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Abstract  

The olfactory bulb is able to enhance the contrast 
between odor representations through a combination of 
excitatory and inhibitory circuits. Inspired by this 
mechanism, we propose a new Hebbian/anti-Hebbian 
learning rule to increase the contrast of sensor-array 
patterns in a neurodynamics model of the olfactory 
system: the KIII. In the proposed learning rule, a 
Hebbian term is used to build associations within odors 
and an anti-Hebbian term is used to reduce correlated 
activity across odors. The system is characterized on 
synthetic data showing its ability to increase the 
separation between patterns and its robustness against 
noise.  Experimental data from an array of temperature-
modulated metal-oxide sensors is used to validate the 
contrast enhancement ability of the system.  
 
1. Introduction   

The olfactory system has been optimized over 
evolutionary time to allow animals detect and interpret 
the information from volatile molecules in the 
environment. The striking similarity between the 
olfactory system across phyla suggest that its 
architecture has been shaped to reflect basic properties 
of olfactory stimuli. This suggests that the underlying 
mechanisms of the olfactory system could be of great 
use in the processing of gas sensor array data. Motivated 
by this idea, the long term goal of this work is to 
develop biologically-inspired computational models to 
process data from chemical sensor arrays, commonly 
referred to as the electronic nose. 

Particularly, in this paper we focus on the ability of 
the olfactory bulb to improve the separability of odor 
representations. The olfactory bulb receives direct 
inputs from olfactory receptor neurons in the 
epithelium, and reshapes this information through 
excitatory-inhibitory circuits, increasing the contrast 
across odor representations [1]. Borrowing inspiration 
from this computational function, this article proposes a 
learning rule to improve the discrimination of patterns 
from gas sensor array systems.  

The proposed learning rule is validated on the KIII, 
a neurodynamics model of the olfactory system 
developed by Freeman and colleagues over the last 
thirty years [2, 3].  The KIII model has gone largely 
unnoticed in the machine olfaction literature, with a few 
exceptions [4-6] 

 
2. Contrast enhancement through Hebbian/anti-
Hebbian learning   

Contrast enhancement in the olfactory bulb is 
performed through the inhibition of mitral cells, which 
receive projections from olfactory receptor neurons, by 
nearby granule interneurons [7]. This inhibition has the 
effect of reducing the molecular tuning range (i.e., the 
number volatile molecules detected) of a mitral cell 
relative to that of olfactory receptor neurons, effectively 
orthogonalizing patterns across odors.  This 
computational function can be achieved by means of 
anti-Hebbian learning [8], which leads to a decorrelation 
of input channels to the system. The anti-Hebbian 
learning rule is the opposite of the Hebbian rule, and 
states that the strength of the connection between two 
neurons should decrease when both activate 
simultaneously:  

 lkkl xxw −=∆                             (1)   
where xk and xl are the k-th and l-th inputs to the system. 
We propose a new learning rule that combines Hebbian 
and anti-Hebbian terms to provide both robustness to 
sensor failures and enhanced pattern separability, 
respectively. Assuming a pattern recognition problem 
with N odor patterns [ ] Nixxxp Ti

M
iii ≤≤= 1;...21 , and a 

recurrent network with M fully-laterally-connected 
neurons, the strengths of the lateral connections can be 
computed with the following off-line expression:    
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The first term in equation (2) is the Hebbian rule, which 
strengthens the connection between neurons that are 
active within a pattern. The second term is the anti-
Hebbian component, which reduces the connection 
weights between neurons that are active for multiple 
patterns, on the average reducing the overlap across 
patterns.  Negative mitral-to-mitral connections are 
avoided by forcing to zero all elements in equation (2) 
that become negative. 
 
3. Contrast enhancement in the KIII   

The proposed learning mechanism is implemented 
on the KIII, a neurodynamics model of the olfactory 
system. 
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3.1. The KIII model 
The output of the KIII reproduces 

electroencephalographic (EEG) recordings in the 
olfactory system by modeling the oscillatory behavior 
of neuron populations [3]. The topology of the model, 
shown in Figure 1, is based on the physiological 
structure of the mammalian olfactory system [2]. Each 
node in the KIII represents a population of neurons, 
modeled by a second order differential equation, and 
each edge models the interaction between two 
populations. The strength of this interaction is 
controlled by a weight, which is positive when the 
connection is excitatory and negative if the connection 
is inhibitory. 

Odor stimuli are presented to the system as a pattern 
through an input layer of receptors. Each receptor is 
connected to a periglomerular cell and a set of one 
mitral and one glomerular ensemble, forming a channel. 
Each of these channels can then be associated with one 
dimension of the input stimulus and the corresponding 
output pattern. The KIII is usually able to store 
previously seen patterns by means of Hebbian lateral 
connections at the M mitral layer. This allows the model 
to work as an associative memory for recovering 
incomplete or corrupted stimuli.  

