanol response
begins to decrease much earlier in comparison to methanol, allowing a discrimination of analytes
that belong to the same homologous series to be performed.

2.3. Tunable Integrated Analysis Microsystems

In this section we briefly describe more complex gas sensor–based miniaturized analytical systems,
which feature several parameters that can be tuned according to the sensing scenario. The sensor
arrays act as detector units in those systems, so the parameter variations are external variations
according to the terminology used here. In most cases, preconcentration and/or separation stages
were combined with the sensor array acting as a detector unit for better analytical performance of
the overall system, one of which is shown in Figure 4 (70–79).

A preconcentration stage may be used to lower the detection limits for the sensors through
enrichment of the target analytes in a sorptive matrix. After some time is allowed for the analyte en-
richment, a sharp heating pulse is applied to the sorptive material so that all the analyte molecules,
which were absorbed during a user-defined time span, desorb at once. In this way, considerably
higher analyte concentrations hit the subsequent separation (micro–gas chromatography) and/or
detection unit (sensor array) (71). The parameters that can be varied include the length of the
enrichment time, the material of the sorptive matrix, and the temperature program for desorption.
All these parameters influence how the analyte front hits the sensors. The preconcentration stages
include dynamic headspace or purge-and-trap systems and solid-phase microextraction units that
include fibers coated with absorbing materials (80). Nanoporous carbon, sol gels, ceramic matrices,
polymers, and commercial packing materials are commonly used. In comparison to sensors with-
out preconcentrators, improvements in the lower detection limit range between one and three
orders of magnitude are achieved, so that the lower parts-per-billion range (relevant for many
applications) becomes accessible.

The separation stage usually consists of miniaturized gas-chromatographic units, which were
first presented in the late 1970s (81) and again in the mid-1990s (82). In most cases, the columns
have been realized as spirals (column length 0.6 to 0.9 m, width 100 to 200 μm, depth 200 to
400 μm), micromachined into a planar silicon substrate (approximately 1 cm2), with a glass plate
bonded to the silicon substrate to close the column (see Figure 4). More recently, rather long
(up to 3 m) square-type micromachined columns on 3.3–3.3-cm2 dies have been developed (73).
The variable parameters include the stationary-phase material (packed or coated column), the
operation temperature or temperature program, and the flow speed (pressure) applied to the
mobile gas phase.

The respective analytical microsystems were developed through broad-based efforts at the
University of Michigan (70, 71, 73, 83, 84) and at Sandia National Laboratories (72, 78,
85, 86), respectively. They usually contain a sample inlet with particulate filter, a multi-
stage preconcentrator/focuser, a gas-chromatographic separation module with pressure- and
temperature-programmed separation tuning, an array of microsensors for analyte recognition and
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a Calibration-vapor source c Separation column

Sample
inlet

d Chemoresistor arrayb Multistage preconcentrator

Valve

Pump

Valve

1 mm

100 μm100 μm 100 μm

Figure 4
Schematic and components of the Michigan analytical microsystem. (a) Calibration-vapor source. (b) Three-stage adsorbent
micropreconcentrator prior to loading and sealing (lower left), with close-up scanning electron microscopy images of each section
loaded with adsorbents. (c) A 3-m separation column chip with close-up views of the channel cross sections prior to sealing (top right).
(d ) Detector assembly with four-chemiresistor-array chip (bottom right), Macor lid (white square structure), and sealed detector with
connecting capillaries mounted on a custom fixture (left). Adapted from Reference 73.

Active sensing: a
control strategy that
adapts the
configuration of the
sensor system
dynamically as it
interacts with its
environments (e.g.,
changing camera
viewpoints to improve
recognition of an
object)

quantification, and a pump and valves to direct the sample flow (Figure 4). Sometimes there is also
an on-board calibration-vapor source to generate calibrant vapor at a constant rate by passive dif-
fusion from a liquid reservoir. Analysis of this internal standard, along with vapors captured from
the environment, provides the means to compensate for aging, drift, or other factors that might
affect analytical performance. The systems are capable of separating, recognizing, and quantifying
mixtures of moderate complexity (e.g., 11 vapors) in less than 1.5 min. The needed preconcen-
tration time ranges from approximately 1 min (for industrial workplaces; analyte concentration in
the single-part-per-million range) to 10 min or more (for less-contaminated office or residential
environments; analyte concentration in the parts-per-billion range) (73).

3. COMPUTATIONAL APPROACHES

Computational methods for adaptive sensing can be organized into three categories: adaptive
filtering, adaptive classification, and active sensing. Adaptive filtering has had a long tradition in
signal processing (87–89) and is the most common form of adaptation used with chemical sensors.
Common to all adaptive filtering techniques is the assumption that the sensor system is subjected to
unwanted phenomena that may originate either internally (e.g., sensor faults or drift) or externally
(e.g., chemical backgrounds or environmental interferences). We also review adaptive classification
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PCA: principal
component analysis

techniques that compensate for nonstationary phenomena not during an initial stage (as done by
adaptive filtering) but during the final stage in data processing: when a sample must be assigned
to one of several known categories. Although other prediction problems exist (e.g., concentration
estimation), classification has been the main focus of adaptive techniques for chemosensors. Finally,
we review active sensing methods that allow a sensor system to adapt its parameters in response
to the environment, thus providing a tight coupling between sensing and classification.

3.1. Adaptive Filtering

Adaptive filtering schemes have been employed to address three classes of problems: detection
of novel events (e.g., sensor failures or environmental changes), removal of interferences (e.g.,
backgrounds or environmental variables), and drift counteraction. Adaptation involves reacting to
changes in the system or its environment. As such, the first step in any adaptive strategy consists of
detecting such changes. Two basic strategies are commonly employed: knowledge-based models
and analytical redundancy (90). Knowledge-based approaches involve building models of nor-
mal system operation and typical failure modes. These approaches are advantageous when prior
knowledge about the system is available, but they may be too inflexible for use in adaptation. For
this reason, our review focuses on the second (and also the most widely used) group of methods.

