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Inspired by the process of olfactory adaptation in biological olfactory systems, this article presents
two algorithms that allow a chemical sensor array to reduce its sensitivity to odors previously de-
tected in the environment. The first algorithm is based on a committee machine of linear discrimi-
nant functions that operate on multiple subsets of the overall sensory input. Adaptation occurs by
depressing the voting strength of discriminant functions that display higher sensitivity to previously
detected odors. The second algorithm is based on a topology-preserving linear projection derived
from Fisher’s class separability criteria. In this case, the process of adaptation is implemented
through a reformulation of the between-to-within-class scatter eigenvalue problem. The proposed
algorithms are validated on two datasets of binary and ternary mixtures of organic solvents using an
array of temperature-modulated metal-oxide chemoresistors.

Keywords: Gas sensor arrays, chemosensory adaptation; machine olfaction; committee machines;
linear discriminant analysis’

1. Introduction

The integration of gas sensor arrays and pattern analysis algorithms has received much
attention in recent years as a low-cost alternative to odor measurement, conventionally
carried out with analytical instruments or human panels [1]. The broad and overlapping
selectivity of gas sensors can be exploited to characterize a wide range of odors by proc-
essing the multivariate response of a sensor array with pattern recognition algorithms. A
number of chemical analysis applications have appeared in the sensor-array community,
ranging from classification of odors to prediction of organoleptic properties. However,
despite the rapid growth in the field of machine olfaction, no publications have ad-
dressed, to the best of our knowledge, the issue of chemosensory adaptation in gas sensor
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arrays. Adaptation is the mechanism by which sensory systems reduce their sensitivity to
previously detected stimuli, preventing sensory overflow in the central nervous system
and improving the ability to detect new stimuli [2]. For instance, a person entering a cof-
fee shop will be immediately overwhelmed by the smell of fresh ground coffee, but that
sensation will automatically fade away until it is no longer noticed.

The purpose of this paper is to investigate computational mechanisms that allow a gas
sensor array to mimic certain aspects of the adaptation process. In particular, we focus on
the perception of odor mixtures under adaptation to one of the mixture components, a
scenario where the organism shifts the perceived quality towards the remaining compo-
nent(s) in the mixture [3, 4].

2. The Olfactory Pathway

We briefly review the mammalian olfactory pathway, from which two key signal-
processing elements are borrowed for this work: (i) the role of glomeruli as functional
units and (ii) the modulation of bulbar activity through centrifugal feedback. As illus-
trated in Fig. 1, the olfactory pathway can be divided into three basic subsystems: olfac-
tory epithelium, olfactory bulb and olfactory cortex [5, 6]. Volatile compounds entering
the nostrils are detected in the olfactory epithelium by a large number (10-100 million) of
olfactory neurons. The pioneering work of Buck and Axel [7] has lead to the identifica-
tion of a family of approximately 1,000 receptor proteins that are responsible for this mo-
lecular detection process. Each olfactory neuron appears to be dedicated to a particular
receptor [8], but each receptor can identify multiple odorants, and each odorant can be
identified by multiple receptors [9], leading to a combinatorial coding of odors.
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Fig. 1. Computational model of the olfactory pathway (adapted from [6, 9]).

Bundles of olfactory neuron axons access the brain via the cribiform plate, relaying their
information to mitral and tufted cells in the olfactory bulb through spherical clusters of
synapses called glomeruli. Nearly 25,000 receptor axons converge to each glomerulus,



Chemosensory Adaptation in Gas Sensor Arrays 3

which in turn connects to approximately 25 mitral cells and 70 tufted cells. A close look
at the olfactory bulb reveals a number of local microcircuits, mediated by periglomerular
and granule cells, which perform complex excitatory and inhibitory functions at the
glomerular and mitral/tufted levels, respectively [10, 11, 12]. Of particular interest to our
work is the fact that neurons expressing the same receptor appear to converge onto single
or a small subset of glomeruli in the olfactory bulb [8], supporting a fifty-year-old hy-
pothesis according to which glomeruli serve as functional units or “labeled lines” for a
subset of odorant molecules [cf. 10 and references therein]. Additional evidence indi-
cates that odor quality may be encoded by spatial patterns in the olfactory epithelium and
the glomerular layer [13, 14], whereas odor intensity would be encoded by the number of
active receptors [15].