In the absence of an external stimulus, the KIII 
channels follow an aperiodic oscillatory behavior 
known as a basal state. When an input is presented, the 
system moves into a global attractor in state space, 
which can also be observed as pseudo-periodic 
oscillations in the output channels. The amplitude of the 
oscillations at each channel depends on the activation 
level of its receptor input, but is also influenced by other 
receptors as a result of the lateral connections. The 
output pattern of the KIII is commonly assumed to be 
encoded in the amplitude or RMS of the oscillations of 
each channel [2].  

 
3.2. Hebbian/anti-Hebbian learning in the KIII 
model 

Application of anti-hebbian learning to the KIII 
model is not trivial because of the oscillatory nature of 
the KII sets: the interaction between laterally-connected 
oscillators is a vector operation.  Depending on the 
relative phase of the two oscillators, it is therefore 
possible for an inhibitory connection to have an 
excitatory effect. The proposed learning rule is applied 
to the mitral-to-mitral connections, and addresses this 
problem by combining hebbian and anti-hebbian terms. 
The role of the hebbian term is two-fold. First, it 
preserves the associative-memory function of the KIII, 
allowing the model to learn odor-specific attractors. 
Second, it provides positive mitral-to-mitral 
connections, which are subsequently reduced by an anti-
hebbian term. 
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Figure 1. The KIII model architecture  
 
4. Enhanced pattern separability 

The KIII trained with the propose Hebbian/anti-
Hebbian learning is able to increase the separability of 
the output patterns through two mechanisms: reduction 
of overlap and reduction of crosstalk. The reduction in 
overlap naturally leads to an increase of the output 
pattern separability. The crosstalk in an associative 
memory occurs when the stored patterns overlap and 
therefore interfere with the pattern that we want to 
retrieve. Since the contrast enhancement mechanism 
reduces the overlap between the stored patterns, the 
crosstalk is also reduced. Thus, the crosstalk reduction 
is a direct consequence of the overlap reduction 

To evaluate the ability of the Hebbian/anti-Hebbian 
learning to increase the separability of different patterns, 
the KIII is trained with overlapping binary patterns and 
excited with noisy versions of those. The separability of 
patterns obtained by the KIII model is compared to that 
achieved through three other procedures: Hopfield 
network, KIII with Hebbian learning, and Linear 
Discriminant Analisys (LDA). The separability of the 
input patterns is computed also and used as a baseline of 
the improvement in separability achieved by the 
procedures. 
 
4.1. Measure of separability: Fisher discriminant 
function 

To measure the separability between patterns we use 
the Fisher Discriminant Function [9]. Assuming a c-
class problem with same number of elements per class, 
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the Fisher Discriminant Function is computed following 
the expression [10]: 
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where iµ  is the mean value of class i,  µ  is the mean 
value of all classes, and Ci is the set of elements 
belonging to class i. The between-class scatter is a 
measure of the distance between the mean value of each 
one of the classes, and the within-class scatter is a 
measure of the spread of the classes. The classes will be 
more separable as SB increases and SW decreases, 
leading to increasing values of J.  
 
4.2. Characterization on synthetic inputs 

To test the ability of the proposed learning rule to 
increase the separability of patterns the system is 
presented with a three class problem with 16-
dimensional binary inputs. The three overlapping 
patterns A, B, and C, shown in Figure 3, which 
represent the three classes, are used to train the KIII. 
The testing examples are generated by flipping bits 
randomly across the 16 dimensions of the patterns. Six 
levels of noise are considered by flipping from 1 to 6 
bits, which corresponds from a 6% to a 37% of the 
original pattern. 1000 examples are generated for each 
noise level. This number of examples makes the 
variation of J less than 5% of its value when the random 
generation of the examples is repeated 10 times. 

The separability of patterns obtained with the KIII-
Hebbian/anti-Hebbian is compared to that obtained 
using the raw inputs and to that obtained by processing 
the same inputs with three other procedures: Hopfield 
Network, KIII with Hebbian learning, and LDA. The 
two first procedures are associative memories and are 
used to determine the performance of the KIII with 
Hebbian/anti-Hebbian learning as compared to systems 
that use only Hebbian learning. LDA represents a good 
upper bound for separablility performance since it finds 
an optimum linear projection maximizing the Fisher 
discriminant function. The separability of raw inputs 
and the separability of the LDA output are taken as 
lower and upper bounds respectively for the 
performance of the other procedures.  
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Figure 2. Illustration of  between class-scatter SB, 
and within class-scatter 1

WS , 2
WS . 

