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Abstract

This article presents a sensor excitation and signal processing approach that combines temperature modulation and transient analysis to

enhance the selectivity and sensitivity of metal-oxide gas sensors. A staircase waveform is applied to the sensor heater to extract transient

information from multiple operating temperatures. Four different transient analysis techniques, Pade–Z-transform, multi-exponential

transient spectroscopy (METS), window time slicing (WTS) and a novel ridge regression solution, are evaluated on the basis of their

ability to improve the sensitivity and selectivity of the sensor array. The techniques are validated on two experimental databases containing

serial dilutions and mixtures of organic solvents. Our results indicate that processing of the thermal transients significantly improves the

sensitivity of metal-oxide chemoresistors when compared to the quasi-stationary temperature-modulated responses.

# 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The temperature-selectivity dependence of metal-oxide

semiconductor (MOS) materials can be exploited to improve

the information content of chemoresistors by modulating

the operating temperature of the device during exposure to

analytes and processing the resulting dynamic response [1].

Temperature modulation approaches for MOS sensors can

be broadly classified into two categories: temperature

cycling and thermal transients. In temperature cycling

(TC), the sensor is excited with a periodic heater voltage,

typically a sinusoidal waveform to ensure a smooth tem-

perature profile. To help resolve the various peaks in

sensitivity that may occur during the cycle, a slow varying

sine wave is often desirable [2]. If the heater waveform is

slow enough to allow the sensor to approach the set-point

temperature, the behavior of the sensor at each temperature

may then be treated as a ‘‘pseudo-sensor’’ by virtue of the

relationship between operating temperature and sensor

selectivity. In thermal transients (TT), on the other hand,

the sensor is driven by a step or pulse waveform in the

heater voltage, and the discriminatory information is con-

tained in the chemical transient induced by the fast change

in temperature.

To the best of our knowledge, the work of Sears et al. [3,4]

constitutes one of the first studies on temperature cycling for

metal-oxide sensors. The authors used a Figaro sensor with a

sinusoidal heater voltage, and analyzed selectivity and

sensitivity as a function of the frequency and the heater

voltage for different analyte concentrations. For more than a

decade, Nakata and co-workers [5–9] have also used a

sinusoidal heater voltage for temperature modulation pur-

poses. The authors transform the sensor response into the

frequency domain by means of the fast Fourier transform

(FFT), and use the coefficients of higher harmonics to

discriminate various analytes [6–9]. Nakata et al. [7], and

Nakata and Yoshikawa [8] have also applied these proce-

dures to qualitatively characterize the mixtures of two gases.

However, no quantitative classification was performed. Hei-

lig et al. [10] have used multi-layer perceptrons (MLPs) to

process the FFT features of the sensor response to a sinu-

soidal temperature modulation. The authors utilize two

separate MLPs to perform a quantitative and qualitative

analysis of the gases. The MLPs are able to detect the

presence of an analyte in a mixture and predict the con-

centration of a single gas and gas mixtures. Llobet et al. [11]

have applied the discrete wavelet transform to extract fea-

tures that are more informative than those provided by the

FFT. The authors have used two different neural networks,

fuzzy ARTMAP and MLPs, coupled with leave-one-out and

bootstrap for validation purposes. Perez-Lisboa et al. [12]
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have used the dc and ac RMS values from the sensor

response to a periodic excitation signal. Wlodek et al.

[13] have used a ramp as a heater excitation signal. The

response of the sensor is modeled with a family of Gaussian

curves and the parameters of the curves are used as features.

Using micro-hotplate sensors, Kunt and co-workers [14,15]

have developed a numerical optimization procedure capable

of deriving a temperature profile that maximizes the dis-

crimination between two analytes of interest.

In the realm of temperature modulation with transients,

Hiranaka et al. [16] have analyzed the cooling temperature

transients when the heater supply is switched from a high

voltage to a low voltage. The response of the sensor for

different odors presents peaks at different positions in the

transient. Similar results have also been achieved by Ama-

moto et al. [17]. Kato et al. [18] have used a pulse signal to

drive the heater voltage. A phenomenological equation with

four parameters is used to model the sensor response to each

analyte and the model parameters are used as features. Yea

et al. [19] have used a train of pulses to discriminate and

quantify flammable gases. The authors process the sensor

response with the FFT, and the ac components are passed to

an MLP to determine which odor is present. Once the odor

has been recognized, the output of the MLP, along with the

dc component of the FFT, is passed to a neuro-fuzzy

algorithm to estimate the concentration.