Mitral/tufted cell axons form the lateral olfactory tract, which transmits olfactory infor-
mation to the olfactory cortex. The main target of the lateral olfactory tract is a collection
of cortical regions collectively called the primary olfactory cortex. Among those regions,
the piriform cortex is the largest area and plays a central role in the conscious recognition
of odors. In addition, the lateral olfactory tract is heavily interconnected with the limbic
system, which explains the effects of smell on emotions and mood. Finally, the olfactory
cortex sends centrifugal inputs back to the olfactory bulb (primarily to the granule layer),
resulting in a complex feedback mechanism that is believed to play a central role in odor
segmentation and adaptation [4, 16].

3. Chemosensory Adaptation with Committee Machines

As mentioned in the previous section, the convergence of neurons expressing the same
receptor onto a single or a small set of glomeruli substantiates the hypothesis that
glomeruli serve as functional units that flag the presence of specific odors in the envi-
ronment. In accordance with this view, we propose the classification architecture de-

picted in Fig. 2. Sensory inputs with similar selectivity profiles form bundles s* that act
as feature subsets for a family of discriminant functions g :

gik(s(")={1 sEw, )

-1 seo,

where the activation level of each discriminant g indicates the presence (or absence) of
odor @,. In this work, we model each of these discriminants as a multi-linear regression

function g (s(k )= G%s* + H* | whose parameters are estimated through least-squares
minimization:

H vk

l6¢, ¢ ]=arg min[Z(Gs"‘ +H - g5 ))Z} @

Activation levels from these discriminants are passed to a higher processing layer where
they are combined into a cumulative discriminant function g (s) using a committee ma-
chine with a weighted ensemble average [17]:
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where s =[s",5%,5°,...] is the overall sensory input, w" is a weighting coefficient that

measures the selectivity of sensory bundle s* to odor class @,, and i* is an inhibitory

term to excite/depress the contribution of s*. The term ) w in the denominator is
k

used to normalize the response relative to the overall sensitivity of the sensor array to

each odor. Finally, the transform f () is a squashing sigmoidal function that limits the
activation level of the discriminant functions in the range [0,1]:

f(x)=%(tanh(x)+1) 4)

The use of the selectivity coefficients w® in the ensemble average (3) allows the com-
mittee machine to weight the contribution of each discriminant function gc(k according
to its specificity for odor class @,. These selectivity coefficients are estimated as the

average activation level of g to input s ., where the term ¢” indicates that the input is a

mixture containing odor @, plus others:

®)

[l
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[

Fig. 2. Structure of the committee machine with sensory bundles s(*, discriminant functions g§ , cumula-
tive discriminants g. and inhibitory feedback ik,

Adaptation in this model is achieved by means of the inhibitory terms i*, which feed
back the activation level of the cumulative discriminant g, (s) to previous stimuli, prop-

erly scaled and normalized by the selectivity coefficients w :
2.8 (s

i (s)=tanh A== (6)
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As a result of this inhibitory feedback, the contribution of each sensor bundle s is suppressed
according to its sensitivity to odor w., weighted by the cumulative evidence that odor w. was
already detected in the environment. A scaling coefficient A can be used to drive the inhibitory
terms to saturation, allowing the feedback loop to operate as an ON/OFF feature selection
mechanism.

3.1. Simulating receptor bundles

To empirically validate the proposed adaptation mechanism, we employ an ‘array with
four metal-oxide (MOX) sensors, a widely used technology in machine olfaction applica-
tions [1]. The transduction mechanism of MOX sensors is based on resistivity changes.
In the presence of volatile organic compounds, oxygen ions on the surface of the sensor
undergo a chemical reaction. As a result, the concentration of free electrons increases,
which reduces the potential barrier between metal-oxide grain boundaries and, therefore,
the electrical resistance of the material. These changes in resistance can then be meas-
ured with conventional voltage divider or Wheatstone-bridge circuits [18].