Analytical redundancy methods detect changes by exploiting redundancies in the sensor system,
such as spatial and temporal correlations across multiple sensors. As an example, Pardo et al. (91)
proposed a method for detecting faults in chemical sensor arrays. The method used a neural
network to predict the response of each sensor through use of the remaining sensors as inputs, and
it detected faults by analyzing residual errors. More recently, Perera et al. (92) proposed a novelty
detection method to identify gas leaks in high-pressure lines. Because chemical sensors drift over
time, static methods are unsuitable for long-term monitoring. Instead, the novelty detector must
be adaptive so that it can factor out drift-related changes. The approach was based on recursive
dynamic principal component analysis (RDPCA), a method closely related to the well-known
technique known as evolving window factor analysis (EWFA) (93). EWFA models the covariance
across sensors within a fixed time window; events in the system (e.g., a gas leak) act as new sources
of variability, which can be detected by monitoring the PCA eigenvalues. In contrast, RDPCA
models the covariance not only across sensors (as EWFA does) but also across time. RDPCA also
uses the residual error rather than the eigenvalues, which speeds up the detection process. Wang
et al. (94) described an adaptive method that detects anomalies in gas-sensor networks by analyzing
spatiotemporal patterns across the network, such as cyclical changes in concentration, changes in
the concentration of several gases, and joint events across sensing nodes. The method employs a
Bayesian network to estimate the likelihood of events given new observations from the network;
anomalies are detected whenever the likelihood of an event is low according to a hypothesis test.
The above discussion provides a few recent examples of novelty detection with chemical sensors;
the reader is referred to References 95 and 96 for a more extensive review of statistical and neural
methods for novelty detection.

Environmental interferences and chemical backgrounds constitute a major source of noise
in chemical sensors. When these interferences (e.g., temperature and humidity) are known and
measurable, additional sensors may be used to quantify them and reduce their effect through cali-
bration. The simplest form of compensation consists of modeling the sensor baseline response as
a function of the interference, that is, through a static regression model (97). Such an approach,
however, is unlikely to work when the two types of sensors have different dynamic characteris-
tics. To address this issue, Perera et al. (98) employed the least-mean-squares algorithm (88) to
remove humidity influences from the response of a gas-sensor array. Given an input signal x(t)
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Blind source
separation: the
extraction of individual
source signals from a
set of their mixtures
without knowledge of
the sources or the
mixing process (e.g.,
following individual
conversations in a
crowded room with
multiple speakers)

ICA: independent
component analysis

(e.g., the response of each gas sensor) and an interference signal n(t) (e.g., the response of the hu-
midity sensor), the least-mean-squares algorithm recomputes the parameters of a linear filter x̂(t) =
∑T

τ=1 w(τ )n(t − τ ) on the fly so as to minimize the residual error
∑

t [x(t) − x̂(t)]2. As a result, both
static and dynamic effects of the interference signals can be removed. Furthermore, because the fil-
ter parameters w(τ ) are recalculated over time, the algorithm can adapt to changes in sensor prop-
erties. In many cases, however, one does not have the luxury of measuring the interferences because
they may be unknown or the required sensors may not exist. Several methods have been proposed to
address this problem. One alternative is blind source separation, in which the response of the sensor
array is modeled as a weighted sum of a number of independent sources. As an example, Di Natale
et al. (99) applied independent component analysis (ICA) to a data set containing the response of
thickness shear mode resonators to samples from two different types of peach cultivars measured
in a nonconditioned room. In this study, ICA was used to separate temperature and humidity
influences from discriminatory information. ICA was also applied by Wei et al. (100) to estimate
the concentration of two gases from an array of MOX sensors and by Bermejo (101) to separate
the effect of main and interferent ions from the response of ion-sensitive field-effect transistors.

A second group of techniques has sought inspiration from the processes of mixture segmenta-
tion and olfactory adaptation in the olfactory system. In earlier work, Gutierrez-Osuna & Raman
(102) proposed a dimensionality-reduction method to cancel the effect of background chemicals
from the multivariate response of a gas-sensor array. The method operated by adapting Fisher’s
linear discriminant solution so that the sensor response to previous odors becomes indistinguish-
able from the response to a neutral reference. Using neuromorphic models, the authors also
proposed cortical feedback (103) and local habituation mechanisms (104, 105) that may be used
to remove background odors and to segment odor mixtures into their individual constituents.

The most serious limitation of sensor arrays is the inherent drift of individual sensors, which
results in a slow, random temporal variation of the sensor response even when the sensors are
exposed to the same analyte under identical conditions. A number of algorithms have been devel-
oped to compensate for drift (14, 106). We focus on methods that are based on adaptive principles.
One popular approach is to model the distribution of training examples with a codebook (i.e., a
collection of cluster centers) and then adapt the codebook upon presentation of test data: An
incoming (unknown) sample is assigned to the closest-matching class and then used to adapt the
class parameters. Several variants of this approach have been used that update one cluster center
per class (107), a single self-organizing map (SOM) for all the classes (108–110), or a separate
SOM per class (111). A potential problem with these approaches, however, is that they rely on
correct classification; misclassification errors eventually cause the model to lose track of the class
patterns. Also, all analytes need to be sampled frequently to prevent their patterns from drifting
away too much. Kermit & Tomic (112) have approached drift compensation as a blind source
separation problem. Using experimental data from a hybrid sensor array exposed to two analytes
at two dilution levels, the authors showed that ICA can separate the three sources of information
in the sensor response: analyte identity, analyte concentration, and drift effects. A final approach
that combines adaptive strategies with calibration techniques is to perform recalibration in an
event-driven fashion. Such events may be triggered when unlabeled samples begin to fall outside
the decision boundaries of the classifiers, when outliers are detected, or after interruptions in the
data collection (113).