This article describes a sensor excitation technique that

combines characteristics from the two above-mentioned

temperature modulation approaches. The technique, termed

staircase thermal modulation (STM), drives the sensor hea-

ter with a voltage that consists of a series of step inputs at

different voltage levels, forming a staircase waveform, as

shown in Fig. 1 for two Figaro sensors [20]. Each step in

temperature yields a thermal transient with a characteristic

shape that depends not only on the voltage range but also on

the particular analyte to which the sensor is being exposed.

Computational transient analysis [21] of each step response

is then employed to extract additional information from the

sensor. In particular, this article explores four unique tran-

sient analysis techniques as potential feature extraction tools

for thermal transients: the Pade–Z-transform [22], multi-

exponential transient spectroscopy (METS) [23], window

time slicing (WTS) [24] and a novel ridge regression curve

fitting (RRCF) technique. These four techniques are com-

pared with the steady-state response of the sensor at each

temperature level, which serves as a baseline technique for

temperature-modulated sensors.

2. Transient response analysis

Our prior work on transient analysis for chemical sensors

has focused on the dynamic response of the sensor when

exposed to a step function in the concentration of an analyte.

As presented in [21], chemical transients can be accurately

modeled by a set of real exponentials:

f ðtÞ ¼
XM

m¼1

Gm e�t=tm ; (1)

where Gm and tm are the amplitude and time constant of

the mth exponential decay. This parametric representation of

the sensor transient serves two distinct purposes. First, a

compact representation of the sampled data ffk; k ¼ 0; . . . ;
N � 1g ! fGm; tm;m ¼ 1; . . . ;Mg is obtained. Second, the

family of time constants and amplitudes fGm; tm;m ¼
1; . . . ;Mg can be used as a feature vector for pattern

recognition purposes. Although conceptually straightfor-

ward, the task of modeling a curve with a set of exponential

functions with real exponents is ill conditioned. Unlike

the familiar sinusoidal functions used in Fourier analysis,

exponential decays do not constitute an orthogonal base.

Therefore, if one tries to determine the coefficients

fGm; tm;m ¼ 1; . . . ;Mg from finite-time and finite-preci-

sion samples of the transient, the distribution function of

time constants will not be unique. An additional problem is

the determination of M, the number of exponential compo-

nents that should be used in the fit. These issues have been

known for over 40 years, when Lanczos demonstrated that

three exponential curves with similar time constants could

be fitted accurately with two exponential models with sig-

nificantly different amplitudes and time constants [25]. A

number of methods to find real exponential components

from experimental data have been proposed in the literature.

Fig. 1. Staircase thermal modulation for two MOS sensors: (a) TGS2600; (b) TGS2620. H, heater voltage; A, acetone; I, isopropyl alcohol; M, ammonia.
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In an earlier article [21], we have performed a thorough

literature review of these methods and concluded that the

Pade–Z-transform was the most appropriate method for the

problem of gas sensor modeling.

An alternative model to the finite set of exponential

decays in (1) is to compute a continuous distribution of

time constants, which may be considered as a spectral

representation of the transient signal:

FðtÞ ¼
Z 1

0

GðtÞ e�t=t dt: (2)

To the best of our knowledge, only two such spectral tech-

niques have been used to process transient signals: METS

[23] and the Gardner transform [26]. METS has been shown

[23] to be suitable for processing chemical transients in gas

sensors and is, for this reason, selected for our study.

In Sections 2.1–2.4, we present a brief overview of the

Pade–Z-transform, METS and ridge regression curve fitting.

The latter may be considered a hybrid technique in that it

uses the model in (1) to produce a spectral representation of

a transient signal.