In order to increase the rate of these reactions, MOX sensors are driven at high operating
temperatures (300-500°C) by applying a given voltage to a resistive heater embedded in
the device. The conventional excitation mode for MOX sensors consists of applying a
constant voltage to the heater, which yields an approximately constant operating tempera-
ture. The final selectivity of the device will depend on this operating temperature, since
the reaction rates for different volatile compounds and the stability of adsorbed oxygen
species are a function of surface temperature [19]. This temperature-selectivity depend-
ence is commonly exploited to extract additional information by modulating the operat-
ing temperature during exposure to volatile compounds and extracting features from the
dynamic response of the sensor at multiple temperatures [20]. Considering that sensor
responses at similar temperatures have related selectivities, these temperature-modulated

features can therefore be clustered into sensor bundles s* according to the operating
temperature at which they are obtained.

In a previous article [21] we have reported significant selectivity enhancements on tem-
perature-modulated MOX sensors. The sensors were driven with a low frequency
(0.125Hz-4Hz) sinusoidal heater voltage of 0-7V amplitude. It was concluded that, due
to thermal inertia, lower excitation frequencies were necessary to resolve dynamic infor-
mation at multiple temperatures. In this article we extend the previous approach by excit-
ing the sensors at various temperature ranges using the heater-voltage profile shown in
Fig. 3. This profile contains six sinusoidal segments with a 1-6V DC offset in increments
of 1V. Each segment consists of five sinusoidal cycles with an amplitude of 2V and a
period of T=20s. In order to eliminate thermal transients associated with each step in DC
offset, only the last cycle of each segment is used for pattern analysis [22]. The dynamic
trajectory of the sensor at each temperature range is captured by sub-sampling the last
cycle down to 10 samples, as depicted in the inset of Fig. 3, which results in a 10-
dimensional feature vector for each temperature range. Each of these feature vectors can
then be associated with a bundle of “receptors” having similar selectivity profiles. Given
that the array consists of four sensors excited at six temperature ranges, our procedure

yields twenty-four 10-dimensional feature vectors (or bundles s¥), which are used to obtain
the corresponding linear discriminant functions gik (k = 1-24) for each analyte.
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Fig. 3. Heater voltage profile for the MOX sensors (left) and bundles of temperature-modulated features
(right).

3.2.

The aforementioned temperature modulation approach was used to collect an experimen-
tal dataset on an array of four Figaro sensors (2602, 2610, 2611, 2620) [23]. The sensors
were mounted on the cap of a 30 ml vial containing 10 ml of analytes. Acetone (odor 4),
ethanol (odor B) and a 50/50 mixture of these two analytes were employed as analytes.
The resistance of the sensors was measured at 10 samples/second using voltage dividers
connected to a LabVIEW-driven data acquisition card. Fifteen samples per odor were
collected over a period of five days. The average response of the four sensors vs. the
cyclic heater voltage is shown in Fig. 4. Only the fifth cycle of each segment is plotted.
It can be observed that, although the sensors have overlapping selectivities, they respond
differently to the analytes at the various temperature ranges. Notice the unique pattern of
sensor 4 in the 5-7V, which clearly discriminates acetone from ethanol. Of particular
significance is the behavior of the 50/50 mixture on the different sensors and temperature
ranges: the mixture generates a pattern similar to acetone on sensor 1 (practically identi-
cal on the 3-5V range) but similar to ethanol on the other three sensors. This behavior is
critical to the success of our approach because it allows the system to bias the perception
of mixtures by favoring certain sensors and temperature ranges.

Experimental
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Fig. 4. Sensor conductance versus cyclic heater voltage for acetone (dotted), ethanol (dashed) and 50/50
mixture (solid).

