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Abstract—This paper presents an integral system capable of
generating animations with realistic dynamics, including the in-
dividualized nuances, of three-dimensional (3-D) human faces
driven by speech acoustics. The system is capable of capturing short
phenomena in the orofacial dynamics of a given speaker by tracking
the 3-D location of various MPEG-4 facial points through stereovi-
sion. A perceptual transformation of the speech spectral envelope
and prosodic cues are combined into an acoustic feature vector to
predict 3-D orofacial dynamics by means of a nearest-neighbor
algorithm. The Karhunen-Loéve transformation is used to identify
the principal components of orofacial motion, decoupling perceptu-
ally natural components from experimental noise. We also presenta
highly optimized MPEG-4 compliant player capable of generating
audio-synchronized animations at 60 frames/s. The player is based
on a pseudo-muscle model augmented with a nonpenetrable ellip-
soidal structure to approximate the skull and the jaw. This structure
adds a sense of volume that provides more realistic dynamics than
existing simplified pseudo-muscle-based approaches, yet it is simple
enough to work at the desired frame rate. Experimental results
on an audiovisual database of compact TIMIT sentences are
presented to illustrate the performance of the complete system.

Index Terms—face image analysis and synthesis, lip synchro-
nization, 3-D audio/video processing.

1. INTRODUCTION

IP READING plays a significant role in spoken language

communication. It is essential for the hearing-impaired,
and also used by normal listeners as an aid to improve the in-
telligibility of speech signals in noisy environments [1]. Lip
movement is also useful for understanding facial expressions
and developing tools for human—human and human—machine
communication [2]-[4]. Facial animation can provide practical
and subjective benefits in human—computer interaction, such
as cues in understanding naturally spoken language in noisy
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environments or ungrammatical utterances, and provide posi-
tive feelings during waiting times [1]-[5]. Therefore, computer
simulation of human faces capable of accurately reflecting lip
movement and emotional states has been a flourishing research
area for a few decades, resulting in a vast number of facial
models and animation systems [6], [8]. Interest in this area has
been reinforced with the addition of facial animation features in
the MPEG-4 standard [9].

Despite all these efforts, current facial models and animation
techniques are still inaccurate approximations of natural faces,
particularly due to the fact that the dynamics of human facial
expressions are not yet well understood, and often are not even
captured or reproduced in synchrony with the corresponding
speech. As a result, the development of appropriate paradigms
and tools to animate synthetic faces remains a challenging
task. As a step toward accomplishing these goals, this article
proposes a methodology for learning speech-based orofacial
dynamics from video. The method operates at a subphonemic
level, mapping speech acoustic features (e.g., spectral power,
FO) onto orofacial configurations, thus bypassing problems with
phonetic recognition and the many-to-one relationship between
phonemes and visemes. Using a tapped delay line to account
for coarticulation, we propose a nearest-neighbor mapping that
is competitive with the computationally more intensive training
phase of time-delay neural networks (TDNNs) or Hidden
Markov Models (HMMs). An animation player is also devel-
oped to take advantage of the fine-grained temporal resolution.
The player is based on a conventional pseudo-muscle model,
adapted for direct use with MPEG-4 Facial Points (FPs), and
includes an underlying solid structure that cannot be pene-
trated. This structure is particularly important for the realistic
synthesis of facial dynamics outside the FPs, and provides the
model with a sense of volume that is absent in other low cost
approaches, as described next.

II. RELATED WORK

Both text and speech have been used as control inputs for an-
imating human faces, also known as “talking heads”. In text-
driven facial animation, the process generally involves deter-
mining a mapping from text (orthographic or phonetic) onto
visemes by means of vector quantization [10], [11] or a rule-
based system [12], [13]. Facial animation driven by speech can
be approached in a similar fashion by deriving the phoneme se-
quence directly from the speech signal, as is done in speech
recognition [14]-[16]. However, mapping from acoustic frames
to phonetic units and then to animation frames involves intro-
ducing uncertainty that often slights prosodic variables (e.g.,
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pitch, duration, or amplitude). Therefore, it is more appealing to
construct a direct mapping from speech acoustics (e.g., spectral
power) onto facial trajectories, either through control parame-
ters of the facial animation itself [6], three-dimensional (3-D)
coordinates of facial points [17], or articulatory parameters [18].