3.2. Adaptive Classification

Adaptive strategies for chemical sensors have also been explored at the classifier level, mostly in the
context of incremental learning. Polikar et al. (114) proposed a learning algorithm (Learn++) that
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Ensemble classifier:
a machine-learning
methodology that
combines predictions
from multiple
individual classifiers to
improve the overall
classification rate of
the system

Adaptive resonance
theory (ART): a
family of clustering/
classification
algorithms capable of
adapting to changes in
the statistical
properties of the data
without “forgetting”
previously learned
patterns

builds an ensemble of classifiers online, that is, as training data arrives. The algorithm is closely
related to AdaBoost (115), a machine-learning method that builds strong classifiers by forming
ensembles of weak learners.1 Learn++ builds the ensemble in a sequential manner. To ensure
that each classifier learns a different decision boundary (otherwise the ensemble would be of little
benefit), training samples are drawn according to an adaptive weight distribution; samples that are
more difficult to classify receive higher weights, which increases their probability of being selected
to train the next classifier. One interesting property of the algorithm is its ability to handle examples
from classes that were not defined in the original training set: Because examples from these new
classes cannot be correctly classified by the ensemble, these samples are highly likely to be selected
for the next classifier. Along the same lines, Alippi & Roveri (116) proposed a just-in-time classifier
for nonstationary environments. For this purpose, the authors used the k–nearest neighbors rule,
which is ideally suited for adaptive classification because it lacks a proper training phase—all
computations are deferred until new samples have to be classified. Their approach assumes that
labeled training data is made available to the classifier in a sequential manner, and the goal is to
optimize the performance of the classifier over time by adding new samples to the training set
and removing samples that have become obsolete (i.e., as a result of drift). The approach consists
of three steps: (a) adapting the value of k as the number of training samples changes over time,
(b) detecting nonstationary behavior [described in a companion paper (117)], and (c) removing
older samples from the training set once a nonstationary episode has been detected. Note that
both approaches assume that training data arrive with their correct class label. This assumption
may not be realistic in practical applications; in such cases, semisupervised learning strategies may
be used when only a small proportion of the training data is labeled (118, 119).

Methods based on adaptive resonance theory (ART) have been popular in the electronic-nose
literature (120–123). The term ART refers to a family of algorithms originally developed to ad-
dress the so-called stability-plasticity dilemma of incremental learning: How can a model adapt
to changes in its environment without forgetting previously learned patterns? The basic approach
shared by the various ART algorithms is a form of leader-follower clustering, where each incom-
ing pattern is matched to the closest cluster in the model and either (a) the cluster is updated
if it is close enough to the input pattern or (b) a new cluster is created. In this regard, ART is
related to the adaptive methods for drift compensation (reviewed above). Although the original
ART model was intended as a clustering algorithm, supervised versions, such as fuzzy ARTMAP,
have been developed for classification problems (124). Fuzzy ARTMAP is significantly faster than
other connectionist algorithms (e.g., multilayer perceptrons) but is sensitive to statistical over-
lap between the classes, which may lead to an uncontrolled growth in the number of categories.
Other connectionist architectures have also been used for adaptive classification. As an example,
Kurnik et al. (125) used the mixtures of experts (MOE) model, a modular neural network in which
individual classifiers (i.e., experts) are trained on a subset of feature space and their predictions
are linearly combined at the output. Unlike static classifier ensembles, in which the linear weights
for the combiner are predetermined offline, the linear weights in an MOE are dynamically de-
termined from the inputs by a gating network. This determination allows the model to adapt the
classification rule depending on where a sample lies in feature space; such an approach may be used
to adapt the classifier to the local environment of the instrument (e.g., temperature and humidity).
More recently, Tang et al. (126) proposed a stochastic neural network, the continuous restricted
Boltzmann machine (CRBM), to perform binary classification with chemical sensor arrays in the

1A classifier is said to be a weak learner if its performance is only slightly better than chance (e.g., a 51% success rate for a
binary classification problem). Such learners are also typically unstable in the sense that small perturbations in the training
set can lead to large changes in the learned parameters.

www.annualreviews.org • Adaptive Microsensor Systems 265

A
nn

ua
l R

ev
ie

w
 o

f 
A

na
ly

tic
al

 C
he

m
is

tr
y 

20
10

.3
:2

55
-2

76
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 T

ex
as

 A
&

M
 U

ni
ve

rs
ity

 -
 C

ol
le

ge
 S

ta
tio

n 
on

 0
2/

27
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



AC03CH12-Gutierrez ARI 10 May 2010 21:32

presence of significant drift. The CRBM consists of three layers: (a) an input layer containing one
node per sensor, (b) a hidden layer that provides a latent variable structure, and (c) an output layer
to predict the class labels. Learning proceeds in two stages: an initial stage, in which the hidden
layer is trained in an unsupervised fashion, and a final stage, in which the output layer is trained
in a supervised fashion. Once learning is completed, all model parameters are frozen, with the
exception of a hidden bias and an output bias. Freezing the parameters allows the model to adapt
continuously in the presence of subsequent drift. Also, and unlike the other neural architectures,
the CRBM training algorithm is amenable for very large-scale integration, which makes the model
well suited for the development of intelligent sensors.

3.3. Active Sensing

Active-sensing strategies are inspired by the fact that perception (127) is not a passive process but
an active one, in which an organism controls its sensory organs in order to extract behaviorally rel-
evant information from the environment (see Figure 5a). Active sensing has had a long tradition
in robotics and computer vision (128–132) but has received only minimal attention in chemical
sensing. In one of the earliest studies, Nakamoto et al. (133) developed a method for active odor
blending, where the goal was to reproduce an odor blend by creating a mixture from its individual
components. The authors developed a control algorithm that adjusted the mixture ratio so that
the response of a gas-sensor array to the mixture matched the response to the odor blend. More
recently, Gosangi & Gutierrez-Osuna (134) proposed an active-sensing approach to optimize the
temperature profile of MOX sensors in real time. Consider the problem of classifying an un-
known gas sample into one of M known categories {ω(1), ω(2), . . . , ω(M)} using a MOX sensor with
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Figure 5
(a) In active sensing, the system adapts its sensing parameters on the basis of its beliefs about the world. (b) Illustration of active
classification with an array of four metal-oxide sensors, ten temperatures per sensor, and a discrimination problem with six chemicals.
At time t = 0, no information is available except that classes are a priori equiprobable: p(ωi) = 1/6. On the basis of this information,
the active-classification algorithm decides to take the first sensing action (a1, measure sensor S2 at temperature T4), which leads to
observation o1 and an updated posterior probability, p(ωi|o1, a1). After four sensing actions, evidence accumulated in the posterior
p(ωi|o1, . . ., o4, a1, . . ., a4) and the cost of additional measurements are sufficient for the algorithm to assign the unknown sample to
class ω3. In this toy example, an accurate classification is reached with only 10% of all sensor configurations. (c) Classification
performance and average sequence length as a function of feature acquisition costs. Adapted from Reference 134.
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Integrated sensing
and processing (ISP):
a strategy in which
part of the required
computation is
performed as the
instrument collects
measurements in order
to reduce the need for
subsequent signal
processing