The regression matrices (G;",H ;") are trained using pure acetone, whereas (G;",H g‘)

are obtained from the pure ethanol samples. The mixture samples are used to determine

the selectivity coefficients w . The results are shown in Fig. 5, where the inhibitory
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terms i* have been set to zero to illustrate the performance of the system prior to adapta-
tion. Each row denotes an example and each column a discriminant function. The first
15 rows correspond to acetone samples, the next 15 rows correspond to ethanol samples
and the last 15 rows are for the 50/50 mixture. Columns 1-24 correspond to the discrimi-
nant functions for the first odor class. Columns 1-6 are associated to the response of sen-
sor 1 at each of the six heater voltage ranges: 0-2V, 1-3V, ...5-7V, respectively. Col-
umns 7-12 are for sensor 2, and so forth. Several conclusions can be extracted from these
results. First, the linear discriminant functions can clearly identify the individual ana-

lytes: the f (gff) block responds selectively to acetone but not to ethanol, whereas the

f (gg‘) block responds mostly to ethanol. Second, the response of the sensors at low

temperature (0-2V, 1-3V) is not discriminative, as illustrated by the response of columns
1,7, 8, 13, etc. Third, the discriminant functions have complementary responses to the
50/50 mixture (rows 31-45). Columns 3-6 are high and columns 27-30 are low, indicat-
ing that the corresponding discriminants would classify these samples as acetone. The
reverse classification occurs with the remaining columns. All these results are consistent
with the structure of the cyclic patterns in Fig. 4.

192" 98

Odor A
A

Odor B
A

50/50 mixture
A

5 10 15 20 25 30 35 40 45

Fig. 5. Activation level of the linear discriminant functions (columns) for each odor example (rows).

We are finally ready to test the ability of the algorithm to mimic chemosensory adapta-
tion by analyzing the activation level of the cumulative discriminant functions gc(s)
after the system has identified a pure analyte and has set the inhibitory terms i* accor-
dingly. The results are illustrated in Fig. 6, where a value of A = 10 (empirically
determined) was used in equation (6). In the absence of adaptation, as shown in Fig. 6(a),
each cumulative discriminant g.(s) present a high level when s € w. and a low level
otherwise. The 50/50 mixture induces a high activation pattern on both cumulative dis-
criminants, although gp(s) dominates since the mixture is closer to odor B on three out

7
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of the four sensors and, therefore, more discriminant functions gg‘ become activated.
When the system adapts to odor 4, the activation level of g, (s) drops significantly for all

samples, including those from class 4. As a result, the activation pattern for the 50/50
mixture becomes similar to that of odor B, as shown in Fig. 6(b). Conversely, when the
system adapts to odor B, the activation level of gB(s) becomes very small, and the 50/50

mixture presents a pattern that resembles that of odor A. From the vertical scales in Fig.
6, it can also be observed that the algorithm lowers the overall activation levels on both
cumulative discriminants, a cross-adaptation phenomenon caused by the high level of
collinearity endemic to MOX sensors. Therefore, classification under these conditions
should be performed by considering the ratio of cumulative discriminants rather than
their absolute value.

(a) NO ADAPTATION (b) ADAPTATION TOODORA (c) ADAPTATION TO ODORB
'
0.8 kﬂw L 016
0.3 g %
o
S 0.14
0.25
012
= 06
5 0.2 01
B 05
]
@
>
E 04
(‘ vvvvv @ gA
. , 5 gy

1 15 30 45 15 30 45

;v_l H_I
Odor A Odor B Mixture Odor A Odor B Mixture Odor A Odor B Mixture

Fig. 6. Cumulative discriminant activation g 4 (circles) and g (squares) for different adaptation scenarios.
Under adaptation to an odor, the binary mixture is perceived as the second odor.

4. Chemosensory Adaptation as a Subspace Projection

The committee-machine algorithm presented in the previous section requires that the sen-
sor bundles provide complementary information to ensure that the output of the discrimi-
nant functions to odor mixtures can account for all possible adaptation scenarios. For
instance, in the example of Fig. 4 complementarity implies that the 50/50-mixture pattern
should be similar to the pattern of each solvent on at least one sensor bundle. This condi-
tion is met in the binary mixture problem of the previous section, allowing the cumulative
discriminants to provide a wide range of responses when exposed to a 50/50 mixture, as
shown in the bottom 15 rows of Fig. 5. Clearly, as the number of analytes increases, the
number of possible mixtures and adaptation scenarios grows exponentially. Unfortu-
nately, this can pose severe limitations for chemical sensor arrays, particularly MOX sen-
sors, which have notoriously overlapping selectivity profiles.