As a result of coarticulation and dynamics, frame-to-frame
mappings that neglect the temporal relationship between speech
acoustics and facial animation units are not very accurate. It
has been shown [19] that the static relationship between speech
acoustics and facial configurations can only account for approx-
imately 65% of the variance in facial motion. We considered this
result a powerful encouragement to pursue this avenue of in-
vestigation. Several methods have been proposed to capture the
complex temporal structure by means of tapped delay lines (e.g.,
a TDNN) or time-series analysis (e.g., an HMM). Lavagetto [18]
synthesized mouth articulatory parameters from power-normal-
ized LPC coefficients using TDNNs. Massaro et al. [20] used
a multilayer perceptron with an explicit input delay line to pre-
dict 37 control parameters for an animated talking head (Baldy)
from Mel Frequency Cepstral Coefficients (MFCC). Hong et
al. [21] used a family of multilayer perceptrons, each trained
on a specific phoneme, and a seven-unit delay line of MFCCs
to capture co-articulation. Brand [17] predicted the 3-D facial
trajectories from LPC and RASTA-PLP acoustic features using
an entropy-minimization algorithm that learned both the struc-
ture and the parameters of an HMM. These methods, however,
rely on iterative estimation of nonlinear models that result in
computationally intensive training phases. Moreover, our own
experience on speech processing shows that the performance of
TDNNS strongly depends upon the network architecture and the
learning rate [22]. Differences in phoneme classification perfor-
mance across network architectures can be in the order of 40%,
and model selection requires a long trial-and-error process. In
light of these considerations, our effort to model basic orofacial
motion directly from speech acoustics attempts to overcome the
drawbacks of phonetic-level methods while providing a direct
noniterative learning method. Our approach uses a perceptual
transformation of the speech spectral envelope and prosodic el-
ements to generate an acoustic feature vector that serves as an
input to a nearest-neighbor audiovisual mapping.

Starting with Parke’s work [23], several types of face
models have been developed, which can be classified either as
parametric [23]-[25] or muscle-based [26]-[32]. Parametric
approaches represent the facial model with specific control
parameters and animate by simple mesh or parameter interpo-
lation, whereas muscle-based approaches attempt to represent
to some degree of accuracy the anatomic structure of the face
and simulate the behavior of muscles to animate the model.
Within muscle-based approaches, some of the most commonly
used have no representation for the underlying bone, and
consist of a single layer spring-mesh where some of the springs
are the “muscles” that pull the vertices in the spring mesh.
These models are sometimes called pseudo-muscle based to
distinguish them from more anatomical muscle models. One
could say that, like the parametric models, these pseudo-muscle
approaches essentially consider the face as a flexible mask that
can be interpolated or pulled by the muscles without major
constraints. Anatomy, however, does place some important
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restrictions since, underneath the skin, there are rigid structures
(skull and jaw) that cannot be penetrated. Models that do not
take this underlying structure into account are, therefore, lim-
ited in their ability to synthesize realistic orofacial dynamics.
To address this issue, some methods manage the underlying
bone by having several layers of a spring mesh represent the
various tissues, and physically restrict the lowest layer to be
moved by the bone, directly (i.e., Waters and Terzopoulos [28]).
Kihler [31] uses a very detailed muscle model that incorporates
different types of muscles, as well as the effects of bulging
and intertwining muscle fibers. The influence of muscle con-
traction onto the skin is simulated using a mass-spring system
that connects the skull, muscle, and skin layers. Thus, Kihler
also avoids unnatural penetration of the underlying skull-jaw
structure. However, his approach requires very anatomically
detailed models and extensive simulation of several layers.
Our approach is simpler because it is basically a one-layer
pseudo-muscle model. Yet, due to the ellipsoidal structure, our
model provides reasonably realistic dynamics at higher speeds
comparable to the more common methods mentioned above.

Our player was designed to incorporate these considerations,
first, by augmenting a nonanatomical one-layer pseudo-muscle
approach with an underlying nonpenetrable structure that ap-
proximates the skull and the jaw, and second, by developing an
optimized implementation that achieves audio-synchronized an-
imation at 60 frames/s (fps) on midrange (~>600 MHz clock)
personal computers with only standard OpenGL acceleration.
In addition, an MPEG-4 [25], [33] compliant interface was also
implemented. The details of this facial model are described in
Section V.

III. AUDIOVISUAL SYSTEM OVERVIEW

The vision capture system employed in this research con-
sists of two color cameras (Kodak ES310), and two dedicated
personal computers and frame grabbers capable of acquiring
648 x 484 video directly to a hard drive at 60 fps to include short
phonetic phenomena. Speech signals are captured on one of the
personal computers using a shotgun microphone (Sennheiser
K6/M66 with Symetrix 302 preamplifier) and saved to disk using
aproprietary file format that interleaves 1/60-s of audio between
video frames to ensure synchrony. Once the data has been saved
to disk, the 3-D coordinates of various FPs are tracked using
stereo correspondence, and a number of acoustic features are
extracted from the audio track. These procedures are described
in detail in the following subsections.