D different operating temperatures {ρ1, ρ2, . . . , ρD}. To solve this sensing problem, one typically
measures the sensor’s response at each of the D temperatures, then analyzes the complete feature
vector x = [x1, x2, . . . , xD]T with a pattern-recognition algorithm (135). Although straightforward,
this passive sensing approach is unlikely to be cost-effective because only a fraction of the mea-
surements are generally necessary to classify the chemical sample. Instead, we seek to determine
an optimal sequence of actions a = [a1, a2, . . . , aT ], where each action corresponds to setting the
sensor to one of the D possible temperatures (or terminating the process by assigning the sample
to one of the M chemical classes). More importantly, we seek to select this sequence of actions
dynamically on the basis of accumulating evidence. Our solution to this problem follows Reference
136. First, the authors modeled the dynamic response of a sensor to a sequence of temperature
pulses by means of an input-output hidden Markov model, a machine-learning technique that can
be used to learn a dynamic mapping between two data streams: (a) an input (temperature in this
case) and (b) an output (sensor conductance). Once a dynamic sensor model has been learned,
we then approach the temperature-optimization process as one of sequential decision-making
steps under uncertainty, where the goal is to balance the cost of applying additional temperature
pulses against the risk of classifying the chemical analyte on the basis of the available information.
Following Reference 136, the problem is solved through a partially observable Markov decision
process. Simulation results from this study are shown in Figure 5c; these results indicate that
the method can balance sensing costs and classification accuracy: Higher classification rates can
be achieved by decreasing sensing costs, which in turns increases the length of the temperature
sequence and the amount of information available to the classifier.

Active sensing has also been investigated in hyperspectral imaging (137), a domain in which
acquiring the complete data cube is neither required nor even desirable in most applications. In
these cases, adaptive techniques may be used in library-based spectral identification tasks to match
a partial chemical spectrum to a known spectrum or to a mixture of spectra. Adaptive sampling
may also be used to extend the dynamic range of imaging/spectrometric systems. As an example,
when the dynamic range of a scene exceeds that of the imager, the result is an overexposed or
underexposed image/spectrum or possibly both. In such cases, an adaptive technique may be used
to select exposure durations at each spectral channel according to the signal level at that particular
channel so that weak signals can be brought above the noise levels of the detector (138, 139).

A concept related to active sensing is that of integrated sensing and processing (ISP) (140). The
basic idea behind ISP is to perform part of the required computation as the instrument collects
measurements, thus reducing the need for subsequent signal processing. An early example of ISP
is optical signal processing (141). An optical signal processing instrument consists of a dispersive
element that directs wavelengths to various spatial locations in a transmission mask, where an inner
product is computed between the incoming spectroscopic information and an orthogonal weight
function stored in the mask. When the weight function is orthogonal to the emission spectra of
interfering species (but not to the target’s spectra), the output of the mask becomes a direct measure
of the target’s concentration, thus eliminating the need for further processing. A related approach
was introduced in Reference 142 under the name of optical regression. The motivation behind
optical regression is similar to that of ISP: avoiding the need to collect unnecessary variables.
In a conventional instrument, a complete spectrum is first collected, and individual variables
or wavelengths are subsequently selected algorithmically to form a regression vector. In optical
regression, variable selecting is performed in an analog fashion: directly at the detector side. This
is achieved through modification of the integration time at each wavelength such that the output of
the detector is proportional to the inner product of the transmission spectrum and the regression
vector. In this fashion, the output of the detector is made proportional to the concentration of
the target analyte. Optical interference filters known as multivariate optical elements have also
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been designed to perform functions similar to those of optical regression. In this case, however,
the multivariate optical element is designed to have a transmission spectrum that resembles the
desired regression vector (143). This may be achieved by, for instance, identifying combinations
of organic materials whose transmission spectra sum up to the desired regression vector and by
placing various combinations in a rotating filter wheel (one combination for each target spectra).

ISP concepts have also been applied in the context of acoustic resonance spectrometry, an
analytical technique that is known to generate very large data sets. As an example, Medendorp
et al. (144) collected full spectra for two target analytes and applied Fisher’s discriminant analysis
to identify the most informative frequencies, namely those that are directly proportional to the
physical property of interest. The resulting set of frequencies was then converted into the time
domain and used as an excitation signal. As a result, once the excitation signal passed through the
sample, its amplitude could be used as an estimate of the analyte concentration without the need
for further data processing. Finally, Priebe et al. (145) developed a statistical pattern-recognition
method for ISP that may also be used for active sensing. The approach consists of building
a decision tree that partitions feature space in a hierarchical fashion: Nodes close to the root
of the tree select features on the basis of their ability to provide clear partitions of examples
regardless of class labels (i.e., clustering), whereas nodes at the leaves select sensors on the basis
of their ability to discriminate examples from different classes. The method was evaluated on an
experimental data set from an optical-sensor array exposed to trichloroethylene (a carcinogenic
industrial solvent) in complex backgrounds. Experimental results show that the ISP decision tree
can reduce misclassification rates by half, while requiring only 20% of the sensors to make any
individual classification.

