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Pattern recognition for chemosensor arrays with the KIII model 
A. Gutierrez-Galvez, R. Gutierrez-Osuna* and B. Raman 
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Abstract- This article presents an overview of on-going research with the KIII as a pattern 
recognition model for chemical sensors arrays.  Two different input representations are 
investigated: binary and continuous patterns.  Binary inputs are obtained by partitioning feature 
space into odor-selective regions.  This representation allows inputs to be viewed as ‘labeled 
lines,’ the functional role of glomerular units in olfactory processing.  In addition, we also explore 
the behavior of the KIII when driven by continuous sensor data.  Preliminary results show that 
hebbian learning in the continuous-input KIII improves the discrimination of odor attractors. 

1 Introduction 
Sensor based machine olfaction (SBMO) has emerged in the past two decades as an alternative 

methodology for the measurement of volatile organic compounds (VOCs), a task traditionally performed 
with analytical techniques, such as gas chromatography and mass spectrometry, or sensory analysis with 
human panels.  SBMO employs an array of broadly-tuned chemical sensors: exposure of the sensors to a 
VOC produces a unique multivariate pattern across the array, which can then be processed with pattern 
recognition techniques to determine the identity and/or concentration of the VOC.   

Statistical pattern recognition and artificial neural networks have been well studied in the machine 
olfaction literature [1].  Hence, our research interests have concentrated on biologically-plausible models 
of olfactory processing [2], as these models provide an opportunity for formulating new computational 
problems worthy of study with chemical sensor arrays (e.g., habituation, segmentation, background 
suppression).  Among the wealth of olfactory models, the KIII [3] is particularly attractive for 
chemosensor data because, as a dynamic model of neuronal populations, it strikes a balance between 
anatomical realism (e.g., Hodgkin-Huxley) and functional abstraction (e.g., perceptron).  In addition, the 
KIII has been extensively studied by Freeman and colleagues [4] over the course of three decades.   
2 Binary KIII and mixture processing 

Inputs to the KIII are generated from the response patterns of an array of metal-oxide chemoresistors.  
The selectivity of a metal-oxide sensor is a function of its operating temperature (~400ºC), which is 
controlled with a built-in heater.  The overall selectivity can thus be improved by capturing the sensor 
response at multiple heater voltages, a principle known as temperature modulation [5].   

Although the KIII can be stimulated directly with raw sensor data, our earlier work has employed a 
preprocessing stage that yield a more suitable orthogonal binary representation.  The solution consists of 
partitioning feature space into odor-selective regions, as depicted in Fig. 1(a) for a 2D classification 
problem with three odors and their corresponding mixtures.  A linear discriminant function (LDF) is used 
to divide feature space into two decision regions, with the arrows indicating those mixture patterns (e.g., 
AC) that contain a single odor (e.g., A). Therefore, each of these LDFs can be thought of as a very 
selective pseudo-sensor capable of detecting the presence of a particular odor that may be embedded in a 
complex background.  

We have employed this binary representation to simulate olfactory habituation, a process by which the 
system can reduce its sensitivity to previously detected odors, thereby improving the ability to detect new 
stimuli.  This process is implemented by synaptic depression of mitral (M) connections triggered by local 
activity [6].  Fig. 1(b) shows the response of an 8-channel KIII to individual patterns of odors A, C and 
the mixture AC.  Habituation is disabled to illustrate the additivity of patterns and steady-state response. 
Fig. 1(c) illustrates the effect of habituation: the system is initially presented with odor A and allowed to 
habituate.  At this time, binary mixture AC is introduced.  As shown in the figure, the response to AC is 
as if only C was present, reproducing a known olfactory perception phenomenon.  Our results [6] also 
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show that the pattern-completion role of the hebbian M-M connections allows the KIII to reduce the 
majority of the coding errors introduced by the LDF, from an error rate of 6.25% down to 0.69%.  
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Fig. 1.  (a) Partitioning 
of feature space into 
odor-selective regions: 
acetone (A), isopropyl 
alcohol (B) and 
ammonia (C). (b)  G2 
output patterns of the 
KIII without 
habituation. (c) 
Habituation process 
with odors A and AC. 

3 Processing of continuous inputs 
The use of continuous inputs is appealing because it allows the KIII to process raw sensor data without 

any preprocessing. In addition, continuous inputs preserve concentration information (input amplitude), 
which is lost in the previous binary representation.  The pattern classification capabilities of the KIII with 
continuous inputs have not been investigated as extensively as with binary patterns. However, such efforts 
have already shown promising results [4, 7].  

We have studied the performance of continuous inputs on a 64-channel KIII model. Each input was 
fed with a feature from a 64-dimensional vector containing the response of the sensor array to one of three 
analytes: acetone, isopropyl alcohol and ammonia.  The KIII was initialized with uniform M-M 
connections, which were then allowed to undergo Hebbian learning with repeated presentation of the 
analytes.  The activity of G1 nodes was used as an output, and the 64-dimensional dynamic attractor was 
projected onto the three largest principal components for visualization purposes. Fig. 2(a) and (b) show 
the response of the KIII prior to and after learning, respectively.  Before learning, the three analytes lead 
to very similar, nearly coplanar attractors.  Following learning, the attractors change drastically, 
improving the discrimination of the three analytes.  Though preliminary, these results show promise for 
real-time odor detection with hardware implementations of the KIII model. 

-10 -5 0 5
-50510

-5

0

5

-10
0

10
-10-50510

-10

-5

0

5

10

(a) (b)

-10 -5 0 5
-50510

-5

0

5

-10
0

10
-10-50510

-10

-5

0

5

10

(a) (b)

 

Fig. 2. KIII 
response for 
three odors 
before (a) and 
after Hebbian 
learning (b). 
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