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Habituation in the KIII Olfactory Model
With Chemical Sensor Arrays

Ricardo Gutierrez-Osuna and Agustin Gutierrez-Galvez

Abstract—This paper presents a novel combination of chemical
sensors and the KIII model for simulating mixture perception with a
habituation process triggered by local activity. Stimuli are generated
by partitioning feature space with labeled lines. Pattern completion is
demonstrated through coherent oscillations across granule populations
using experimental odor mixtures.

Index Terms—Chemical sensors, coherent oscillations, KIII model, la-
beled lines, olfactory habituation.

I. INTRODUCTION

Habituation is a process that allows a sensory system to reduce its
sensitivity to previously detected stimuli, preventing sensory overflow
in the central nervous system and improving the ability to detect new
and, therefore, more informative stimuli. This computational function
has great potential in sensor-based machine olfaction [1] as a mecha-
nism to reduce the effect of background odors and enhance selectivity
toward the interesting components in a sample. However, with the ex-
ception of our own prior work, the issue of habituation has not been
explored in the context of chemical sensor arrays.

Wanget al. [2] have proposed a mechanism for the related problem
of pattern segmentation. Alternating bursts of activity induced by self-
inhibition are used to create a spatiotemporal pattern that sequentially
extracts the components of a mixture. Hendinet al. [3] have studied
odor segmentation as a blind-source separation problem where the dif-
ferent components in an odor mixture follow independent temporal
fluctuations. Li and Hertz [4] have proposed a feedback mechanism
for odor segmentation whereby the olfactory bulb activity is modulated
with an efferent signal after an odor is recognized. In [5] we have pre-
sented a statistical pattern recognition approach for odor segmentation
with chemical sensor arrays where habituation is triggered by a central
feedback signal, in a manner akin to Li and Hertz [4].

In contrast to our prior work, the objective of this paper is to investi-
gate the habituation process using: 1) a biologically plausible compu-
tational model and 2) an adaptation mechanism based on local activity.
In the process, we also explore the pattern-completion capabilities of
the KIII model when processing experimental sensor data. To simulate
olfactory stimuli, the KIII model is connected to an array of tempera-
ture-modulated chemoresistors. In order to produce an olfactory code
consistent with the widely accepted role of glomeruli as functional units
[6], the sensor-array feature space is partitioned into odor-selective re-
gions by means of a family of linear discriminant functions. This en-
sures that, under habituation to one of the components in a mixture,
the system is able to shift the perceived quality toward the remaining
components in the mixture, as observed in sensory analysis [7]. The
complete system is evaluated on a series of habituation scenarios in the
context of odor mixture processing.

Manuscript received November 6, 2002; revised March 18, 2003. This work
was supported by the NSF CAREER Grant 9984426/0229598.

The authors are with the Department of Computer Science, Texas A&M
University, College Station, TX 77843 USA (e-mail: rgutier@cs.tamu.edu;
agustin@cs.tamu.edu).

Digital Object Identifier 10.1109/TNN.2003.820438

1045-9227/03$17.00 © 2003 IEEE



1566 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

Fig. 1. (a) Habituation in the KIII model [10] affects mitral connections. Triggering habituation and dishabituation from G2 activity: (b)–(d) stimulus is removed
before and (e)–(g) after full habituation.

II. THE KIII M ODEL

The KIII model is a system of second-order nonlinear differential
equations that simulates the chaotic activity of neuron populations, as
observed in electroencephalogram recordings. As shown in Fig. 1(a),
the core of the model consists of a bank of coupled oscillators, called
KII sets, representing two pairs of mitral and granule populations. Each
one of these banks is connected to a periglomerular node, from which
receptor stimuli are fed into the system. The KIII receives feedback
from two additional KII sets that represent the anterior olfactory nu-
cleus and prepyriform cortex, allowing the system to display pseu-
dochaotic dynamics behavior, as opposed to limit cycles. Odor stimuli
at the receptor layer change the dynamics of the system, which is com-
monly analyzed through the oscillatory patterns of mitral or granule
cells. Interaction between neuron populations are regulated with con-
nection weights, most of which are fixed to ensure proper dynamic be-
havior. The only exception corresponds to mitral-to-mitral connections,
which undergo Hebbian learning, allowing the KIII to serve as an as-
sociative memory.

A. Habituation in the KIII Model

Following Kozma and Freeman [9], the habituation process is as-
sumed to induce depression of the connections from mitral nodes onto
other neuron populations, as highlighted in Fig. 1(a). Changes in these
connections are proportional to their instantaneous value and, thus,
follow an exponential decay [8]:

�w = w(t+�t)� w(t) = [B � w(t)] 1� exp �
�t

�
(1)

wherew represents a connection from the habituating mitral cell onto
other mitral or granule cells,� is a time constant governing the rate of
habituation, andB is the final value that the connection will approach
asymptotically. A value of� = 500 ms is used in this work.1 During

1The implementation of Kozma and Freeman [9] is equivalent to a slower
time constant� = 2s. It must be noted, however, that the value of� is not a
matter of free choice, as it has an effect on the dynamics of the KIII model, and
must be carefully selected.

the habituation process,B is the minimum strength of the connection
(i.e., under complete habituation.) A suitable value ofB = 1:5 was
obtained through experimentation.2 Under dishabituation,B is simply
the original value of the connection which, along with all remaining
fixed parameters3 and KIII model, is borrowed from [10].