2.1. The Pade–Z procedure

The Pade–Z-transform is based on the theory of Pade

approximants and the Z-transform of discrete systems. The

Pade–Z-transform has had an interesting history: although

the term was coined by Yeramian and Claverie in 1987, it has

been known for over 200 years. Its original ancestor is the

Prony’s method, which was reformulated using the Z-trans-

form by Weiss and McDonough in 1963 [27]. The Pade–Z

method is derived as the discrete-time version of the Pade–

Laplace method of Yeramian and Claverie [22], which

uses the Laplace transform of continuous systems. The

Pade–Z-transform has been shown to be more appropriate

for time series with a few samples and, unlike the Pade–

Laplace method, does not suffer from numerical integration

problems.

The goal of the Pade–Z procedure is to obtain the

parametric model of Eq. (1) from a sampled transient

ffk; k ¼ 0; . . . ;N � 1g. One may be initially tempted to find

the model parameters through the least squares solution:

fM;Gm; tmg ¼ arg min
M;Gm;tm

XN�1

k¼0

fk �
XM
m¼1

Gm e�kT=tm

 !2
2
4

3
5:

(3)

However, (3) yields a non-linear system of equations in the

parameters tm, requires knowledge of the number of com-

ponents M and is known to be numerically ill conditioned.

To avoid these problems the Pade–Z-transform operates in

the discrete Z-domain [28]. The one-sided Z-transform of

ffk; k ¼ 0; . . . ;N � 1g is:

F1ðzÞ ¼ Z½fk� ¼
XN�1

k¼0

fkz�k; (4)

whereas the closed-form Z-transform of (1) is:

F2ðzÞ ¼ Z½fk� ¼
XM
m¼1

Gm

z

z � e�T=tm
: (5)

Estimation of the parameters fGm; tm;m ¼ 1; . . . ;Mg is

then accomplished by expressing the series F1(z) in the

same closed form as F2(z). A Pade approximant is used

to represent the series F1(z) as a rational expression RðzÞ ¼
NðzÞ=DðzÞ. From this expression, F2(z) can be obtained by

performing a partial-fraction expansion. This technique is

known as Prony’s method. The Pade–Z-transform is a gen-

eralization of Prony’s method. Instead of using F1(z) as the

Z-transform of the time series, the Pade–Z method uses

its Taylor series expansion F̂1ðxÞ ¼
P1

j¼0cjðx� x0Þj
at a

point z0 ¼ 1=x0 [22]. Prony’s method then becomes the

particular case of the Pade–Z method for z0 ¼ þ1. Experi-

ence shows that there exists an optimal range of values

of z0 for the detection of exponential components, which

does not contain the values 0 or 1. This fine-tuning

parameter greatly enhances the resolution capabilities of

the Pade–Z method and explains the unsatisfactory beha-

vior of the standard Prony’s method [22]. Due to space

constraints, the reader is referred to [21,29] for additional

details of the Pade–Z method for modeling gas sensor

transients.

2.2. Multi-exponential transient spectroscopy

In analogy to the Fourier transform, which extracts the

frequency content of a stationary signal, there also exist

spectral techniques that estimate the distribution of time

constants in a transient signal. In particular, the METS

method of Marco et al. [23] has been shown to be suitable

for processing chemical transients in gas sensors. METS is

based on a multiple differentiation of the signal transient (1)

in logarithmic-time scale y ¼ lnðtÞ:

METS1ðtÞ ¼
dðf ðtÞÞ
dðln tÞ ¼

XM
m¼1

Gmhðy � ln tmÞ: (6)

This signal, known as the first-order METS signal, is the

convolution of the ideal time-constant distribution GðtÞ ¼PM
m¼1Gmdðt� tmÞ, where the Dirac delta function d(�)

is replaced with an asymmetric kernel function hðyÞ ¼
expðy � expðyÞÞ. To facilitate the differentiation in (6),

the signal transient needs to be sampled at geometrically

spaced times t ¼ t0qp with q > 1. In our case, this is acco-

mplished by spline interpolation from a uniformly sampled

sensor transient fk ¼ f ðkTÞ. METS1 can then be obtained

using a Lagrange differentiator [23], yielding:

METS1ðpÞ ¼ 2
f ðt0qpþmÞ � f ðt0qp�mÞ

3m ln q


 �

� f ðt0qpþ2mÞ � f ðt0qp�2mÞ
12m ln q

: (7)
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In the present implementation, values of m ¼ 3 and q ¼ 21=3

were used. Improved time-constant resolution can be

obtained, at the expense of amplifying high-frequency noise,

by subsequent differentiation of the convolution product,

yielding higher-order signals METSn, which can be inter-

preted as the convolution of G(t) with narrower kernels

hnðyÞ ¼ expðny � expðyÞÞ:

METS1ðtÞ ¼
XM
m¼1

Gmhnðy � ln tmÞ: (8)

These higher-order METS signals can be conveniently

obtained in a recursive fashion by:

METSnþ1ðpÞ

¼ nMETSnðpÞ �
METSnðpÞ � METSnðp � 1Þ

ln q
: (9)

Due to the wide dynamic range in resistances for tempera-

ture-modulated MOS sensors, the sampled transients are

subject to quantization noise, preventing us from using

higher-order METS signals. Thus, our study will be limited

to the first spectrum, METS1.

2.3. Ridge regression curve fitting

As stated earlier, direct minimization of the objective

function (3) is impractical, primarily as a result of the non-

linearity introduced by the time constants. If the correct

time constants are known, though, the amplitudes Gm can in

principle be obtained from the linear least-squares solution

of (3) by means of the following system of equations:

e�T=t1 e�T=t2 � � � e�T=tm

e�2T=t1 e�2T=t2 e�2T=tm

} ..
.

e�NT=t1 e�NT=t2 � � � e�NT=tm

2
66664

3
77775

G1

G2

..

.

Gm

2
66664

3
77775 ¼

f1

f2

..

.

fN

2
66664

3
77775;

(10)

or in matrix notation, EG ¼ F, with the pseudo-inverse

solution defined by:

G ¼ ½ETE��1
ETF ¼ E{F: (11)

This direct solution requires a further refinement since the

regression matrix E is highly co-linear. To stabilize this

Fig. 2. Curve fit provided by: (a) Pade–Z; (b) ridge regression. Time-constant spectra generated by: (c) METS; (d) ridge regression.
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least-squares solution, we regularize the covariance matrix

ETE by adding a multiple of the identity matrix:

G ¼ ð1 � gÞETE þ g
trðETEÞ

M
I

� ��1

ETF; (12)

where g ð0 
 g 
 1Þ is a regularization parameter [30] that

controls the amount of shrinkage toward the identity matrix.

This solution is known as ridge regression (RR) in the

statistics and neural network community. Notice that the

RR solution still requires knowledge of the time constants

tm. These may be found by computing (12) for different

subsets of time constants and selecting the subset with lowest

mean-squared-error, an approach that appears to be rather

computationally involved. Instead, we employ a fine-grained

set of time constants in logarithmic scale t¼f0:01; 0:02; . . . ;
0:09; 0:1; 0:2; . . . ; 0:9; 1; 2; . . . ; 9; . . .g, which provides a dis-

tribution of amplitudes that may also be treated as a spectral

representation of the transient. A dc term is also included to

absorb the steady-state response of the sensor.

2.4. Validation of the proposed techniques

To illustrate the capabilities of the three proposed techni-

ques, we utilize a synthetic transient signal containing three

exponential decays. The exponentials have amplitudes (G1 ¼
�10, G2 ¼ þ10, and G3 ¼ �10) and time constants one

decade apart (t1 ¼ 0:1 s, t2 ¼ 1 s, and t3 ¼ 10 s). To make

the problem more interesting, a dc offset G0 ¼ 10 and Gaus-

sian noise Nðm ¼ 0; s ¼ 0:1Þ are added to the signal. The

transient is simulated with a sampling rate T ¼ 1/100 s from

t ¼ 0 until t ¼ 100 s to allow for the exponential to die out.

Pade–Z returns a model containing three exponential com-

ponents with amplitudes (G1 ¼ �9:8534, G2 ¼ 10:0663,

and G3 ¼ �10:0803) and time constants (t1 ¼ 0:1010 s,

t2 ¼ 1:0190 s, and t3 ¼ 9:7878 s), but only after the final

value of the transient f(t ¼ 100 s) is subtracted from the

transient. Otherwise, Pade–Z tends to return an additional

exponential with a very large and unstable time constant to

absorb the non-zero steady state caused by the dc offset.

Fig. 2(a) illustrates the accuracy of the curve fit provided by

the Pade–Z-transform.