To address the collinearity of current commercial gas sensors, an alternative mechanism
is proposed in this article. The technique, derived from Fisher’s Linear Discriminant
Analysis [24], facilitates the analysis of mixtures by finding a subspace projection that
preserves an a-priori topology of odors. As shown in Fig. 7, each sensor bundle s* (de-
noted by x henceforth to simplify the notation) is projected onto a lower dimensional vec-
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tor y according to a linear transformation W{(c) that depends on a previously detected odor
@,. In the absence of adaptation, the projection imposes a topological ordering between
odors and their mixtures. When adaptation to an odor takes place, the topology is modi-
fied to generate a projection where the pattern of the adapting odor becomes closer to a
background. This novel topology-preserving transform is introduced in the following
subsections, and is validated on an experimental database of binary and ternary mixtures
using the temperature-modulated MOX sensor array presented earlier.

Input Projection  Adapted Class
space matrix space label

R

Adaptation signal

Fig. 7. Feature extraction for chemosensory adaptation. The input space s(* is projected onto a lower
dimensional space using a projection matrix W (c) that depends on previously detected odors we.

4.1. Topology-preserving Linear Discriminant Analysis (TP-LDA)

Linear Discriminant Analysis (LDA) is a supervised dimensionality-reduction technique
aimed at enhancing the discrimination of patterns in classification problems. LDA seeks
a linear projection y=Wx that maximizes the separation between class-conditional means
while minimizing the spread of patterns within each class. It can be shown [24] that the
optimal matrix W consists of the eigenvectors corresponding to the largest eigenvalues of
the matrix S,;,‘S » » where Sy and Sp are the within-class and between-class scatter matri-
ces, respectively, defined by:

1 1
i, =n—”§1x and y=;§x @)
Q9 Q9
Sy :leq :lZ (x_ﬂqxx‘ﬂq)( ®)
n q=1 n q=1 xew,

q

1
Sp=—2.m, (1, — 1, ~ uf ©)
gq=1
where Q is the number of classes, 7 is the total number of examples in the dataset, 1, , S,
and r, are the mean vector, scatter matrix and number of examples of class w,, respec-
tively, and u is the mean vector of the entire distribution. LDA generates projections that



10 R. Gutierrez-Osuna & N. U. Powar

maximize the separability of classes, but does not preserve a topological ordering of the
projections, as illustrated in Fig. 8(a) for a ternary mixture problem, where single labels
denote individual components and compound labels represent mixtures (e.g., AC is the
50/50 mixture of components 4 and C). For the purpose of mixture processing, however,

it would be desirable to obtain a topological projection where the mixtures have patterns
that are the average of their constituent odors, as illustrated in Fig. 8(b).
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Fig. 8. Clustering of examples with LDA (a), TP-LDA (b) and TP-LDA under adaptation (c).

The conventional LDA projection shown in Fig. 8(a) is obtained by assigning separate
classes to each individual component and each mixture without regard to the existing
relationships (e.g., the mixture 4B should be “more related” to 4 or B than it is to C). To
ensure a topological ordering, these relationships must be taken into consideration when
computing the mean vectors and scatter matrices in equations (7-9). Essentially, to en-
sure that examples from mixture 4B project between those of 4 and B, the mean vectors
of these two classes should be replaced by the following expressions:

—(u,+ /2
Myl ) (10)

My < (M + )/ 2
The same idea can be applied to the computation of scatter matrices and can be general-
ized to mixture problems with more than two components by using a binary labeling

scheme that captures the relationships between classes. Formally, given a problem with
P primary odors (e.g., 0=2" mixtures), each example x is labeled with a family of P indi-

cator variables T'" (x) = {yﬁ' (x), p= 1..P}, where ) (x) =1 if x has primary odor p as a
constituent ( p  x ) and zero otherwise:

yﬁ(x>={(1) pex (11)
pax

The superscript N (for Neutral) denotes that the topology-preserving LDA projection has
not (yet) undergone chemosensory adaptation. This simple labeling scheme, illustrated in

Table 1 for P=3, implies that mean vectors and scatter matrices in equations (7-9) are
computed on the following groups of odor patterns:

A'={4, AB, AC, ABC}
B'={B, 4B, BC, ABC} (12)
C'={C, 4C, BC, 4BC}
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To make explicit use of these binary indicators, the computation of means and matrices
can be redefined by:

=LN Zx with n) = Zl and ny, = Zn 13)
p an;' (x)=1 szyp (x)=1
5=y Yo 9
an p=1 an p= 1Vx3yp (x)=1
P
nlN >y =y = uf (13
Vp p=1

where ,ull,v represents the mean of all the examples that have primary analyte p as one of
their constituents (Vx 3 72’ (x)=1). As a result, the new topology-preserving projections

are aligned with the eigenvectors of (S,’,‘,’ )_1 sy .

Table 1. Indicator variables I'" (x) for TP-LDA

Class | 7 (x) | 73(®) | 70 (®)
X=A 1 0 0
x=B 0 1 0
x=C 0 0 1
x=AB 1 1 0
x=AC 1 0 1
x=BC 0 1 1
X=ABC 1 1 1
x=Neutral 0 0 0

To illustrate the performance of this topology-preserving LDA (TP-LDA) projection, a
ternary dataset was collected following the experimental procedure outlined in sections
3.1 and 3.2. The dataset consisted of mixtures from three organic solvents: acetone (4),
ethanol (B) and isopropyl alcohol (C). 11% dilutions in distilled water were used to re-
duce the recovery time of the sensors. Five samples were collected for each of the eight
possible mixtures (distilled water was used as the neutral odor). The results for the con-
ventional LDA and the proposed TP-LDA are shown in Fig. 9(a) and (b), respectively. It
can be observed that TP-LDA successfully generates a projection where the different
clusters are spatially organized according to the relationship between their class labels.

Samples from the neutral odor (V) project well outside the region of interest, and are not
shown in Fig. 9.
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Fig. 9. Performance of LDA (a) and TP-LDA (b) on a ternary mixture database.

4.2. Adapting the TP-LDA projection

The proposed TP-LDA projection serves as the backbone for simulating chemosensory
adaptation, since each adaptation scenario corresponds to a unique topology. Take the
example of adaptation to odor 4, as illustrated in Fig. 8(c). In this case, the objective of
the adapted topological mapping is a projection that removes the effect of odor A on all
of its mixture patterns. The mapping should therefore yield a projection where patterns
from odor 4 overlap with those from the neutral background N, and patterns from the
mixtures 4B, AC and ABC overlap with those from B, C and BC, respectively. Borrow-
ing the analogy of equation (12), such projection may be achieved by defining the follow-

ing odor clusters:
A'={4,N}
B'={B,AB,BC, ABC} (16)
C'={C,AC,BC, 4BC}

or, formally, by using a set of indicators I'*(x) = {}/; x), p= 1..P}, where superscript A

denotes chemosensory adaptation to odor A. Therefore, each adapted topology can be
imposed by modifying the binary indicators of the odors, which generates a different ei-
gensolution for the problem in equations (13-15). As an example, the indicator values
required for adaptation to 4, B and C are shown in Table 2. In general, adaptation to a

generic odor A (where A may itself be a mixture) may be achieved with the following set
of indicators:

}/:,v(x) PNA=D
}/ﬁ(x): 1 (xr\p;t@/\ng)vx:N AA£D 17)
0 otherwise P

where pNA =@ indicates that odors p and A have some components in common (e.g.,
ANAB# 3D, CNAB=J),and x c A indicates that all of the components in odor x
are also in A (e.g., Ac AB, C ¢ AB). Equation (17) replaces yf," (x) when computing

the mean vector and scatter matrices in equations (13-15). The resulting projections for
one particular sensor bundle (TGS2620, 5-7V) for three adaptation scenarios are shown
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in Fig. 10. Similar performance can be obtained on several other sensor bundles, but not
on all. Notice that, in each case, the technique is able to find a projection where the
adapting odor is projected close to the neutral background, and mixtures containing the
adapting odor are shifted toward the other component(s). These results demonstrate the
ability of the TP-LDA mapping to simulate a steady state scenario in which full adapta-
tion has been reached. In the next subsection we present a regularization technique that
allows TP-LDA to simulate the onset of the adaptation process.