4. OUTLOOK

Most of the work reviewed in this article has focused on adaptation schemes for single sensors or,
at most, sensor arrays within a single instrument. However, advances in chemical microanalysis
systems along with the explosion of mobile computing and wireless communications capabilities
will soon make it possible to deploy massively distributed sensor or microsystem networks with
capabilities that, only a decade ago, were confined to the lab bench of research laboratories. The
integration of chemical microanalysis systems and wireless networks may have a profound im-
pact in applications ranging from environmental monitoring to personal health care (146), but it
also presents formidable challenges to current practices for sensor management and data analysis.
Approaches that work for a handful of sensors are unlikely to scale up to networks containing hun-
dreds or thousands of geographically distributed heterogeneous detectors. In response to these
projections, Yang et al. (147) have proposed the concept of autonomic sensing, a loosely defined
term that envisions self-managed sensor networks requiring minimal or no human intervention.
To deal with the complexity of large numbers of wireless sensors, autonomous sensing borrows
inspiration from the study of biological systems. One example is swarm intelligence (148), an ap-
proach developed in artificial intelligence to manage large groups of agents (i.e., robots) through
simple local rules. Intelligent behavior in such cases is considered to emerge as a result of interac-
tions among agents, rather than through the imposition of a centralized control structure. As an
example, Tsujita et al. (149) proposed an autocalibration method for networks of mobile gas sen-
sors. In their approach, each sensor was recalibrated whenever (a) it was in close proximity of other
mobile sensors, in which case the average concentration estimate across the neighboring sensors
was used as an approximation of the true concentration, or (b) it was within range of one of several
environmental monitoring stations distributed across the area of interest, which were assumed to
provide accurate concentration estimates. Simulation results indicate that this simple mechanism
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may be used to compensate for additive sensor drift. A related approach, known as quorum sens-
ing, is inspired by a molecular signaling process used by bacteria to communicate and coordinate
behaviors with other bacteria in their vicinity. For example, Wokoma et al. (150) applied quorum
sensing to the problem of environmental monitoring with wireless sensor networks, specifically to
determine whether there were enough sensors in certain areas that would warrant the formation of
a cluster to coordinate their monitoring operations. Simulation results indicated that the quorum-
sensing protocol is more scalable and can adapt to changes in the environment more efficiently
than a centralized method can, albeit at the expense of suboptimal clustering results and higher
computational complexity. These examples illustrate that adaptation should not be considered
only as residing at the sensor level, but rather as a property that pervades all levels of a system.

SUMMARY POINTS

1. Long-term operation of chemical detectors in unknown and variable environments re-
quires adaptive techniques to (a) compensate for changes in the environment and in the
detector itself and (b) reduce the power requirements of the system.

2. Several parameters can be modified to adapt the sensor or sensor system to a certain
sensing scenario during operation. These parameters include internal parameters, such
as frequencies and operation voltages, and external parameters, such as exposure timing
and the use of catalysts.

3. Compact microanalysis systems featuring multiple tuning options, including preconcen-
tration and separation stages, also constitute an important development.

4. By varying the parameters or changing the tuning options, one can tune the sensor or
sensor system to detect specific analytes in a complex and changing environment or to
increase the overall information gathered with such a system.

5. In many spectroscopy applications, the complete data matrix is neither required nor
desirable, as it increases the computational complexity of subsequent stages.

6. Adaptation can take place at many levels and stages in the system, ranging from selecting
sensor tunings to reestimating the parameters of the calibration models.

FUTURE ISSUES

1. The level of complexity of the sensor devices or systems massively increases with the
provision of tuning options. Therefore, a major challenge involves keeping the sensors
or systems user friendly and keeping small-volume production at a moderate price.

2. Sensor systems will enter into competition with miniaturized chemical analysis systems
such as gas chromatography, infrared or ultraviolet spectroscopy, and mass spectroscopy.
However, useful synergistic effects and combined instruments may also emerge.

3. The reliability and reproducibility of chemical sensors or systems must come close to
those of purely physical detection and analysis methods (e.g., spectroscopy) to achieve
general acceptance in industry.

4. A number of the adaptive methods reviewed herein have been tested on simulated data
or short-term experimental studies. Few validation studies from long-term deployments
of chemical sensors exist.
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5. Current algorithms for wireless sensor networks assume that data transmission is the main
source of energy expenditures. Although this may be true for the measurement of phys-
ical parameters (e.g., pressure, temperature, light, and vibration), a number of chemical
detectors (e.g., high-temperature MOX sensors, preconcentrators, and infrared-based
sensors) are power intensive and may require different assumptions about the relative
energy budgets of sensing versus data transmission.
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5. Göpel W, Jones TA, Kleitz M, Lundström I, Seiyama T. 1991. Chemical and biochemical sensors. In
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13. Weimar U, Göpel W. 1998. Chemical imaging. II. Trends in practical multiparameter sensor systems.

Sens. Actuators B 52:143–61
14. Hierlemann A, Gutierrez-Osuna R. 2008. Higher-order chemical sensing. Chem. Rev. 108:563–613
15. Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellers ET, et al. 1997. Acoust. Wave Sensors. San

Diego/London: Academic
16. Lee AP, Reedy BJ. 1999. Temperature modulation in semiconductor gas sensing. Sens. Actuators B

60:35–42
17. Meier DC, Evju JK, Boger Z, Raman B, Benkstein KD, et al. 2007. The potential for and challenges

of detecting chemical hazards with temperature-programmed microsensors. Sens. Actuators B 121:282–
94

18. Kunt TA, McAvoy TJ, Cavicchi RE, Semancik S. 1998. Optimization of temperature programmed
sensing for gas identification using micro-hotplate sensors. Sens. Actuators B 53:24–43

19. Raman B, Meier DC, Evju JK, Semancik S. 2009. Designing and optimizing microsensor arrays for
recognizing chemical hazards in complex environments. Sens. Actuators B 137:617–29

20. Cavicchi RE, Suehle JS, Kreider KG, Gaitan M, Chaparala P. 1995. Fast temperature-programmed
sensing for micro-hotplate gas sensors. IEEE Electron Device Lett. 16:286–88

270 Gutierrez-Osuna · Hierlemann

A
nn

ua
l R

ev
ie

w
 o

f 
A

na
ly

tic
al

 C
he

m
is

tr
y 

20
10

.3
:2

55
-2

76
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 T

ex
as

 A
&

M
 U

ni
ve

rs
ity

 -
 C

ol
le

ge
 S

ta
tio

n 
on

 0
2/

27
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



AC03CH12-Gutierrez ARI 10 May 2010 21:32

21. Semancik S, Cavicchi RE, Wheeler MC, Tiffany JE, Poirier GE, et al. 2001. Microhotplate platforms
for chemical sensor research. Sens. Actuators B 77:579–91

22. Wlodek S, Colbow K, Consadori F. 1991. Signal-shape analysis of a thermally cycled tin-oxide gas
sensor. Sens. Actuators B 3:63–68