The METS signal, shown in Fig. 2(c), presents three clear

peaks at 10�1, 1 and 10 s but is not able to capture the steady-

state component of the signal. The curve fit and spectrum

returned by the RRCF signal are shown in Fig. 2(b) and (d),

respectively. RRCF is able to provide an accurate curve fit

and, additionally, a distribution of amplitudes that can be

interpreted as a spectrum. Notice how RRCF can also

capture the steady state of the signal, both by means of

the dc offset and the amplitude of the larger time constants.

3. Feature extraction

The three techniques presented in Section 2 provide a

transformation from the time domain onto the ‘‘time-con-

stant’’ domain where information in the sensor transients

may be enhanced. A number of approaches have also been

explored to extract information directly from the time

domain. Some of these methods compute descriptive para-

meters such as rise times, maximum/minimum responses

and slopes, curve integrals, etc., whereas other approaches

subsample the sensor response at different times during the

transient [31]. For the purpose of comparing the relative

merits of time and time-constant domain representations,

this article will also consider WTS [24], a subsampling

technique that employs a family of bell-shaped kernels to

integrate the transient response at different time windows.

The advantage of WTS over parametric features (e.g. rise

time) is that it can also be employed as a filter bank to extract

information from spectral representations, as illustrated in

Fig. 3(b). Feature extraction from the Pade–Z model requires

a closer consideration, and is covered next.

Ideally the Pade–Z parameters fGm; tmg could be used

directly as input features into a pattern classifier. To illustrate

the discriminatory capabilities of these parameters, Fig. 4

presents a scatter plot of the time constants and amplitudes

returned by the Pade–Z-transform for a particular sensor and

thermal transient. Notice how the model produces three

exponential decays for each of four samples of acetone

(A) and isopropyl alcohol (I) but only one for ammonia

(M). This ability of the Pade–Z procedure to automatically

Fig. 3. Window time slicing from: (a) temporal representation; (b) spectrum of time constants.
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select an appropriate number of exponential decays intro-

duces a complication if these model parameters are to be

used directly as features, since many pattern-classification

algorithms expect a fixed-size feature vector. This issue can

be addressed in a number of ways. First, a constant feature

vector with the maximum number of exponential compo-

nents fGm; tm;m ¼ 1; . . . ;Mmaxg could be used. For each

transient, and depending on the number of components

returned by the Pade–Z, several of the fGm; tmg pairs would

be padded with zeros. This naı̈ve approach, however, does

not account for the fact that the Pade–Z procedure can (and

oftentimes does) return solutions with different number of

exponentials for two transients of the same analyte. As a

result, the Pade–Z would introduce multi-modality in the

class-conditional distribution of each analyte. A second

possibility would be to force the Pade–Z procedure to return

a fixed number of exponentials or consider only those

solutions that contain the desired number of exponentials.

Our experience shows that this alternative produces solu-

tions that are a poor fit to the experimental data.

In this article, we propose an elegant and efficient solution

to yield a constant number of features regardless of the

number of exponentials returned by the Pade–Z procedure.

Our approach is based on the Taylor series expansion of the

exponential function:

ex ¼ 1 þ x þ x2

2!
þ x3

3!
þ � � � ¼

X1
n¼0

xn

n!
: (13)

Performing this expansion to each of the exponential decays

in (1):

XM

m¼1

Gm e�t=tm ¼
XM
m¼1

Gm

X1
n¼0

ð�t=tmÞn

n!
¼
X1
n¼0

ð�tÞn

n!

XM
m¼1

Gm

tn
m

;

(14)

which yields any desired number of features:

XM

m¼1

Gm;
XM
m¼1

Gm

tm

;
XM
m¼1

Gm

t2
m

;
XM
m¼1

Gm

t3
m

; . . .

( )
: (15)

The first feature,
PM

m¼1Gm, has a simple interpretation as it is

the steady-state response of the sensor. Subsequent features

are a weighted sum of the amplitudes by increasing powers

of their time constants. As a result, as n ! 1, the faster

exponential decays dominate the higher features in (15).

4. Performance measures

Two independent measures of performance, sensitivity

and selectivity, are proposed in this article to establish the

relative merits of the different transient analysis techniques.