Table 2. Indicator variables T (x) for TP-LDA under adaptation

(a) Adaptation to 4 (b) Adaptation to B (c) Adaptation to C
7? e 74 Ve vs | 75
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Fig. 10. Full chemosensory adaptation to odor A (a), odor B (b) and odor C (c).

4.3. Regularizing the TP-LDA projection

A further generalization of the TP-LDA mapping allows us to simulate partial chemosen-
sory adaptation. We define an adaptation term 77, (0<17, <1, A=1..P)to represent the

degree of adaptation to an odor, where 77,=0 indicates that no adaptation has occurred
and 7,=1 indicates that full adaptation has been reached. This adaptation term can be
used as a regularization parameter to obtain intermediate solutions between those im-
posed by equations (11) and (17):

R P P
Sy =Sy [ [0-m.)+ > Spma (18)
A=1 A=1
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P

. P
Sp =SgH(1_'7A)+ZS§’7A

A=1 A=1
In the absence of adaptation (77, =0 VA), these scatter matrices are identical to the non-
adapted  solution (Sl’;' Sy ) In the

(19)

onset odor 4

(17, >0, 7,=0 Vp=A), the solution undergoes regularization with (Sg,Sﬁ,), slowly

of adaptation to

departing from (Sﬁ' ,S,’,‘,') as the adaptation parameter 77, grows, until full adaptation is

reached and the solution becomes equivalent to (Sﬁ,Sﬁ,). This essentially provides a

smooth transition between the mappings in Fig. 9(b) and Fig. 10(a-c). The results of this
regularization process are illustrated in Fig. 11 for various degrees of adaptation to odor
A4 n,=1{0.05,0.35,0.65, 0.95} . Notice how effectively does the regularization process

provide a smooth trajectory from the onset of adaptation (a) until full adaptation is

achieved (d). Similar results can also be obtained when adapting to odors B and C.
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Fig. 11. Adaptation to odor A as a function of the adaptation parameter: 14 = 0.05 (a), na = 0.35 (b),
na = 0.65 (c) and n4 = 0.95s (d).

5. Conclusions and Future Work

In this article we have presented two pattern recognition algorithms that mimic the effect
of chemosensory adaptation on odor mixtures. The first algorithm builds a committee
machine of linear discriminant functions that operate on different features subsets (or
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sensor bundles) of the overall sensory input. The relative selectivity of these functions
determines a set of weighting coefficients for an ensemble average, which serves as an
indicator variable for each odor. An inhibitory term is included to reduce the contribu-
tion of the different sensor bundles, allowing the system to lower its sensitivity to previ-
ously detected odors. The algorithm has been evaluated on a dataset of two organic sol-
vents and their 50/50 mixture using an array of four temperature-modulated metal-oxide
gas sensors. This algorithm is best suited for mixture patterns that have a sufficient de-
gree of complementarity.

To address the collinearity of metal-oxide gas sensors, we have presented an alternative
algorithm based on Fisher’s class separability criteria. The algorithm finds a low-
dimensional projection that preserves an a-priori topology of odor mixtures. This topol-
ogy-preserving mapping serves as the backbone for chemosensory adaptation, which is
achieved by redefining the topological relationships between odors according to a desired
adaptation scenario. A regularization mechanism has also been proposed to simulate
different degrees of chemosensory adaptation. This topology-preserving mapping has
been validated on an experimental database of binary and ternary mixtures.
Chemosensory adaptation is used in biological olfactory systems to remove constant,
non-informative inputs, allowing the organism to retain its ability to detect new and po-
tentially harmful chemical stimuli. Similarly, the adaptation algorithms presented in this
article may be used in electronic-nose systems to remove background stimuli (e.g., matrix
effects) and enhance the selectivity of the system towards the interesting components in a
given chemical detection problem. The present study has focused on mimicking the ef-
fects of adaptation in odor mixtures, as reported in the olfaction and biological cybernet-
ics literature [3, 4]. Additional work is being pursued to incorporate other important ad-
aptation phenomena, such as increases in odor thresholds and cross-adaptation [25].
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