 
 

A
B
C

A
B
C  

Figure 3. Overlapping binary patterns used to test 
the pattern separability of the system. 
 

Figure 4 shows the pattern-separability obtained by 
the four procedures and that of the input. The 
separability, computed as J, is plotted against the 
amount of noise introduced to the input patterns. The 
KIII-Hebbian/anti-Hebbian clearly outperforms the 
ability of the KIII-Hebbian and the Hopfield network to 
increase the separability of the patterns and it performs 
close to the upper bound set by LDA. This result can be 
explained in terms of the mechanisms that increase the 
pattern separability at each network. The Hopfield 
network and the KIII-Hebbian model are able to 
increase the separability existent at the input through 
pattern completion. They are able to partially restore the 
stored patterns from the noisy version presented at the 
input, reducing the within-class scatter, SW. The KIII-
Hebbian/anti-Hebbian uses not only pattern completion 
to increase output pattern separability, but also overlap 
and crosstalk reduction. Both mechanisms increase the 
between class-scatter SB. 

 
5. Sensor array-patterns validation 

The contrast enhancement ability of the KIII-
Hebbian/anti-Hebbian was validated on experimental 
data from a gas sensor array with four MOS sensors 
(TGS2600, TGS2620, TGS2611, and TGS2610) [11]. 
The sensors were modulated in temperature [12] with a 
sinusoidal profile to increase the information content of 
the response. The sensors were exposed to the 
headspace of acetone (A), isopropyl alcohol (B), and 
ammonia (C). The temperature-modulated response of 
one of the sensors was used to train the KIII model, 
previous L1 normalization of each response pattern. 
This preprocessing is necessary to balance the total 
input to the KIII, which ensures that the model operates 
in a well-behaved dynamic region. 
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Figure 4. Separability of the output patterns against 
the level of noise introduced in the input patterns. 
Separability of the output patterns of LDA, KIII-
Hebbian/anti-Hebbian, KIII-Hebbian, Hopfield 
output, along with the separability of the raw input. 

 
The normalized sensor response patterns to the three 

pure analytes (A, B, and C), shown in Figure 5 (left 
column), were used to train the KIII model using the 
new learning rule. Even though the sensor provides a 
unique response pattern to each analyte, there is also a 
significant degree of overlap that shadows the most 
relevant discriminatory information. Figure 5 (right 
column) shows the output of the KIII to the three 
analytes; the KIII is able to noticeably reduce the 
overlap across patterns and enhance the channels (i.e., 
operating temperatures) with highest selectivity. The 
response pattern for analyte A is sharpened around the 
two peaks (channels 16 and 45). Although theses peaks 
are present for the three analytes, their activity relative 
to other channels is highest for pattern A. A more 
interesting response is obtained with analyte B, for 
which the most discriminatory information is provided 
by the secondary peaks around channels 7 and 54. As a 
result, the trained KIII increases contrast in these 
channels.  Note that the secondary peak around channel 
53 is minimally noticeable in the original sensor 
response (Figure 5(b)), but is clearly resolved in the 
output of the model (Figure 5(e)).  Finally, the sensor 
response pattern for analyte C is transformed by 
enhancing activity in the central channels, which is 
where discriminatory information for this analyte is 
highest. 
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Figure 5. Contrast enhancement in the KIII with 
experimental data from a gas sensor. The left 
column shows the sensor response to the three 
analytes, which serves as the input to the KIII. The 
right column shows the corresponding output of the 
KIII (i.e. AC amplitude in mitral cells).  
 
6. Discussion 
The proposed Hebbian/anti-Hebbian learning rule for 
the KIII model has been shown to increase the 
separability between output patterns as a consequence 
of its ability to increase the within class-scatter SW and 
to reduce the between class-scatter of the output 
distribution with respect to the input distribution. This 
function is similar to the contrast enhancement 
performed by the olfactory bulb. 

In section 4.2., to ensure a fair comparison between 
LDA, which considers second order statistics on the 
input distribution, and the rest of the procedures, which 
only consider first order statistics, a distribution of 
testing examples that have all the class-information in 
the mean is used. The input distribution generated has 
no class-information in the variance since the noise used 
to generate the examples is equally distributed across all 
dimensions of the input space. Despite the lack of class-
information in the variance, the close performance of 
the KIII-Hebbian/anti-Hebbian to that obtained by LDA 
is a remarkable result, since LDA finds the optimal 
linear performance based on J. 

In addition to the characterization of the proposed 
learning rule with synthetic patterns, the ability of the 
proposed system to enhance the contrast of sensor array-
patterns has been shown for the sensor response to three 
analytes. This shows the potential use of the KIII-
Hebbian/anti-Hebbian for increasing the separation of 
sensor array-patterns. 
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