For the purpose of measuring sensitivity, we define a clas-

sification scenario where the goal is to estimate the identity

and intensity of a given analyte from a set of P possible

‘‘primary’’ analytes, each of them having D different dilu-

tion levels. In this case, sensitivity can be simply measured

by determining the recognition rate of a pattern classifier for

different analyte concentrations. At relatively high concen-

trations (but below sensor saturation), the sensor-array

response for different odors will be discriminative and

repeatable, whereas at lower concentrations the responses

become weaker and, therefore, more subject to interferences

(i.e. temperature and drift). As a result, classification rates

will be proportional to concentration, as illustrated in

Fig. 5(a) for a hypothetical case where two potential tran-

sient analysis techniques are being evaluated. The most

sensitive technique will be the one whose feature set pro-

duces higher classification rates at near-threshold concen-

trations. For the example illustrated in Fig. 5(a), this clearly

corresponds to feature set 1. Misclassifications are penalized

according to the following cost function:

costðXijYjÞ ¼
1

a
dðX; YÞ þ 1

b
dði; jÞ; (16)

where Xi is a sample of analyte X at concentration i, Yj a

sample of analyte Y at concentration j, and costðXijYjÞ the

cost of classifying Yj as Xi. The first term in the summation

penalizes misidentifying the analyte, regardless of concen-

tration:

dðX; YÞ ¼ 0; X ¼ Y;
1; X 6¼ Y;

�
(17)

whereas the second term applies a penalty that is propor-

tional to the distance between the predicted and the true

concentration of the analyte:

dði; jÞ ¼ ji � jj: (18)

The terms a and b serve as normalizing constants to ensure

that the cost is bounded [0, 1]. For the experiments described

in Section 6.1, these constants were set to a ¼ 2 and b ¼ 5.

Fig. 4. Time constants and amplitudes extracted by Pade–Z from a 5–6 V

thermal transient of a TGS2620 sensor. A, 10�4 vol.% acetone; I,

10�1 vol.% isopropyl alcohol; M, 1 vol.% ammonia. Four samples of

each analyte were extracted.
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For the purpose of analyzing selectivity, we define a

classification scenario where the goal is to detect the pre-

sence of an analyte that may be embedded in a complex

mixture of P possible components. Qualitatively speaking, a

highly selective transient analysis technique will be able to

extract information that is unique to a particular analyte,

regardless of the components in the mixture. From a pattern-

analytical point of view, this is equivalent to finding a family

of P discriminant functions gp(x), each one tuned to a

particular analyte:

gpðxÞ ¼
1; p � x;
0; p 6� x;

�
(19)

where p is one of the P possible analytes, x a mixture, and

p � x indicates that analyte p is present in mixture x. The

optimal functional form for the discriminants gp(x) will be,

in general, non-linear and problem-dependent. Given that

there is no systematic procedure to consider every possible

non-linear transformation, we decide to constrain the solu-

tion in (19) to be a linear function, i.e. gpðxÞ ¼ Ax þ b. This

yields an elegant interpretation of selectivity in terms of

linear separability, whereby a highly selective transient

analysis technique will yield a feature space that can be

partitioned into analyte-specific regions with a family of

hyper-planes. This interpretation is illustrated in Fig. 5(b)

for a synthetic dataset containing ternary mixtures, where

single labels denote individual components and compound

labels represent mixtures (e.g. AC is the 50/50 mixture of

components A and C).

Two procedures are commonly employed to compute the

linear discriminant functions in Fig. 5(b): perceptron learn-

ing and minimum-squared-error (MSE) regression. The

perceptron learning rule finds a solution if the problem is

linearly separable, but fails to converge on non-separable

problems. The MSE procedure, on the other hand, does not

have convergence problems but is not guaranteed to find a

solution for linearly separable patterns. To avoid the short-

comings of either method, we employ an iterative algorithm

known as the Ho-Kashyap procedure [32], which is guar-

anteed to find a solution if the problem is linearly separable

but also converge in the non-separable case.