23. Simon T, Barsan N, Bauer M, Weimar U. 2001. Micromachined metal oxide gas sensors: opportunities
to improve sensor performance. Sens. Actuators B 73:1–26

24. Demarne V, Grisel A. 1988. An integrated low-power thin-film CO gas sensor on silicon. Sens. Actuators
13:301–13

25. Graf M, Barrettino D, Taschini S, Hagleitner C, Hierlemann A, Baltes H. 2004. Metal oxide–based
monolithic complementary metal oxide semiconductor gas sensor microsystem. Anal. Chem. 76:4437–
45

26. Graf M, Jurischka R, Barrettino D, Hierlemann A. 2005. 3D nonlinear modeling of microhotplates in
CMOS technology for use as metal-oxide-based gas sensors. J. Micromech. Microeng. 15:190–200

27. Fort A, Gregorkiewitz M, Machetti N, Rocchi S, Serrano B, et al. 2002. Selectivity enhancement of
SnO2 sensors by means of operating temperature modulation. Thin Solid Films 418:2–8

28. Heilig A, Barsan N, Weimar U, Schweizer-Berberich M, Gardner JW, Göpel W. 1997. Gas identification
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77. Röck F, Gurlo A, Weimar U. 2005. Multisensor system for characterization of packaging emissions:
Prediction of total solvent amount and odor scores. Anal. Chem. 77:2762–69

78. Manginell RP, Adkins DR, Moorman MW, Hadizadeh R, Copic D, et al. 2008. Mass-sensitive micro-
fabricated chemical preconcentrator. J. Microelectromech. Syst. 17:1396–407

79. Manginell RP, Radhakrishnan S, Shariati M, Robinson AL, Ellison JA, Simonson RJ. 2007. Two-
dimensional modeling and simulation of mass transport in microfabricated preconcentrators. IEEE Sens.
J. 7:1032–41

80. Pillonel L, Bosset JO, Tabacchi R. 2002. Rapid preconcentration and enrichment techniques for the
analysis of food volatile. A review. Lebensm. Wiss. Technol. 35:1–14

81. Terry SC, Jerman JH, Angell JB. 1979. Gas-chromatographic air analyzer fabricated on a silicon-wafer.
IEEE Trans. Electron Dev. 26:1880–86

82. Reston RR, Kolesar ES Jr. 1994. Silicon-micromachined gas chromatography system used to separate and
detect ammonia and nitrogen dioxide. I. Design, fabrication, and integration of the gas chromatography
system. J. Microelectromech. Syst. 3:134–46

83. Lu CJ, Whiting J, Sacks RD, Zellers ET. 2003. Portable gas chromatograph with tunable retention and
sensor array detection for determination of complex vapor mixtures. Anal. Chem. 75:1400–9

84. Zhong Q, Steinecker WH, Zellers ET. 2009. Characterization of a high-performance portable GC with
a chemiresistor array detector. Analyst 134:283–93

85. Cernosek RW, Robinson AL, Cruz DY, Adkins DR, Barnett JL, et al. 2006. Micro-analytical systems
for national security applications. Proc. SPIE Int. Soc. Opt. Eng. 6223:622306

86. Mowry CD, Morgan CH, Manginell RP, Kottenstette RJ, Lewis PR, et al. 2002. Rapid detection of bac-
teria with miniaturized pyrolysis-gas chromatographic analysis. In Chemical and Biological Early Warning
Monitoring for Water, Food, and Ground, ed. JL Jensen, LW Burggraf. 4575:83–90

87. Haykin SS. 2002. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice Hall. xvi, 920 pp.
88. Widrow B, Stearns SD. 1985. Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice Hall. xviii,

474 pp.
89. Gustafsson F. 2000. Adaptive Filtering and Change Detection. Chichester, NY: Wiley. x, 500 pp.
90. Henry MP, Clarke DW. 1993. The self-validating sensor: rationale, definitions and examples. Control

Eng. Pract. 1:585–610
91. Pardo M, Faglia G, Sberveglieri G, Corte M, Masulli F, Riani M. 2000. Monitoring reliability of sensors

in an array by neural networks. Sens. Actuators B 67:128–33
92. Perera A, Papamichail N, Barsan N, Weimar U, Marco S. 2006. On-line novelty detection by recursive

dynamic principal component analysis and gas sensor arrays under drift conditions. IEEE Sens. J. 6:770–
83

93. Keller HR, Massart DL. 1991. Peak purity control in liquid chromatography with photodiode-array
detection by a fixed size moving window evolving factor analysis. Anal. Chim. Acta 246:379–90

94. Wang XR, Lizier JT, Obst O, Prokopenko M, Wang P. 2008. Spatiotemporal anomaly detection in gas
monitoring sensor networks. In Proc. 5th Eur. Conf. Wirel. Sens. Netw., ed. R Verdone, pp. 90105. Berlin:
Springer-Verlag

www.annualreviews.org • Adaptive Microsensor Systems 273

A
nn

ua
l R

ev
ie

w
 o

f 
A

na
ly

tic
al

 C
he

m
is

tr
y 

20
10

.3
:2

55
-2

76
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 T

ex
as

 A
&

M
 U

ni
ve

rs
ity

 -
 C

ol
le

ge
 S

ta
tio

n 
on

 0
2/

27
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



AC03CH12-Gutierrez ARI 10 May 2010 21:32

95. Markou M, Singh S. 2003. Novelty detection: a review—part 1: statistical approaches. Signal Process.
83:2481–97

96. Markou M, Singh S. 2003. Novelty detection: a review—part 2: neural network based approaches. Signal
Process. 83:2499–521

97. Sohn JH, Atzeni M, Zeller L, Pioggia G. 2008. Characterisation of humidity dependence of a metal
oxide semiconductor sensor array using partial least squares. Sens. Actuators B 131:230–35

98. Perera A, Sundic T, Pardo A, Gutierrez-Osuna R, Marco S. 2002. A portable electronic nose based on
embedded PC technology and GNU/Linux: hardware, software and applications. IEEE Sens. J. 2:235–46

99. Di Natale C, Martinelli E, D’Amico A. 2002. Counteraction of environmental disturbances of electronic
nose data by independent component analysis. Sens. Actuators B 82:158–65