A. Audio Processing

Speech signals are the result of various sources, including
message content, noise, speaker dependencies, and prosody
(e.g., speed, intonation). Therefore, the unprocessed speech
waveform cannot be directly used to predict facial motion.
Several frequency-domain processing techniques have been
proposed to separate basic speech features from less relevant
information. Examples are Filter Bank Analysis, Smoothed
Spectrum, Cepstral Analysis, Linear Prediction Coding (LPC)
[34], Perceptual Linear Prediction (PLP), and Relative Spec-
trum (RASTA-PLP) [35]. These algorithms generally use
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default parameter values, which are constant for all phones,
disregarding the different nature of such segmental information.
This results in articulatory attributes whose robustness depends
on the extracted preprocessing parameters. Moreover, all the
aforementioned algorithms are based on the assumption that
formants and their trajectories are the cues for speech per-
ception. Therefore, they extract features that are based on the
unambiguous identification of the important peaks in the spec-
tral envelope, and require a robust method for disambiguating
these from additional peaks that may occur for a variety of rea-
sons. However, it has been shown that neither the overall level
nor the exact location and tilt of the patterns in the frequency
domain but the changes in the shapes and relative locations of
the major spectral features appear to be important for phonetic
perception [36]. Therefore, we decide to preprocess the speech
signals with a perceptually-based analysis, which uses concepts
from the psychophysics of hearing to obtain an estimate of the
auditory spectrum [37], [38].

The speech signal, sampled at 16 kHz, is processed in frames
of 1/60-s with no overlap between the frames. Overlapping
frames were used in the early stages of the research, but they
were found not to improve the predictive performance of
the models. Each frame is pre-emphasized with an FIR filter
(H(z) =1—az"'; a=0.97) and weighted with a Hamming
window to avoid spectral distortions [34]. The pre-emphasized
and windowed speech signal is then passed through a filter
bank that uses a critical-band resolution of the Fourier spectrum
described by

_1 (0.76f _ 12
— 1 14 1
Bark = 13 tan (—1000 ) + 3.5 tan <—75002 (@€))

BW = 25 + 75 [1 + 1.4(f/1000)*]** )

where f, the acoustic frequency (Hz), is mapped onto a percep-
tual frequency scale referred to as a Critical Band Rate or Bark
[39]. The center frequencies of the filter bank are uniformly dis-
tributed along the Bark scale, whereas the corresponding band-
widths are defined by (2). From these, a vector of Perceptual
Critical Band Features (PCBF) [40] is computed as the log-en-
ergy of the acoustic signal:
N
PCBF; = log;, Z [z (k)]
k=1

3)

where z;(k) is the kth sample of the speech waveform in
the ith frequency band. This crude perceptually-modified
spectrum is used to capture the dynamic aspects of the spec-
tral envelope. An example of this acoustic transformation
is shown in Fig. 1(b). Note that PLP and RASTA-PLP also
contain a perceptual analysis component, but they further
preprocess the speech signal by including a predictive mod-
eling (PLP) and a temporal filtering process (RASTA-PLP)
to make the extracted features closer to the formant trajec-
tory. In this context, PCBFs can be interpreted as the first
stage of PLP or RASTA-PLP analysis. A total of 12 PCBFs
corresponding to frequencies f = {112,255,426,627,860,
1147,1483,1937,2452,3299,4128,6811 Hz} are extracted
from the speech signal and combined with two prosodic cues
(fundamental frequency and frame energy) to form a 14-D
vector of acoustic inputs to our animation system.
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Fig. 1. (a) Audio waveform and (b) PCBFs for the TIMIT sentence “Pizzerias

are convenient for a quick lunch.”

B. Video Processing

To facilitate accurate 3-D tracking of the facial dynamics using
a stereo camera pair, 27 markers are placed in the face of the
subject at various MPEG-4 FPs [33], as shown in Fig. 4(a). The
position of each marker is independently tracked by finding the
maximum cross-correlation in a local region of interest centered
on the marker’s position in the previous frame. The initial posi-
tion of each marker is manually entered by means of a graphical
user interface. This process is performed independently on each
of the two stereo sequences. To obtain the 3-D coordinates of the
MPEG-4 FPs, we apply a standard calibration procedure com-
prising a prism with fiduciary markers and a calibration tool to
establish the calibration correspondences and calibration matrix
[41]. Although the subject is instructed to stand still during data
collection, head motion is practically unavoidable due to the
natural tendency of human speakers to move their head during
speech. Hence, the 3-D coordinates of the tracked FPs contain
movements that are associated not only with the production of
speech but also with the translational and rotational movements
of the head. In order to remove these head movements, head pose
is estimated [42] from four facial points (specifically MPEG-4
points 3.11,3.8,9.12, and 9.3). Once the head pose of each frame
is obtained, the relative 3-D coordinates of the remaining facial
points are computed, effectively decoupling facial motion from
head motion. Finally, the coordinates of the neutral face in the
first frame of each take are subtracted from the remaining frames
to yield a vector of relative displacements, as required by the
MPEG-4 Facial Animation Parameters. The final result of video
processing is a video vector with 81 (27 x 3) differential mea-
surements, ahighly redundant representation since the movement
of the various points in the face is highly interdependent. For this
reason, the Karhunen-Loéve transform [43] is used to obtain
a low-dimensional vector, typically containing 14 dimensions,
which captures the principal components of orofacial motion.
The details of this processing stage are discussed in Section IV.