5. Experimental

To validate the proposed transient analysis techniques and

performance measures, we have employed a sensor array

with four metal-oxide semiconductors (MOS) from Figaro

[20]: TGS2600, TGS2620, TGS2611 and TGS2610. The

sensors were mounted on the cap of a 30 ml vial containing

6 ml of analytes. A common heater voltage was used to

excite all four sensors by means of a LabVIEW-controlled

multi-function data-acquisition card, and sensor resistances

were measured with a voltage divider. The staircase heater

voltage consisted of seven voltage step inputs ranging from 1

to 7 V, as shown in Fig. 1. The sensor array was exposed to a

number of serial dilutions and binary/ternary mixtures of

acetone (A), isopropyl alcohol (I) and ammonia (M).

Prior to the staircase in Fig. 1, the sensors are purged in air

for 3 min. At this point, the analyte is introduced in the

sensor chamber and the headspace is allowed to equilibrate

for 1 min. During these initial 4 min, the heater is excited

with a pulse train with a period of 10 s, 5 s at 1 V and 5 s at

7 V. Thus, the first voltage level in the staircase represents a

thermal transient from 7 to 1 V and is not used for the

analysis. Each of the six remaining transients on each sensor

is processed with the following feature extraction techniques:

� dc: The steady-state (or final) response of each transient

is extracted to form a six-dimensional feature vector that

represents the quasi-stationary temperature-modulated

Fig. 5. (a) Sensitivity as the relationship between classification rate and concentration. (b) Selectivity as linear separability of feature space into analyte-

specific regions.
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response of each sensor. This feature vector is used to

provide a reference performance level for the thermal

transient feature sets.

� WTS: Four WTS kernels are used to extract information

from the time domain transient, as illustrated in Fig. 3(a).

Therefore, each analyte sample contains 4 features for

each of the 6 sensor transients, for a total of 24 features per

sensor.

� Pade–Z: Four features are extracted from the {tm, Gm}

pairs returned by Pade–Z, as described by Eq. (15). Thus,

each sample contains 24 features per sensor.

� METS: Four WTS kernels are used to extract information

from the METS signal, as outlined in Fig. 3(b), for a total

of 24 features per sensor.

� RRCF: Four WTS kernels are also used to extract infor-

mation from the RRCF signal, as outlined in Fig. 3(b), for

a total of 24 features per sensor.

6. Results

Two separate databases were collected over a period of 2

weeks to establish the sensitivity and selectivity of the

above-mentioned feature sets. During the course of these

experiments the third and fourth sensors in the array became

faulty, and had to be discarded for the subsequent computa-

tional analyses. Therefore, each sample of an analyte con-

sisted of 6 thermal transients for 2 sensors, for a total of 12

transients. The final dimensionality of the five feature sets is

summarized in Table 1.

6.1. Sensitivity analysis

To establish the sensitivity improvements of the different

techniques, a database of five serial dilutions in distilled

water was collected on the sensor array. The highest con-

centration level of each analyte (acetone, 10�4 vol.%; iso-

propyl alcohol, 10�1 vol.%; ammonia, 1.0 vol.%) was

selected three dilution factors above the isothermal detection

threshold of the sensor array, defined as the concentration at

which the average steady-state response across the sensors

(with a constant 5 V heater voltage) could not discriminate

the diluted analyte from distilled water. Lower concentra-

tions of the analytes were obtained by serial dilution in

distilled water with a dilution factor of 10. Thus, these

dilutions represent a dynamic range of five logarithmic units.

The dataset was collected over a period of 4 days. On each

day, 15 samples were prepared, 5 dilutions for each of the 3

analytes. In addition, two water samples were collected each

day, one at the beginning of the session and a second one at

the end, to verify that the sensor patterns did not have trends

as a result of heating. Classification was performed using the

k nearest-neighbor classifier [32] with k ¼ 3 neighbors.

Classifier performance was estimated through four-fold

cross-validation, where each fold was defined as the samples

collected in a particular day. Thus, the classification measure

also penalized transient analysis techniques that were sen-

sitive to drift.

The resulting classification rate, as defined by Eq. (16), is

illustrated in Fig. 6(a). RRCF provides the best performance,

both overall and on each particular concentration. WTS,

Pade–Z and METS achieve similar performance, whereas dc

yields the poorest sensitivity. These results clearly indicate

that the thermal transients contain additional information

that can be used to improve the sensitivity of commercial

metal-oxide sensors. We anticipate that improved perfor-

mance may be achieved by placing the WTS kernels in those

regions of the transient or spectrum that are known to

contain more discriminatory information.