In contrast with the mechanism of Kozma and Freeman [9], in
which a node undergoes habituation if it exceeds the average activity
across the mitral layer, our habituation/dishabituation processes are
initiated based solely on the local activity at each channel (for bio-
logical plausibility purposes.) Our triggers are illustrated in Fig. 1(b)
through (g). Following [11], the ac activity at each G2 node(G2ac)
is computed with a 50 ms-wide moving window. The window is split
into 10 nonoverlapping segments, and the average of the standard
deviation at each segment is used as a measure of ac amplitude
[see Fig. 1(c)]. From the derivative ofG2ac [see Fig. 1(d)], suitable
thresholdsThab = 0:3 mV=ms andTdishab�ac = �0:4 mV=ms
are then used to detect the onset of habituation and dishabituation,
respectively. The thresholdTdishab�ac works as long as the stimulus
is removed before full habituation is reached. Otherwise, the ac
amplitude cannot be discriminated from the basal state, as illustrated
in Fig. 1(e). In this case, a sudden change in dc offset can be used
to detect that the stimulus has been removed. The dc component of
each G2 node(G2dc), shown in Fig. 1(f), is computed with a 200-ms
causal moving average. A thresholdTdishab�dc = 0:3 mV=ms
is then applied to the derivative ofG2dc [see Fig. 1(g)] to trigger
dishabituation. To avoid false triggers, the thresholdTdishab�dc is
applied only if the connection is near full habituation(w � 1:8). The
derivative ofG2ac(G2dc) is computed by subtracting from the signal
its average activity on the previous 50 ms (200 ms).

2For values ofB � 1:5, the ac response to a stimulus is similar to the basal
state, as shown in Fig. 1(e) fort = 1200–1400 ms.

3The adaptive mitral-to-mitral connections are obtained through the (Heb-
bian) input correlation ruleW = f(p p ), wherep is the input pat-
tern for theith odor proposed in Section III, andf(�) is a threshold function so
that the elements inW are either LOW or HIGH (diagonal elements are set
to zero).
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Fig. 2. (a) Illustration of odor-selective hyperplanes. (b) Response of a MOS sensor to odor mixtures. (c) Classification of G2 phases. (d) Feature extraction and
binary code from staircase temperature transients.

III. ODOR-SELECTIVE HYPERPLANES

Inputs to the system are generated from the response patterns of a
chemical sensor array. Although the KIII model can be stimulated di-
rectly with raw sensor data, this paper employs a preprocessing stage
that yields a more suitable orthogonal binary representation [12]. The
solution consists of partitioning sensor feature space into odor-selec-
tive regions, as depicted in Fig. 2(a) for a 2-D classification problem
with three odors and their corresponding mixtures. A linear discrimi-
nant function (LDF) is used to divide feature space into two decision
regions, with the arrows indicating those mixture patterns that contain
the odor. Therefore, each of these LDFs can be thought of as a very se-
lective pseudosensor capable of detecting the presence of a particular
odor that may be embedded in a complex background.

The rationale behind the use of LDFs on the front-end of the KIII
model is twofold. First, it can be argued that the KIII inputs are more
representative of glomeruli (GL) than of individual olfactory receptor
neurons (ORNs). ORNs display a high level of convergence onto GL,
a feature not captured by the KIII since it is a model of population dy-
namics. In addition, each GL preferentially receives projections from
ORNs expressing the same receptor type, thus serving as a molec-
ular feature extractor [13]. As a result of this chemotopic projection,
different odors induce unique activation patterns across the GL layer,
providing the means for separating odor quality from odor intensity,
which cannot be accomplished at the ORN level. Thus, from a biolog-
ical plausibility standpoint, the LDFs provide a labeled-line olfactory
code. Second, LDFs are needed because ORNs and odor sensors have
radically different coding mechanisms. More importantly, odor sen-
sors have much broader cross-selectivities than ORNs, which causes
collinearity problems and results in highly overlapped input patterns.