C. Mapping Acoustic Dynamics to Visual Articulators

As a result of subphonemic dynamics and coarticulatory
effects, it is not feasible to perform a direct frame-to-frame
prediction of the video vector v(¢) (or its principal compo-
nents in our case) from the corresponding acoustic vector
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a(t), where t denotes the frame index. For this reason, we
explicitly encode context by associating each video frame v(t)
with the acoustic features from past and future audio frames
an(t) = [a(t —n),---a(t),---a(t + n)], forming a lookup
table of audiovisual dynamic pairs [a,, v](t) from training
data. This data can be used to build a tapped delay line model
(e.g., a TDNN). In this work, however, a simple and attractive
k nearest-neighbor (KNN) procedure is employed. Given an
audio window a,, from a new voice track, we find the average
video configuration ¢ of the k closest audio trajectories ay (%)
in the training set using the Euclidean distance. In the present
implementation, we use a value of n = 5, which corresponds to
83-ms wide windows into the past and the future, and £ = 12
neighbors, both of which have been empirically optimized
[44]. To limit dimensionality, the acoustic dynamics are sub-
sampled 5:1, resulting in a 42-dimensional acoustic vector
as(t) = [a(t = 5), a(t), a(t + 5)]. Our experience shows that
using a longer window or a finer does not improve performance
significantly [44].

D. Audiovisual Database

An audiovisual database of 75 sentences from the TIMIT
compact set [45] was collected from a single speaker to evaluate
the system. These sentences were spoken by a female Amer-
ican-born (Ohio) speaker according to the following protocol:
on each audiovisual recording session the speaker was given a
list of sentences and was asked to read them a number of times in
random order. To prevent the speaker from becoming fatigued,
only five sentences (each repeated five times) were recorded on
each session. Therefore, the complete dataset consists of 75 X 5
(375) sentences. To reduce initialization variations, each sen-
tence/repetition was recorded starting from a neutral facial ex-
pression, such as the one shown in Fig. 4(a), which served as a
baseline for each audiovisual take. The 75 X 5 sentences were
split into three separate sets, a training set containing 60 X 4 sen-
tences, a validation set containing the fifth repetition from the
previous 60 sentences and a test set containing one repetition
from the remaining 15 X 5 sentences. Separate validation and
test sets were utilized to analyze the performance of the KNN
mapping both on different takes of training sentences (validation
set) and on phonetic sentences not used for training (test set).
The training set was used to build the database of audiovisual
pairs [an, v](t), from which video predictions were generated
for the validation and test sets according to the KNN rule.

IV. PRINCIPAL COMPONENTS OF OROFACIAL MOTION

As described in Section III-B, the video-processing stage
yields 3-D differential displacements for each of the 27 facial
markers, for a total of 81 features for each video frame. Clearly,
these video features will have a high level of redundancy since
the movement of the various points in the face is highly inter-
dependent. For instance, motion in the lower lip can be affected
by the opening/closing of the jaw, and motion in the corners of
the lips is coupled to motion in the cheeks. To help unveil these
relationships, we employ a Karhunen-Loéve decomposition
of the 81-dimensional (81-D) feature space that extracts the
principal components of orofacial motion. Principal component
analysis (PCA) is a classical multivariate statistics technique
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Fig. 2. Contribution of the first 15 PCs to the total variance in the data.
that extracts a low dimensional projection that best represents,
in the mean-squared-error (mse) sense, high dimensional data
in an orthogonalized multidimensional space. It can be shown
that such projection is aligned with the directions of maximum
variance of the data [43]. Briefly, PCA approximates a random
vector v € RY by a linear combination of M(M < N)
orthogonal bases, which are the eigenvectors ¢; corresponding
to the largest eigenvalues \; of the covariance matrix X, of v:

ul =0T [p1, 00, o0 A1, - - - ON] @

where u = [ug,uz,...,ups]T is the low-dimensional projec-
tion of v, the 81-D video vector in our case. When applied to
the audiovisual database described in Section I1I-D, PCA of the
81-D video vector indicates that 90% to 95% of the total vari-
ance in facial motion is captured by the first 15 to 24 eigenvec-
tors, respectively. The distribution of variance across the first 15
eigenvalues is shown in Fig. 2. This result clearly indicates that
there is a high degree of correlation among the video features,
and suggests that a more compact video representation may be
obtained by preserving only a few principal components (PCs).
In order to analyze the individual contribution of each PC, we re-
construct the 3-D coordinates © of the 27 FPs by back-projecting
one PC u,, at a time, and substituting the remaining components
with their average value F[u,] in the dataset