100. Wei G, Tang Z, Chan PCH, Yu J. 2004. A blind source separation based micro gas sensor array modeling
method. Adv. Neural Netw. 3173:696–701

101. Bermejo S. 2006. Independent component analysis for solid-state chemical sensor arrays. Appl. Intell.
24:61–73

102. Gutierrez-Osuna R, Raman B. 2004. Cancellation of chemical backgrounds with generalized Fisher’s linear
discriminants. Presented at IEEE Sens., 3rd, Vienna, Oct. 24–27

103. Raman B, Gutierrez-Osuna R. 2005. Mixture segmentation and background suppression in chemosensor
arrays with a model of olfactory bulb-cortex interaction. Proc. 2005 IEEE Int. Jt. Conf. 1:131–36

104. Gutierrez-Galvez A, Gutierrez-Osuna R. 2006. Contrast enhancement and background suppression of
chemosensor array patterns with the KIII model. Int. J. Intell. Syst. 21:937–53

105. Gutierrez-Osuna R, Gutierrez-Galvez A. 2003. Habituation in the KIII olfactory model with chemical
sensor arrays. IEEE Trans. Neural Netw. 14:1565–68

106. Holmberg M, Artursson T. 2002. Drift compensation, standards, and calibration methods. In Handbook
of Machine Olfaction: Electronic Nose Technology, ed. TC Pearce, SS Schiffman, HT Nagle, JW Gardner,
pp. 325–46. Weinheim, Ger.: Wiley

107. Holmberg M, Winquist F, Lundstrom I, Davide F, DiNatale C, D’Amico A. 1996. Drift counteraction
for an electronic nose. Sens. Actuators B 36:528–35

108. Davide FAM, Di Natale C, D’Amico A. 1994. Self-organizing multisensor systems for odour classifica-
tion: internal categorization, adaptation and drift rejection. Sens. Actuators B 18:244–58

109. Marco S, Ortega A, Pardo A, Samitier J. 1998. Gas identification with tin oxide sensor array and self-
organizing maps: adaptive correction of sensor drifts. IEEE Trans. Instrum. Meas. 47:316–21

110. Marco S, Pardo A, Ortega A, Samitier J. 1995. Gas identification with tin oxide sensor array and self organizing
maps: adaptive correction of sensor drifts. Presented at Proc. IEEE Instrum. Meas. Technol. Conf., Ottawa,
Can.

111. Zuppa M, Distante C, Siciliano P, Persaud KC. 2004. Drift counteraction with multiple self-organising
maps for an electronic nose. Sens. Actuators B 98:305–17

112. Kermit M, Tomic O. 2003. Independent component analysis applied on gas sensor array measurement
data. IEEE Sens. J. 3:218–28

113. Sisk BC, Lewis NS. 2005. Comparison of analytical methods and calibration methods for correction of
detector response drift in arrays of carbon black-polymer composite vapor detectors. Sens. Actuators B
104:249–68

114. Polikar R, Upda L, Upda SS, Honavar V. 2001. Learn++: an incremental learning algorithm for super-
vised neural networks. IEEE Trans. Syst. Man Cybern. C 31:497–508

115. Freund Y, Schapire RE. 1997. A decision-theoretic generalization of on-line learning and an application
to boosting. J. Comput. Syst. Sci. 55:119–39

116. Alippi C, Roveri M. 2008. Just-in-time adaptive classifiers. Part II: Designing the classifier. IEEE Trans.
Neural Netw. 19:2053–64

117. Alippi C, Roveri M. 2008. Just-in-time adaptive classifiers. Part I: Detecting nonstationary changes.
IEEE Trans. Neural Netw. 19:1145–53

118. Jackson Q, Landgrebe DA. 2001. An adaptive classifier design for high-dimensional data analysis with a
limited training data set. IEEE Trans. Geosci. Remote Sens. 39:2664–79

119. Blum A, Mitchell T. 1998. Combining labeled and unlabeled data with co-training. Presented at COLT:
Proc. Workshop Comput. Learn. Theory

274 Gutierrez-Osuna · Hierlemann

A
nn

ua
l R

ev
ie

w
 o

f 
A

na
ly

tic
al

 C
he

m
is

tr
y 

20
10

.3
:2

55
-2

76
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 T

ex
as

 A
&

M
 U

ni
ve

rs
ity

 -
 C

ol
le

ge
 S

ta
tio

n 
on

 0
2/

27
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



AC03CH12-Gutierrez ARI 10 May 2010 21:32

120. Vlachos DS, Fragoulis DK, Avaritsiotis JN. 1997. An adaptive neural network topology for degradation
compensation of thin film tin oxide gas sensors. Sens. Actuators B 45:223–28

121. Shukla KK, Das RR, Dwivedi R. 1998. Adaptive resonance neural classifier for identification of
gases/odours using an integrated sensor array. Sens. Actuators B 50:194–203

122. Llobet E, Hines EL, Gardner JW, Bartlett PN, Mottram TT. 1999. Fuzzy ARTMAP based electronic
nose data analysis. Sens. Actuators B 61:183–90

123. Distante C, Siciliano P, Vasanelli L. 2000. Odor discrimination using adaptive resonance theory. Sens.
Actuators B 69:248–52

124. Carpenter GA, Grossberg S. 1998. Adaptive resonance theory. In The Handbook of Brain Theory and
Neural Networks, ed. MA Arbib, pp. 79–82. Cambridge, MA: MIT Press

125. Kurnik RT, Oliver JJ, Waterhouse SR, Dunn T, Jayalakshmi Y, et al. 1999. Application of the mixtures
of experts algorithm for signal processing in a noninvasive glucose monitoring system. Sens. Actuators B
60:19–26

126. Tang TB, Chen H, Murray AF. 2004. Adaptive, integrated sensor processing to compensate for drift
and uncertainty: a stochastic ‘neural’ approach. IEEE Proc. Nanobiotechnol. 151:28–34

127. Gibson JJ. 1979. The Ecological Approach to Visual Perception. Boston: Houghton Mifflin. xiv, 332 pp.
128. Bajcsy R. 1988. Active perception. Proc. IEEE 76:966–1005
129. Paletta L, Pinz A. 2000. Active object recognition by view integration and reinforcement learning. Robot.