6.2. Selectivity analysis

To analyze the selectivity of these techniques, a second

dataset was collected with the same sensor array and experi-

mental protocol. In this case, the samples consisted of

individual analytes, and their binary and ternary mixtures.

The base concentration used for acetone, isopropyl alcohol

and ammonia was 0.3, 1.0 and 33 vol.%, respectively. These

concentrations were chosen so that they produced the same

average response on the sensor array, preventing an indivi-

dual analyte from dominating the mixtures.

Three individual analytes (A, I and M), three binary

mixtures (AI, AM and IM), one ternary mixture (AIM)

and distilled water (W) were used. Two serial dilutions with

a dilution factor of 1/3 were also processed, for a total of 24

samples per day (7 mixtures � 3 concentrations plus 3 water

samples). The experiment was repeated three times on three

consecutive days.

Classification performance was estimated using the k ¼ 3

nearest-neighbor rule and three-fold cross-validation, where

each fold represented the samples collected in a particular

day. When the complete feature vector is used (see Table 1),

the classification rate for dc, WTS, Pade–Z, METS and

RRCF is 96, 96, 89, 94 and 93%, respectively. These results

show that dc and WTS provide comparable selectivity,

closely followed by the two spectral techniques. Pade–Z,

however, falls short of the performance provided by dc.

To gain a better understanding of these results, we per-

form a principal components decomposition of each feature

set and analyze the behavior of the selectivity measure as a

Table 1

Dimensionality of the feature sets under study

Feature

set

Number of

sensors

Number of

transients

per sensor

Number of

features

per transient

Total

number

of features

dc 2 6 1 12

WTS 2 6 4 48

Pade–Z 2 6 4 48

METS 2 6 4 48

RRCF 2 6 4 48
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function of the number of principal components used in the

Ho-Kashyap regression. The results, illustrated in Fig. 6(b),

allow us to make two interesting observations. First,

improved performance can be achieved in most cases by

preserving only the larger eigenvalues. This allows WTS and

RRCF to achieve 100% selectivity, and significantly

improve the performance of METS and Pade–Z. Pade–Z,

however, is not able to outperform dc. A second conclusion

can be extracted by observing that WTS reaches 100%

classification rate with fewer principal components than

any other technique, indicating that the WTS features are

more highly correlated. This result should come at no

surprise considering the monotonicity of the sensor transi-

ents. Two opposing arguments can be made about this result.

On one hand, the more compact representation provided by

WTS is clearly desirable as it reduces the complexity of a

subsequent classifier. On the other hand, one may view the

spectral techniques (METS and RRCF) as being able to

provide features that are more ‘‘orthogonal’’. In practice,

either argument is likely to be overridden by the final

performance on each particular sensor array and application.

7. Summary

This article has presented a temperature modulation

procedure to improve the sensitivity and selectivity of

commercial metal-oxide sensors. The sensors are driven

by a staircase temperature profile, and the thermally-induced

transients are used to extract additional information from the

sensor. Four different transient analysis have been analyzed,

WTS, Pade–Z, METS and RRCF. WTS operates on the time

domain, whereas the remaining techniques perform a spec-

tral or time-constant analysis. Feature extraction procedures

for each of these transient analysis techniques have also been

discussed, along with two performance measures based on

sensitivity and selectivity. For the purpose of measuring

selectivity, a novel linear separability criterion has also been

presented.

Experimental validation of our excitation and computa-

tional methods has been performed on a sensor array exposed

to serial dilutions and mixtures of three analytes. A sensitivity

analysis on serial dilutions near the isothermal detection

threshold shows that the four transient analysis techniques

outperform a feature vector consisting of quasi-stationary

temperature-modulated responses. Our novel ridge regression

curve fitting technique provides the best performance, both

overall and at each particular concentration. Experiments on

selectivity using binary and ternary mixtures at three con-

centration levels indicate that the principal components of

three out of four transient analysis techniques provide better

performance than quasi-stationary features. It is expected

that improved performance may be obtained by proper selec-

tion of the position and width of the kernel windows used to

extract features from the spectral signals [33].
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