AT

v :[E[Uq],.--,Uk,. :‘PN]_I- (5)

Fig. 3 illustrates the 3-D directions of motion for each of the
four largest PCs. The contour of the lips, eyebrows and nose
(thin green lines) represents the neutral configuration of the FPs,
whereas the (red) arrows represent the principal component of
motion at the facial points. The orientation of each arrow repre-
sents the direction of maximum motion, whereas the magnitude
of the vector is proportional to the range of motion along that di-
rection. As shown in Fig. 3(a), PC; is associated with vertical
motion in the jaw and the lower lip. Given that these contain
some of the most active facial articulators during speech produc-
tion, it is not surprising that their movements bring the largest
contribution to variance in the data. PCs, in turn, captures mo-
tion perpendicular to the image plane, which can be related to
the protrusion of the lips. The third PC, however, does not con-
tain information that can be clearly associated with a particular
speech articulator. At first, one may be tempted to associate this
component with prosodic head motion such as shaking, nodding
and rolling, but this interpretation is invalid since head motion
is removed beforehand through pose estimation, as described
in Section III-B. Therefore, we hypothesize that this compo-
nent contains variance due to the placement of the markers on
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Fig. 3. (a)—(d) Contribution of the first four principal components to facial motion.

(c)

Fig. 4. (a) Neutral face of the subject with visual markers, (b) adjusted
wire-frame face, (c) underlying ellipsoids, and (d) wire-frame structure of the
ellipsoids, profile view.

the subject’s face which, because of lack of obvious reference
in the facial features, cannot be precisely matched from one

data-collection session to another. Finally, PC, captures motion
related to the opening and closing of the mouth, as indicated by
the low variance around the chin. Subsequent PCs contain low-
variance directions of orofacial motion, which do not capture
gestures that we can connect to the production of speech, but
may nonetheless contribute to the perceptual naturalness of the
animation. This issue is explored in Section VI-A.

V. MODELING AND ANIMATION

To fully exploit the high-speed audiovisual capture system,
we have developed an MPEG-4 compliant player that produces
facial animations with realistic dynamics. The player is based on
a spring-mesh face with additional springs serving as pseudo-
muscles, a fairly standard approach that we have adapted to be
directly driven from the 3-D coordinates of the MPEG-4 FPs.
In addition, an ellipsoid approximation of the skull and jaw
has been implemented to prevent their penetration by the face,
thereby giving a sense of volume and a more realistic dynamic
behavior.

A. Generic Facial Model

Starting from a basic model by Parke and Waters [46], we
have developed a generic facial model with 64 MPEG-4 FPs.
The model contains a mesh of 876 triangles and 28 muscles to
allow facial expressions and movement. To adjust this generic
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model to a particular speaker, the 3-D coordinates of selected
MPEG-4 FPs obtained from video are used to fit the vertices of
the generic mesh as a particle-spring system with forces, which
are adjusted using an Euler ODE solver [47]. Further adjust-
ments in facial proportions as well as facial features (i.e., eyes,
mouth, and nose) are performed using MPEG-4 distance frac-
tions and other anthropometric measurements such as distances
between the different MPEG-4 FPs.

We associate each of the 28 muscles of the generic face with
one or more MPEG-4 FPs (as a head or a tail), a predetermined
influence area, and a stiffness constant. The influence area is a
list of vertices that are affected by the muscle, as well as the cor-
responding weight for each vertex, in a manner akin to Kshir-
sagar [25]. The list of vertices associated to each muscle is deter-
mined once, when the generic face model is modified to generate
anew model for a particular speaker, and subsequently stored in
a data structure. Our approach is a pseudo-muscle approach that
attempts to have additional anatomical basis (a solid skull-jaw).
The “muscles” are really additional springs that can be con-
tracted or elongated as in standard pseudo-muscle approaches,
but that we drive directly from the MPEG-4 FPs. These FPs
are moved directly, as predicted from audio. All other points in
the muscle’s influence area are moved by a combination of the
weighted influence of the muscle’s FPs, muscle forces calcu-
lated from the movement of these FPs, and other spring forces
that are related to the elasticity of the skin. This is explained
with more detail in the next section.