Auton. Syst. 31:71–86
130. Denzler J, Brown CM. 2002. Information theoretic sensor data selection for active object recognition

and state estimation. IEEE Trans. Pattern Anal. Mach. Intell. 24:145–57
131. Fox D, Burgard W, Thrun S. 1998. Active Markov localization for mobile robots. Robot. Autono. Syst.

25:195–207
132. Floreano D, Kato T, Marocco D, Sauser E. 2004. Coevolution of active vision and feature selection.

Biol. Cybern. 90:218–28
133. Nakamoto T, Okazaki N, Matsushita H. 1995. Improvement of optimization algorithm in active gas/odor

sensing system. Sens. Actuators A 50:191–96
134. Gosangi R, Gutierrez-Osuna R. 2009. Active temperature programming for metal-oxide chemoresistors.

IEEE Sens. J. In press
135. Gutierrez-Osuna R. 2002. Pattern analysis for machine olfaction: a review. IEEE Sens. J. 2:189–202
136. Ji S, Carin L. 2007. Cost-sensitive feature acquisition and classification. Pattern Recognit. 40:1474–85
137. Gehm ME, Kinast J. 2008. Adaptive spectroscopy: towards adaptive spectral imaging. Proc. SPIE 6978:69780
138. Nayar SK, Branzoi V. 2003. Adaptive dynamic range imaging: optical control of pixel exposures over

space and time. Proc. IEEE 2:1168–75
139. Christensen MP, Euliss GW, McFadden MJ, Coyle KM, Milojkovic P, et al. 2002. Active-eyes: an

adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral
imaging. Appl. Opt. 41:6093–103

140. Medendorp J, Lodder RA. 2005. Applications of integrated sensing and processing in spectroscopic
imaging and sensing. J. Chemom. 19:533–42

141. Bialkowski SE. 1986. Species discrimination and quantitative estimation using incoherent linear optical
signal processing of emission signals. Anal. Chem. 58:2561–63

142. Prakash AMC, Stellman CM, Booksh KS. 1999. Optical regression: a method for improving quantitative
precision of multivariate prediction with single channel spectrometers. Chemom. Intell. Lab. Syst. 46:265–
74

143. Haibach FG, Myrick ML. 2004. Precision in multivariate optical computing. Appl. Opt. 43:2130–40
144. Medendorp J, Fackler J, Douglas C, Lodder R. 2007. Integrated sensing and processing aoustic resonance

spectrometry (ISP-ARS) for sample classification. J. Pharm. Innov. 2:125–34
145. Priebe CE, Marchette DJ, Healy DM. 2004. Integrated sensing and processing decision trees. IEEE

Trans. Pattern Anal. Mach. Intell. 26:699–708
146. Diamond D, Coyle S, Scarmagnani S, Hayes J. 2008. Wireless sensor networks and chemo-biosensing.

Chem. Rev. 108:652–79
147. Yang G-Z, Lo B, Thiemjarus S. 2006. Autonomic sensing. In Body Sensor Networks, ed. GZ Yang,

pp. 333–72. London: Springer

www.annualreviews.org • Adaptive Microsensor Systems 275

A
nn

ua
l R

ev
ie

w
 o

f 
A

na
ly

tic
al

 C
he

m
is

tr
y 

20
10

.3
:2

55
-2

76
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 T

ex
as

 A
&

M
 U

ni
ve

rs
ity

 -
 C

ol
le

ge
 S

ta
tio

n 
on

 0
2/

27
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



AC03CH12-Gutierrez ARI 10 May 2010 21:32

148. Beni G, Wang J. 1989. Swarm intelligence in cellular robotic systems. Presented at NATO Adv. Workshop
Robots Biol. Syst., Tuscany, Italy

149. Tsujita W, Ishida H, Moriizumi T. 2004. Dynamic gas sensor network for air pollution monitoring and its
auto-calibration. Presented at IEEE Sens., 3rd, Vienna, Oct. 24–27

150. Wokoma I, Sacks L, Marshall IW. 2003. Clustering in sensor networks using quorum sensing. Presented at
London Commun. Symp., Univ. Coll. London

276 Gutierrez-Osuna · Hierlemann

A
nn

ua
l R

ev
ie

w
 o

f 
A

na
ly

tic
al

 C
he

m
is

tr
y 

20
10

.3
:2

55
-2

76
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 T

ex
as

 A
&

M
 U

ni
ve

rs
ity

 -
 C

ol
le

ge
 S

ta
tio

n 
on

 0
2/

27
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



AC03-FM ARI 11 May 2010 13:47

Annual Review of
Analytical Chemistry

Volume 3, 2010Contents

An Editor’s View of Analytical Chemistry (the Discipline)
Royce W. Murray � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

Integrated Microreactors for Reaction Automation: New Approaches
to Reaction Development
Jonathan P. McMullen and Klavs F. Jensen � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �19

Ambient Ionization Mass Spectrometry
Min-Zong Huang, Cheng-Hui Yuan, Sy-Chyi Cheng, Yi-Tzu Cho,
and Jentaie Shiea � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �43

Evaluation of DNA/Ligand Interactions by Electrospray Ionization
Mass Spectrometry
Jennifer S. Brodbelt � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �67

Analysis of Water in Confined Geometries and at Interfaces
Michael D. Fayer and Nancy E. Levinger � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �89

Single-Molecule DNA Analysis
J. William Efcavitch and John F. Thompson � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 109

Capillary Liquid Chromatography at Ultrahigh Pressures
James W. Jorgenson � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 129

In Situ Optical Studies of Solid-Oxide Fuel Cells
Michael B. Pomfret, Jeffrey C. Owrutsky, and Robert A. Walker � � � � � � � � � � � � � � � � � � � � � � � 151

Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology
and Applications
Florian Adler, Michael J. Thorpe, Kevin C. Cossel, and Jun Ye � � � � � � � � � � � � � � � � � � � � � � � � � 175

Electrochemical Impedance Spectroscopy
Byoung-Yong Chang and Su-Moon Park � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 207

Electrochemical Aspects of Electrospray and Laser
Desorption/Ionization for Mass Spectrometry
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