A. Chemical Sensor Array

A sensor array with four metal oxide semiconductors (MOS) [14] is
employed to collect experimental data. MOS sensors are chemoresis-
tors: exposure to an odor changes the resistance of the device, which is

then measured with a voltage divider. The selectivity of a MOS sensor
is a function of its operating temperature (around 400�C), which is
controlled by applying a voltage across a built-in heater. Thus, selec-
tivity can be improved by capturing the sensor response at multiple
heater voltages, a principle known as temperature modulation [12].
Based on this principle, a staircase heater voltage with six step inputs
ranging from 2 to 7 V is used to excite the array, resulting in the re-
sponse patterns shown in Fig. 2(b). The most informative part of the
sensor transients correspond to the faster exponential decays [12]. In
order to capture this information, five points spaced 2 s apart are ex-
tracted from the initial part of each transient. Features from the six tran-
sients are merged to form a 30-D feature vector per sensor, which is
then processed with the LDFs to produce a 3-bit code per sensor, or
a 12-bit code for the complete sensor array, as illustrated in Fig. 2(d).
Processing each sensor independently allows the system to be robust
against sensor failure by exploiting the pattern-completion capabilities
of the KIII. A thirteenth bit, always set to zero, is also added to provide
a reference phase.

IV. RESULTS

To validate the proposed system, the sensor array was exposed to
mixtures of Acetone (A), Isopropyl Alcohol (B), Ammonia (C), and
water (neutral odor). Experimental data from each of the mixtures (A,
B, C, AB, AC, BC, ABC, and N) was collected on three separate days,
for a total of 24 samples. The system was evaluated using threefold
cross-validation. For a given fold, data from two days was used to de-
rive LDFs and hebbian connections, and data from the third separate
day was used as a test set. To classify KIII activation patterns, G2 os-
cillations are interpreted as ON or OFF based on their phase relative
to the reference channel. This phase code has been shown to be more
robust than the amplitude of the channels [15]. A decision threshold
for the phases is obtained as a Maximum A Posteriori (MAP) solution,
as illustrated in Fig. 2(c). True negatives(T�) are channels correctly
classified as OFF by the LDFs, whose G2 outputs will then oscillate in
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Fig. 3. (a) G2 output patterns of the KIII without habituation. (b) Mixture perception following habituation. (c) Reversibility of the habituation process. (d) Pattern
recovery. (Reference bit not shown).

phase with the reference bit. False positives(F+), on the other hand,
are channels incorrectly classified as ON by the LDFs. Similarly, true
positives(T+) are channels correctly classified as ON, and false nega-
tives(F�) are those incorrectly classified as OFF. Thus,F+ andF�
represent errors introduced by the LDFs. Fortunately, the G2 channels
in the case ofF + =F� oscillate in close phase with the correct out-
puts as a result of the hebbian connections. To derive a MAP threshold,
T � =F+ cases are assumed to belong to one Gaussian density, and
T +=F - cases to the other. When applied to the experimental data, the
LDFs introduce errors in 18 of the 288 coding bits in the dataset (12
bits /sample� 24 samples), or an error rate of 6.25%. Segmentation
of their corresponding G2 oscillations according to phase reduces the
number of error bits down to 2, or a 0.69% error rate.

The habituation performance is analyzed on three separate scenarios.
First, to illustrate the additivity of patterns, Fig. 3(a) shows the KIII
response when exposed separately to samples of A, C, and AC. The
habituation process is disabled to emphasize the steady-state response.
The first experiment is designed to illustrate a shift in the perception of
an odor mixture when the system has previously habituated to one of
the components. The system is presented with odor A and allowed to
habituate. At this time, binary mixture AC is presented. As shown in
Fig. 3(b), the response to AC is as if only C was present, reproducing a
known olfactory perception phenomenon [7]. The second experiment
shows the ability of the KIII to fully recover from habituation to an
odor. The model is excited with odor mixture AC and allowed to ha-
bituate. The sample is then removed and the KIII is allowed to disha-
bituate. When the sample is reintroduced, the KIII does not show any
memory effects, as shown in Fig. 3(c). The final experiment further il-
lustrates the pattern-completion capabilities of the system. When pro-
cessing a test example for odorB (from day 3), the LDFs introduce an
error on the fifth bit as a result of a distorted sensor transient. However,
the system is able to induce an oscillation in the missing channel that
is strong enough to trigger habituation. When subsequently exposed to
a complete pattern of mixture BC, the KIII behaves as if it had been
previously exposed to the complete pattern for odor B.

V. CONCLUSION

This paper has shown that the habituation and dishabituation pro-
cesses in the KIII model can be triggered from changes in local ac
and dc activity at each channel. When combined with a labeled-line
input code, the system can simulate the effects of habituation in the

processing of odor mixtures. The use of separate feature spaces for in-
dividual sensors exploits the associative-memory function of the KIII,
allowing it to compensate for the majority of the errors at the inputs.
The system has been validated on an array of temperature modulated
metal-oxide sensors, but is not tied to a particular sensor system. The
work presented in this paper has focused exclusively on odor quality.
The effects of habituation on odor thresholds, and an extended repre-
sentation to encode odor intensity, constitute future research directions.
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