B. Animation Player

To improve the realism of the animation, the player was aug-
mented by applying an ellipsoidal structure that we originally
developed for another application. This structure allowed us
to place pieces of clothing over an animated articulated char-
acter [48]. The dressed character is approximated using a hi-
erarchy of ellipsoids attached to the character’s skeleton, and
the pieces of clothing are represented using mass-spring par-
ticle systems. First, each particle is associated with the closest
ellipsoid. When the character is animated, the ellipsoidal struc-
ture is moved accordingly, dragging along the associated parti-
cles. Dynamic forces are then applied to the particles. Finally,
penetration of the ellipsoids by any particle is corrected. Recent
results from this work have shown that real time performance,
one of the objectives of our research, can be achieved [49].

When applied to facial animation, this ellipsoid representa-
tion avoids unnatural penetration of the underlying skull-jaw
structure that is often present in other approaches (both para-
metric and pseudo-muscle, as explained in Section II). We do
not perform an anatomically realistic geometric and physical
modeling of the muscles (like Kihler [31]) although this would
be possible using the ellipsoids in the system. Instead, we use
these ellipsoids to economically represent an approximate ge-
ometry of the skull and the jaw that allows us to control colli-
sions. This is far simpler and faster, the latter being our main
constraint. If the constraints for nonpenetration of skull and jaw
by the vertices in the facial model are not taken into account, the
facial dynamics will be incorrect, particularly in parts of the face
that are not FPs. As aresult of adding this ellipsoidal representa-
tion of the skull-jaw, our player is able to model facial dynamics
more accurately without incurring in significant costs.
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Fig. 5. Efficient collision detection. (a) Two example points near an ellipsoid.
(b) Their position after origin-centering and axis-aligning. (c) Their posi-
tion after scaling, where penetration and points of contact are determined.
(d) Intersection points are found.

The complete process can be described as follows. First, the
3-D coordinates of MPEG-4 FPs undergo several adjustments
before the animation is played. These include adapting the face
mesh to the proportions recorded in the video data, translating
the center of the face in the video data to the correct coordinate
system, calculating rotations and individual adjustments neces-
sary for the FPs, and filtering the depth estimates in order to re-
duce noise. Once these preprocessing steps are completed, the
27 MPEG-4 FPs can then be used to control the remaining ver-
tices in the mesh in order to produce an overall natural move-
ment during animation playback. This involves four steps.

Step 1) Modify vertices using a set of neighboring FPs. The
influence of neighboring FPs on other vertices is determined
during startup. This influence is weighted by the distance be-
tween each vertex and those FPs within a certain radius. As a
result, a vertex may be influenced by more than one FP. An ex-
ception is made with the vertices that define the lips, since they
closely follow specific FPs.

Step 2) Determine jaw rotation from the 3-D coordinates, and
transform the corresponding vertices. The rotation of the jaw
is determined from the angular difference between the current
position of FPs on the chin and their corresponding position
on the neutral face. When the ellipsoids in the jaw are rotated,
all the vertices associated to them are transformed accordingly,
unless they were already modified in Step 1.

Step 3) Incorporate the effects of spring forces. Springs are
defined for every edge in the face mesh and for every muscle.
Spring forces are calculated in the standard manner using
Hooke’s Law. The resulting displacements are finally applied
to all the vertices in the model, with the exception of FPs, for
which the measured coordinates are known.

Step 4) Correct for ellipsoid penetration. This last step is
critical, particularly in the area influenced by mouth move-
ments, because the use of influence areas and springs may
cause penetration of the skull-jaw for vertices that are not FPs.
Every vertex in the model (except FPs, for which we have
measured or predicted coordinates) is checked for ellipsoid
penetration, and those in violation of this constraint are moved
to the intersection point between the ellipsoid’s surface and
the vector from the current (trial) to the previous position.
One of the main optimization steps in our system turned out
to be an efficient point-to-ellipsoid distance calculation. The
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procedure we follow is very simple and fast, and assumes
that the ellipsoids are scaled spheres. As illustrated in Fig. 5,
the method consists of transforming the ellipsoid (and the
points being tested for intersection) to be origin-centered,
axis-aligned and of radius one. Testing for penetration can then
be determined by checking whether the transformed points
are within this unit-radius sphere, a very fast computation
since the transformations can be performed efficiently with
standard OpenGL hardware. This procedure is also used for
estimating the distance from the point to the ellipsoid, and to
the point on the surface of the ellipsoid where the intersection
was found. The line from the transformed point to the origin
is intersected with the unit sphere, and the intersection point
is then transformed back to the original space. This process
does not provide the actual closest point of the untransformed
ellipsoid to the untransformed point, but a close approximation
that serves its purpose well. It is important to note that, because
FPs are moved according to how they have been measured, any
noise or jitter that may be visible in the animation is due to the
data itself rather than the player. The resulting wireframe face
and underlying ellipsoids are shown in Fig. 4(b)—(d).

Maintaining a fixed 60-fps rate during rendering is critical,
since every video frame must be processed and displayed in syn-
chrony with the audio stream if phonetic phenomena are to be
perceived in correlated time. Thus, runtime speed was one of
the main criteria in the design of the animation software. All
steps in the above algorithm were carefully optimized, partic-
ularly the point-to-ellipsoid distance calculation, and a simple
and explicit Euler ODE integration to incorporate the effects of
spring forces. To ensure synchrony with the audio track, earlier
versions of the player determined if the computer was capable
of maintaining a minimum frame rate of 60 fps before the ani-
mation was started, and aborted execution otherwise. The most
current version of the player uses a graceful degradation scheme
(dropping frames) instead. In this case, however, the animation
results will be inconsistent with our research goal of accurately
reproducing very short phenomena in the orofacial dynamics.
On the other end, the player automatically limits the frame rate
to a maximum of 60 fps if this speed could be exceeded and, as
a result, synchronization is achieved.

VI. RESULTS

Validation of the proposed audiovisual mapping and MPEG-4
compliant animation is performed in two stages using the data-
base of audiovisual TIMIT sentences described in Section III-D.
First, an appropriate number of principal components of orofa-
cial motion is determined by means of two perceptual tests with
human subjects. Second, the predictive accuracy of the audio-
visual mapping is illustrated by tracking a few lip articulators
that have been shown to be critical for automatic visual phone
recognition.

A. Perceptually-Relevant Principal Components of Orofacial
Motion

To verify the hypothesis that the low-variance directions of
orofacial motion contribute to the perceived quality of the final
animation, two perceptual tests were performed among the

members of our research group, for a total of six subjects. Each
subject was presented with three different facial animations,
containing the first 14, 23, and 80 principal components, or
90%, 95%, and 100% of the total variance, respectively (the
third PC was consistently discarded in all of the experiments
as it was shown to contain noise). The subjects were asked to
identify which animation seemed most pleasant and natural.
The results of this informal test indicated that the subjects were
not able to express a strong preference between the animations
reproduced with 90% and 95% of the variance. More inter-
estingly, the animation with 100% variance was judged to be
of lower quality than the other two, since it captures not only
speech-related motion but also noise. This result allowed us to
conclude that a PCA decomposition of visual data is a valuable
tool for identifying the most relevant components of facial
motion.

A second experiment was performed to determine if only
those PCs whose contribution to 3-D orofacial motion can be
directly interpreted (i.e., from Fig. 3) would be sufficient to
yield realistic dynamics. In this case the subjects were asked
to rate two animations generated with four (PCy 2 45) and 14
PCs (PCq 2,4-15). All subjects independently agreed that the
animation with four PCs appeared less natural than the one
with 14 PCs. This result supports the hypothesis that PCs with
lower eigenvalues do encode fine details that are essential to
produce a natural looking animation. Thus, it was concluded
that PCy 2 4—15 is an appropriate representation for the subse-
quent analyzes and final implementation in this article.

B. Audiovisual Predictions

The previous perceptual tests allowed us to determine an ap-
propriate low-dimensional projection of the video feature vector
where the audiovisual mapping should operate. Given a new
audio window a,,, the KNN algorithm finds the closest audio
trajectories a,(t) in the training set and uses their 14 largest
PCs [uq,usa, ..., u14] to obtain the video prediction ¢ through a
back-projection:

~T

0 = [ua, .. cpst]

(6

. ,u14,E[u15], .. .,E[ugl]] [(pl,(pg, -

To illustrate the accuracy of the predicted dynamics, we provide
trajectories for three separate orofacial articulators that are com-
puted from the predicted 3-D coordinates v of a few MPEG-4
FPs: mouth height (MH = 8.1-4-8.2-y), mouth width (MW =
8.3-2-8.4-x) and chin height (CH = 9.3-y-2.10-y) These three
parameters capture articulatory motion in the lips and the jaw,
where the most important features for automatic visual phone
(viseme) recognition occur [50], [S1]. Predictions for each of
the three articulators, both on validation and test data, are shown
in Fig. 6 for the TIMIT sentences: 1) “Pizzerias are convenient
for a quick lunch,” 2) “The bungalow was pleasantly situated
near the shore,” 3) “Clear pronunciation is appreciated,” and
4) “Barb’s gold bracelet was a graduation present.” The pre-
dicted trajectories (thin red line) have been mean-filtered with a
50-ms window to reduce jitter. These results illustrate the good
performance of the KNN audiovisual mapping in the validation
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Fig. 6. Predicted (thin red line) versus actual (thick blue line) lip trajectories
for the validation and test sentences.

TABLE 1
NORMALIZED MSE (€) AND CORRELATION COEFFICIENT (p) OF THE KNN
AUDIO-VISUAL PREDICTIONS ON VALIDATION AND TEST DATA

Articulatory VALIDATION TEST
parameter € p € p
MH 0.16 0.92 0.30 0.86
MW 0.32 0.83 0.62 0.64
CH 0.20 0.89 0.29 0.84

data. Although synthesis of test data is less accurate, the KNN
mapping is still able to predict the majority of the openings and
closures of the three articulators.

Table I shows the average prediction results on the 60 valida-
tion and 15 test sentences for the three articulators in terms of
the normalized mse € and correlation coefficient p, defined by

e= (}T > () - (1)
= L3 0= ) 00) ) o

Op0p
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Fig. 7. Some frames of the final animation driven by speech acoustics.
where T is the total number of frames in the dataset, p(t) is the
true articulatory parameter at frame ¢, p(t) is its KNN predic-
tion, and y and o are their sample mean and standard deviation,
respectively. Along with the trajectories in Fig. 6, these results
indicate that the vertical motion of the lips, represented by the
articulators MH and CH, can be predicted more accurately than
horizontal articulators such as MW. These results also show that
prediction of orofacial dynamics from the validation set is a sim-
pler task than generalizing to the new phonetic sequences in the
test set, as one would reasonably expect. Overall, our results
indicate that the KNN mapping is capable of reproducing the
majority of the high-level features in the orofacial dynamics.

The animation module can display at fixed frame rate of
60 fps, in synchrony with the audio track. The system has been
tested on midrange personal computers with minimal OpenGL
acceleration, such as a Pentium III laptop at 650 MHz with
a S3 Savage/IX chip. Some frames of the final animation are
depicted in Fig. 7. It is difficult to portray in print the dramatic
improvement in the realism of the animation dynamics that is
obtained by using the ellipsoidal structure.

VII. CONCLUDING REMARKS

We have presented an integral system capable of generating
facial animations with realistic dynamics directly from speech.
The system employs high-speed stereovision to capture sub-
phonemic phenomena by tracking the 3-D coordinates of 27
MPEG-4 FPs. A PCA decomposition of orofacial motion has
also been presented to analyze the perceptually natural compo-
nents of orofacial motion as well as reduce the dimensionality
of the video representation. An acoustic feature vector which
combines a perceptually modified spectrum and prosodic cues
of speaking rate and intonation is used to predict the complete
orofacial dynamics by means of an attractive KNN algorithm
operating on a PCA subspace of the 3-D coordinates. Coartic-
ulation and subphonemic phenomena are taken into considera-
tion using a 167 ms-wide tapped delay line on the audio track.
Given a newly spoken sentence, the system generates 3-D tra-
jectories directly from speech, bypassing phonetic recognition
and many-to-one relationships between phonemes and visemes,
thus preserving the realism and synchrony of the movements.

An MPEG-4 compliant player has been developed to gen-
erate facial animations directly from the 3-D coordinates of FPs.
The animation, based on a pseudo-muscle model, has been aug-
mented with an underlying nonpenetrable ellipsoid structure to
approximate the skull and the jaw, providing the model with a
sense of volume for improved realism. The player is capable of
generating realistic dynamics at 60 fps on a notebook without
special hardware acceleration.



GUTIERREZ-OSUNA et al.: SPEECH-DRIVEN FACIAL ANIMATION WITH REALISTIC DYNAMICS 41

A. Future Work

Improvements in predictive accuracy for test data can be
obtained by employing a larger dataset of continuous speech
containing hundreds of sentences with a rich balance of pho-
netic and prosodic cues. For large audiovisual databases, it is
possible that the KNN procedure will become impractical in
terms of storage requirements and search time for real-time ap-
plications. Vector quantization procedures are currently being
investigated to compress our dataset to a reduced codebook of
audiovisual pairs and to evaluate the potential loss of predictive
accuracy. Additional work needs to be performed on the ani-
mation module to improve lip movement and incorporate eye
movement, most likely by implementing sphincter (circular)
muscles for both the mouth and the eyes. Improvements in
the ellipsoidal approximation of the skull, as well as modeling
of muscles with ellipsoids, will allow us to achieve a more
anatomically faithful animation. The addition of skin wrinkles,
hair and improved rendering without compromising real-time
performance will also be investigated in future versions of the
player.
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